胡赓祥《材料科学基础》(第3版)(复习笔记 单组元相图及纯晶体的凝固)【圣才出品】

合集下载

胡赓祥《材料科学基础》(第3版)(复习笔记 二元系相图和合金的凝固与制备原理)【圣才出品】

胡赓祥《材料科学基础》(第3版)(复习笔记 二元系相图和合金的凝固与制备原理)【圣才出品】

7.1复习笔记一、相图的表示和测定方法二元相图中的成分有两种表示方法:质量分数(w)和摩尔分数(x)。

两者换算如下:二、相图热力学的基本要点1.固溶体的自由能-成分曲线图7-1固溶体的自由能一成分曲线示意图(a)Ω<0(b)Ω=0(c)Ω>0相互作用参数的不同,导致自由能一成分曲线的差异,其物理意义为:(1)当Ω<0,即e AB<(e AA+e BB)/2时,A-B对的能量低于A-A和B-B对的平均能量,所以固溶体的A,B组元互相吸引,形成短程有序分布,在极端情况下会形成长程有序,此时△Hm<0。

(2)当Ω=0,即e AB=(e AA+e BB)/2时,A-B对的能量等于A-A和B-B对的平均能量,组元的配置是随机的,这种固溶体称为理想固溶体,此时△m H=0。

(3)当Ω>0,即e AB>(e AA+e BB)/2时,A-B对的能量高于A-A和B-B对的平均能量,意味着A-B对结合不稳定,A,B组元倾向于分别聚集起来,形成偏聚状态,此时ΔHm>0。

2.多相平衡的公切线原理两相平衡时的成分由两相自由能—成分曲线的公切线所确定,如图7-2所示。

图7-2两相平衡的自由能曲线图对于二元系,在特定温度下可出现三相平衡,如图7-3所示。

7-3二元系中三相平衡时的自由能成分曲线3.混合物的自由能和杠杆法则混合物中B组元的摩尔分数:而混合物的摩尔吉布斯自由能:由上两式可得:上式表明,混合物的摩尔吉布斯自由能G m 应和两组成相和的摩尔吉布斯自由能G m1和G m2在同一直线上。

该直线即为相α和β相平衡时的共切线,如图7-4所示。

图7-4混合物的自由能两平衡相共存时,多相的成分是切点所对应的成分1x 和2x ,即固定不变。

此时可导出:此式称为杠杆法则,在α和β两相共存时,可用杠杆法则求出两相的相对量,α相的相对量为122x x x x --,β相的相对量为121x x x x --,两相的相对量随体系的成分x 而变。

胡赓祥《材料科学基础》(第3版)配套题库(章节题库 原子结构与键合)【圣才出品】

胡赓祥《材料科学基础》(第3版)配套题库(章节题库 原子结构与键合)【圣才出品】

第1章 原子结构与键合一、简答题1.固体材料中,内层电子状态通常用哪些量子数描述?外层电子状态通常使用的量子数有哪些?答:固体材料中内层电子状态通常用主量子数n、角(动量)量子数l、磁量子数m 和自旋量子数m s来描述。

固体材料中外层电子状态通常用电子波矢(k x,k y,k z)和自旋量子数m s来描述。

2.原子中一个电子的空间位置和能量可用哪4个量子数来决定?答:主量子数n、轨道角动量量子数l i、磁量子数m i和自旋角动量量子数s i。

3.在多电子的原子中,核外电子的排布应遵循哪些原则?答:能量最低原理,Pauli不相容原理,Hund规则。

4.在元素周期表中,同一周期或同一主族元素原子结构有什么共同特点?从左到右或从上到下元素结构有什么区别?它的性质如何递变?答:同一周期元素具有相同原子核外电子层数,但从左→右,核电荷依次增多,原子半径逐渐减小,电离能增加,失电子能力降低,得电子能力增加,金属性减弱,非金属性增强;同一主族元素最外层电子数相同,但从上→下,电子层数增多,原子半径增大,电离能降低,失电子能力增加,得电子能力降低,金属性增加,非金属性降低。

5.何谓同位素?为什么元素的相对原子质量不总为正整数?答:在元素周期表中占据同一位置,尽管它们的质量不同,然而它们的化学性质相同,这种物质称为同位素。

由于各同位素所含的中子量不同(质子数相同),故具有不同含量同6.原子间的结合键共有几种?各自的特点如何?答:7.S的化学行为有时像2价的元素,而有时却像4价元素。

试解释S这种行为的原因。

答:S的最外层电子为3s23p4。

S与H结合成H2S时,接受2个电子,故为2价;S 与O结合成SO2时,此时S供给4个电子,故为4价。

8.尽管HF的相对分子质量较低,试解释:为什么HF的沸腾温度(19.4℃)要比HCI的沸腾温度(-85℃)高?答:由于HF分子间结合力是氢键,而HCI分子间结合力是范德瓦耳斯力,氢键的键能高于范德瓦耳斯力的键能,因此HF的沸点要比HCI的高。

胡赓祥《材料科学基础》(第3版)(复习笔记 原子结构与键合)【圣才出品】

胡赓祥《材料科学基础》(第3版)(复习笔记 原子结构与键合)【圣才出品】

1.1复习笔记一、原子结构1.物质的组成一切物质是由无数微粒按一定的方式聚集而成的,这些微粒可能是分子、原子或离子。

(1)分子是能单独存在、且保持物质化学特性的一种微粒;(2)原子具有复杂的结构,其结构直接影响原子间的结合方式。

2.原子的结构(1)原子是由质子和中子组成的原子核,以及核外的电子所构成的;(2)原子核内的中子呈电中性,质子带有正电荷;(3)一个质子的正电荷量正好与一个电子的负电荷量相等,它等于-e(e=1.6022×10-19C)。

3.原子的电子结构电子既具有粒子性又具有波动性,即具有波粒二象性。

从薛定谔(SchrodingerE.)方程得到的波函数描述了电子的运动状态和在核外空间某处的出现几率,即原子中一个电子的空间位置和能量可用四个量子数来确定:(1)主量子数n——决定原子中电子能量以及与核的平均距离;图1-1钠(原子序数为11)原子结构中K,L和M量子壳层的电子分布状况(2)轨道角动量量子数l i——给出电子在同一量子壳层内所处的能级(电子亚层),与电子运动的角动量有关,取值为0,1,2,…,n-1。

在同一量子壳层里,亚层电子的能量是按s,p,d,f,g的次序递增的;(3)磁量子数m i——给出每个轨道角动量量子数的能级数或轨道数。

每个l i下的磁量子数的总数为2l i+1。

磁量子数决定了电子云的空间取向。

(4)自旋角动量量子数s i——反映电子不同的自旋方向。

s i规定为+1/2和-1/2,反映电子顺时针和逆时针两种自旋方向,通常用“↑”和“↓”表示。

在多电子的原子中,核外电子的排布规律遵循以下三个原则:①能量最低原理:电子的排布总是尽可能使体系的能量最低;②泡利(Pauli)不相容原理:在一个原子中不可能有运动状态完全相同的两个电子,主量子数为n的壳层,最多容纳2n2个电子;③洪德(Hund)定则:在同一亚层中的各个能级中,电子的排布尽可能分占不同的能级,而且自旋方向相同。

胡赓祥《材料科学基础》(第3版)(名校考研真题详解 固体中原子及分子的运动)【圣才出品】

胡赓祥《材料科学基础》(第3版)(名校考研真题详解 固体中原子及分子的运动)【圣才出品】

四、名词解释题
2/8
圣才电子书 十万种考研考证电子书、题库视频学习平台

1.柯肯达尔效应 [湖南大学 2007 研] 答:在置换式固溶体中,由于两种原子以不同的速度相对扩散而造成标记面漂移的现象 被称为柯肯达尔效应。
2.扩散激活能 [天津大学 2008、2009 研] 答:必须要由额外的能量来克服能垒才能实现原子从一个平衡位置到另一个平衡位置 的基本跃迁,这部分能量称为扩散激活能。
Grn RT
C.
D
2a02
exp
Grn RT
【答案】A
3.下列有关固体中扩散的说法中,正确的是( )。[东南大学 2006 研] A.原子扩散的驱动力是存在着浓度梯度 B.空位扩散是指间隙固溶体中的溶质原子从一个间隙跳到另一个间隙 C.晶界上点阵畸变较大,因而原子迁移阻力较大,所以比晶内的扩散系数要小 D.成分均匀的材料中也存在着扩散 【答案】D
5.比重偏析 [合肥工业大学 2005 研] 答:由于合金中组元比重的不同所引起的偏析,例如合金中的两组元在液态下互不相溶 时,比重大的组元沉在下面,比重小的组元浮在上面或者液态合金在搅拌不均的情况下,由 于选择凝固所生成的晶体,其比重与母液不同,或上浮或下沉,形成比重偏析。
6.上坡扩散与反应扩散 [江苏大学 2006 研] 答:上坡扩散是指溶质原子朝浓度下降的方向扩散,D>0,d <0 ;反应扩散是指在扩
3/8
圣才电子书 十万种考研考证电子书、题库视频学习平台

点:二元系中扩散区域不存在双相区,只能形成不同的单相区。
五、解答题 1.已知碳在γ-Fe 中的扩散常数 Dα=2.0×10-5m2/s,扩散激活能 Q=140×103J/mol, 要想得到与在 927℃时渗碳 l0h 的相同厚度,在 870℃渗碳需要多长时间?(忽略不同温度 下碳在γ-Fe 中溶解度的不同)[北京工业大学 2008 研] 答:碳在 中扩散的误差函数解表示为

胡赓祥《材料科学基础》(第3版)配套题库(章节题库 固体中原子及分子的运动)【圣才出品】

胡赓祥《材料科学基础》(第3版)配套题库(章节题库 固体中原子及分子的运动)【圣才出品】

第4章 固体中原子及分子的运动一、选择题1.影响扩散速率的最主要因素是( )。

A .固溶体类型B .晶体结构C .温度【答案】C2.菲克第一定律描述了稳态扩散的特征,即浓度不随( )变化。

A .距离B .时间C .温度【答案】B二、判断题扩散的驱动力是浓度梯度,所有扩散系统中,物质都是由高浓度处向低浓度处扩散。

【答案】×【解析】扩散的驱动力是化学势梯度,扩散也可以从低浓度向高浓度进行。

三、简答题1.试分析高分子的分子链柔顺性和分子量对黏流温度的影响。

答:由链段与能垒(势垒)差的关系可知:分子链柔顺性越好,链内旋转的势垒(△ε)越低,流动单元链段也越短。

按照高分子流动的分段移动机理,此时柔性分子链流动所需要的自由体积空间小,因而在比较低的温度下就可能发生黏性流动。

当相对分子质量越小时,分子链之间的内摩擦阻力越小,分子链的相对运动更容易些,因而黏流温度就降低。

2.已知聚乙烯的玻璃化转变温度T g =-68℃,聚甲醛的T g =-83℃,聚二甲基硅氧烷的T g =-128℃,试分析高分子链的柔顺性与它们的T g 的一般规律。

答聚乙烯的重复单元结构为:—CH2—CH 2—;聚甲醛的重复单位结构为:—CH 3—O—,聚二甲基硅氧烷的重复单元结构为:因Si—O 键的内旋转C—O 比键容易,而C—O 键的内旋转又比C—C 键容易,内旋转越容易,分子链柔顺性越好。

由此可知随着柔顺性的提高,温度T g 就降低。

3.50%结晶高分子的模量与随温度的变化,如图4-1所示。

(1)在图中粗略画出不同模量范围内的玻璃态、皮革态、橡胶态和黏流态的位置,并说明原因。

(2)在该图上粗略画出完全非晶态和完全晶态的模量曲线,并说明原因。

图4-1答:(1)不同模量对应高分子不同的状态,如图4-2(a)所示:在低温端,50%的非晶区,链段不能开动,表现为刚性,模量高;随着温度的提高,链段可运动,随之模量下降,高分子显示出晶区的强硬和非晶区的部分柔顺的综合效应,即又硬又韧的皮革态;当非晶区随温度进一步提高而链段可动性更大时,柔顺性更好,显示高弹性(即橡胶态)。

胡赓祥《材料科学基础》第3版章节题库(晶体缺陷)【圣才出品】

胡赓祥《材料科学基础》第3版章节题库(晶体缺陷)【圣才出品】

力作用时的反应方向:
(1) 1 [10 1] 1 [2 1 1] 1 [112] ;
2
6
6
(2) 1[112] 1 [111] 1 [11 1] ;
3
2
6
(3) 1 [112] 1 [110] 1[111] 。
6
6
3
答:(1)可以,向右进行。
(2)不可以。
(3)可以,向左进行。
_
_
5.某面心立方晶体的可动滑移系为(111)[110]。(1)指出引起滑移的单位位错的
3 / 29
圣才电子书 十万种考研考证电子书、题库视频学习平台
www.100xuLeabharlann
图 3-1 答:(1)由于扭折处于原位错所在滑移面上,在线张力的作用下可通过它们自身的滑 移而去除。割阶则不然,它与原位错处于不同的面上,fcc 的易滑移面为(111),割阶的存 在对原位错的运动必定产生阻力,故也难以通过原位错的滑动来去除。 (2)1′2′和 3′4′段均为刃型割阶,并且在 1′2′的左侧多一排原子面,在 3′4′的右侧多 一排原子面,若随着位错线 0′5′的运动,割阶 l′2′向左运动或割阶 3′4′向右运动,则沿着这 两段割阶所扫过的面积会产生厚度为一个原子层的空位群。
4 / 29
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 3-2
答:两位错在外力作用下将向上弯曲并不断扩大,当他们扩大相遇时,将于相互连接处
断开,放出一个大的位错环。新位错源的长度为 5x,将之代入,得 F-R 源开动所需的临界
切应力为
τc
Gb L
Gb 5x
1 / 29
圣才电子书 十万种考研考证电子书、题库视频学习平台

胡赓祥《材料科学基础》(第3版)(复习笔记 固体中原子及分子的运动)【圣才出品】

胡赓祥《材料科学基础》(第3版)(复习笔记 固体中原子及分子的运动)【圣才出品】

4.1复习笔记一、表象理论1.菲克第一定律扩散中原子的通量与质量浓度梯度成正比,即该方程称为菲克第一定律或扩散第一定律,描述了一种稳态扩散,即质量浓度不随时间而变化。

根据扩散通量的定义,可得:由菲克第一定律可得:由此解得:2.菲克第二定律大多数扩散是非稳态扩散过程,某一点的浓度是随时间而变化的,这类过程可以由第二定律来描述,其表达式:如果假定扩散系数D与浓度无关,则上式可简化为:菲克第二定律三维表达式为:(1)化学扩散:扩散是由于浓度梯度所引起的,这样的扩散称为化学扩散;(2)自扩散:不依赖浓度梯度,而仅由热振动而产生的扩散称为自扩散,由Di表示。

3.扩散方程的解(1)两端成分不受扩散影响的扩散偶初始条件:边界条件:图4-1扩散偶的成分-距离曲线若焊接面右侧棒的原始质量浓度ρ为零,则:而界面上的浓度等于ρ2/2。

(2)一端成分不受扩散影响的扩散体初始条件:边界条件:假定渗碳一开始,渗碳源一端表面就达到渗碳气氛的碳质量浓度ρ,可得:如果渗碳零件为纯铁(ρ0=0),可得:(3)衰减薄膜源初始扩散物质的浓度分布为:菲克第二定律对衰减薄膜源的解可用高斯解的方式给出:式中,k是待定常数。

假定扩散物质的单位面积质量为M,则薄膜扩散源随扩散时间衰减后的分布:当扩散时间越长,扩散物质初始分布范围越窄,高斯解就越精确。

而保证高斯解有足够精度的条件为:如果在金属b棒一端沉积扩散物质a(单位面积质量为M),经扩散退火后,其质量浓度为上述扩散偶的2倍,即因为扩散物质由原来向左右两侧扩散改变为仅向一侧扩散。

最终解为:由于在均匀化扩散退火时只考虑浓度在x=2λ时的变化,此时sin(x πλ)=1,所以因为所以由上式可知,要完全消除偏析是不可能的,因为此时要求t→+∞4.置换型固溶体中的扩散若组元i(i=1,2)的质量浓度为ρi ,扩散速度为v,则其扩散通量:对于两个组元,它们的扩散总通量分别为:在扩散过程中,假设密度保持不变,则须满足:5.扩散系数D 与浓度相关时的求解(1)设无限长的扩散偶,其初始条件为:当t=0时,玻耳兹曼引入参量η,使偏微分方程变为常微分方程得:(2)初始条件变为:当t=0时,将η和d d dx d t d dx d dxρρρηη(D )=D(D )式代入上式:得:二、扩散的热力学分析1.上坡扩散物质从低浓度区向高浓度区扩散,扩散的结果提高了浓度梯度,称为上坡扩散或者逆向扩散。

胡赓祥《材料科学基础》第3版章节题库(原子结构与键合)【圣才出品】

胡赓祥《材料科学基础》第3版章节题库(原子结构与键合)【圣才出品】

胡赓祥《材料科学基础》第3版章节题库第1章原子结构与键合一、简答题1.何谓同位素?为什么元素的相对原子质量不总为正整数?答:在元素周期表中占据同一位置,尽管它们的质量不同,然而它们的化学性质相同,这种物质称为同位素。

由于各同位素所含的中子量不同(质子数相同),故具有不同含量同位素的元素,总的相对原子质量不总为正整数。

2.S的化学行为有时像2价的元素,而有时却像4价元素。

试解释S这种行为的原因。

答:S的最外层电子为3s23p4。

S与H结合成H2S时,接受2个电子,故为2价;S 与O结合成SO2时,此时S供给4个电子,故为4价。

3.尽管HF的相对分子质量较低,试解释:为什么HF的沸腾温度(19.4℃)要比HCl的沸腾温度(-85℃)高?答:由于HF分子间结合力是氢键,而HCl分子间结合力是范德瓦耳斯力,氢键的键能高于范德瓦耳斯力的键能,因此HF的沸点要比HCl的高。

4.高分子材料按受热的表现可分为热塑性和热固性两大类,试从高分子链结构角度加以解释。

答:热塑性:具有线型和支化高分子链结构,加热后会变软,可反复加工再成形;热固性:具有体型(立体网状)高分子链结构,不溶于任何溶剂,也不能熔融,一旦定型后不能再改变形状,无法再生。

5.已知某元素原子序数为32,根据原子的电子结构知识,试指出它属于哪个周期?哪个族?并判断其金属性的强弱。

答:1s22s22p63s23p63d104s24p2;第四周期;IVA族;亚金属Ge。

其处于周期表中金属区与非金属区的交界线上,金属性较弱。

6.图1-1中绘出3类材料——金属、离子晶体和高分子材料之能量与距离的关系曲线,试指出它们各代表何种材料。

图1-1答:a:高分子材料;b:金属材料;c:离子晶体。

7.分别绘出甲烷(CH4)和乙烯(C2H4)的原子排列与键合。

答:见图1-2。

图1-2(a)CH 4分子呈四面体结构,每个C 有4个共价键,每个H 有1个共价键,分子间靠范德瓦耳斯力维系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1复习笔记
一、单元系相变的热力学及相平衡
1.相平衡条件和相律
组元:组成一个体系的基本单元,如单质(元素)和稳定化合物,称为组元。

相:体系中具有相同物理与化学性质的且与其他部分以界面分开的均匀部分,称为相。

相律:F=C-P+2;式中,F为体系的自由度数,它是指不影响体系平衡状态的独立可变参数(如温度、压力、浓度等)的数目;C为体系的组元数;P为相数。

常压下,F=C-P+1。

2.单元系相图
单元系相图是通过几何图像描述由单一组元构成的体系在不同温度和压条件下可能存在的相及多相的平衡。

图6-1水的相图
图6-2Fe在温度下的同素异构转变
上述相图中的曲线所表示的是两相平衡时温度和压力的定量关系,可由克劳修斯(Clausius)-克拉佩龙克拉珀龙(Clapeyron)方程决定,即
式中,为相变潜热;为摩尔体积变化;T是两相平衡温度。

有些物质在稳定相形成前,先形成自由能较稳定相高的亚稳定相。

二、纯晶体的凝固
1.液态结构
(1)液体中原子间的平均距离比固体中略大;
(2)液体中原子的配位数比密排结构晶体的配位数减小;
(3)液态结构的最重要特征是原子排列为长程无序,短程有序,存在结构起伏。

2.晶体凝固的热力学条件
(6-1)
与实际凝固温度T之差;L m是熔化热。

晶体凝固的热
式中,,是熔点T
力学条件表明,实际凝固温度应低于熔点T m,即需要有过冷度△T。

3.形核
晶体的凝固是通过形核与长大两个过程进行的,形核方式可以分为两类:均匀形核和非均匀形核。

(1)均匀形核
①晶核形成时的能量变化和临界晶核
新相晶核是在母相中均匀地生成的,即晶核由液相中的一些原子团直接形成,不受杂质粒子或外表面的影响
假定晶胚为球形,半径为r,当过冷液中出现一个晶胚时,总的自由能变化:
(6-2)
由,可得晶核临界半径:
(6-3)代入公式(6-1),可得:
(6-4)由式可知,过冷度△T越大,临界半径则越小,则形核的几率越大,晶核数目增多。

将(6-3)式代入(6-2)式,得临界形核功:
(6-5)将(6-1)式代入(6-5)式,可得:
(6-6)临界晶核表面积为:
(6-7)将(6-7)式代入(6-6)式,可得:
(6-8)因此,形成临界晶核时体积自由能的减少只能补偿表面能的2/3,而不足的1/3则需依
靠液相中存在的能量起伏来补充。

结构起伏和能量起伏是促进均匀形核的必要因素。

②形核率
形核率受两个因素的控制,即形核功因子和原子扩散的几率因子,因此形核率为:
(6-9)对于易流动液体来说,形核率随温度下降至某值T*时突然显著增大,此温度T*可视为均匀形核的有效形核温度,有效过冷度。

但对于高粘滞性的液体,均匀形核率很小,以致常常不存在有效形核温度。

结论:均匀形核的难度较大。

(2)非均匀形核
新相优先在母相中存在的异质处形核,即依附于液相中的杂质或外来表面形核。

在实际溶液中不可避免地存在杂质和外表面(例如,容器表面),因而其凝固方式主要是非均匀形核。

且由于均匀形核难度较大,所以液态金属多为非均匀行核。

非均匀行核时的临界半径为:
形核功为:
(6-10)由此可见,非均匀形核所需的形核功小于均匀形核功,故非均匀形核所需的过冷度较均匀形核时小,非均匀形核在约为0.02Tm的过冷度时,形核率已达到最大值。

4.晶体长大
(1)液-固界面的构造
晶体凝固后呈现不同的形状,可分为小平面形状和非小平面形状。

图6-3小平面状和非平面状
按原子尺度,把相界面结构分为粗糙界面和光滑界面两类。

①光滑界面:在界面以上为液相,以下为固相,固相的表面为基本完整的原子密排面,液、固两相截然分开,所以从微观上看是光滑的,但在宏观上它往往由不同位向的小平面所组成,故呈折线状,这类界面也称小平面界面。

②粗糙界面:在固、液两相之间的界面从微观来看是高低不平的,存在几个原子层厚度的过渡层,在过渡层中约有半数的位置为固相原子所占据。

但由于过渡层很薄,因此从宏观来看,界面显得平直,不出现曲折的小平面。

(a)光滑界面(b)粗糙界面
图6-4
(2)晶体长大方式和长大速率
晶体的长大方式可有连续长大、二维晶核、螺型位错长大等方式:
①连续长大:粗糙界面垂直长大;
②二维形核,二维形核的生长方式由于其形核较大,因此实际上甚少见到;
③螺型位错生长。

图6-5二维晶核长大机制示意图螺型位错台阶长大机制示意图
5.结晶动力学及凝固组织(1)结晶动力学
(6-11)
上式称为约翰逊-梅尔(Johnson-Mehl)结晶动力学方程,并可应用于在四个条件(均匀形核,N 和v g 为常数,以及小的τ值)下的任何形核与长大的转变,如再结晶。

1exp()
n r φkt =--(6-12)
阿弗拉密方程是描述结晶和固态相变中转变动力学的唯象方程。

(2)纯晶体凝固时的生长形态
纯晶体凝固时的生长形态不仅与液—固界面的微观结构有关,而且取决于界面前沿液相中的温度分布情况,温度分布可有两种情况:正的温度梯度和负的温度梯度,分别如图6-6(a),(b)所示。

相关文档
最新文档