流体力学流体特性
流体的名词解释

流体的名词解释流体是指物质在相互之间可以自由流动的状态。
它是物质状态的一种,与固体和气体一同构成了自然界中的三态。
流体的特性与固体和气体有着明显的差异,它的名词解释可以从多个角度进行阐述。
一、流体的物理特性1. 流动性:流体的最显著特征就是可以流动。
相比固体而言,流体的分子间相互作用较弱,不具有固体的几何形状和结构。
这种微观结构上的差异决定了流体可以快速适应外界的形状和位置变化,具有流动性。
2. 压缩性:流体的另一个重要特性是压缩性。
相比固体而言,流体的分子间距较大,可以在较小的外力作用下发生相对大的体积变化。
这使得流体在受力时可以更容易地发生变形。
3. 扩散性:流体的分子在体积上存在着较大的自由度,因此流体具有较高的扩散性。
当两种不同成分的流体接触时,它们的分子会相互扩散,从而实现混合。
4. 表面张力:流体表面上的分子间存在着相互吸引的力,这种现象被称为表面张力。
表面张力使得流体表面呈现出一定的弹性,形成像皮肤一样的薄膜。
这种性质在许多自然界和工业过程中都发挥着重要的作用,如水珠在叶片上的滑动。
二、流体的分类1. 物态分类:根据流体的外在形态,可以将其分为液体和气体两种状态。
液体在常温常压下具有一定的体积和形状,而气体则可自由膨胀至充满其容器。
2. 流变性分类:流体还可以根据其对应力的响应方式来进行分类。
牛顿流体是指流体内部的分子相互作用力满足牛顿定律,即流体的粘度在应力作用下保持恒定。
而非牛顿流体则指无法满足牛顿定律的流体,在外力作用下其粘度可能随着剪应力、速率等参数的变化而发生变化。
三、流体力学流体力学是研究流体运动的科学学科。
它对流体在受力作用下的运动、压力分布、速度分布等进行研究,可以应用到诸多领域。
例如,交通工程中的交通流理论,石油工程中的油流动力学,在水利工程中的水流动力学等等。
四、流体的应用1. 液压传动:流体的不可压缩性和压缩性使其在液压传动中起到重要作用。
液压系统广泛应用于工程机械、航空航天、冶金等领域,用于传递和控制力和能量。
流体力学中的流体流动特性

流体力学中的流体流动特性1. 引言流体力学是研究流体运动规律的学科,广泛应用于航空航天、能源、环境等领域。
流体力学中最基本的概念之一就是流体的流动特性,即流体在不同条件下的流动行为。
了解流体流动特性对于优化流体系统设计和预测流体行为具有重要意义。
本文将重点介绍流体流动特性的几个重要方面。
2. 流动的类型2.1 层流与湍流流动可以分为层流和湍流两种类型。
在层流中,流体的运动是有序的,流速沿流体横截面均匀分布,流线呈直线状排列。
层流通常发生在流体的低速流动中,具有稳定性好、阻力小的特点。
而在湍流中,流体的运动是混乱的,流速沿流体横截面出现涡流和涡旋,流线呈曲线状排列。
湍流通常发生在高速流动、流体受到干扰或流动过程中存在不稳定因素时,具有耗能大、阻力大的特点。
2.2 压力与速度分布在流体流动过程中,流体的速度和压力分布会随着位置的变化而变化。
一般来说,流体在管道中的流速越快,压力越低,流速越慢,压力越高。
这是由于流体的动能和静能在流动过程中的变化所导致的。
压力和速度的分布规律可以通过流体力学方程和能量方程进行分析和计算。
3. 流动的参数3.1 流速流速是流体某一点上的速度大小,在流体力学中是流动的基本参数之一。
流速的大小可以通过测量流体通过单位时间内通过横截面的体积来确定。
流速在不同位置和不同时间上可能存在变化,可以通过实验或计算得到。
3.2 流量流量是单位时间内通过横截面的体积,是描述流体流动量的重要参数。
流量的大小可以通过流速和横截面积的乘积来计算。
流量可以用来描述流体在管道中的输送能力,是流动特性研究中的一个重要指标。
3.3 压力损失在流体通过管道或孔隙流动时,由于摩擦和阻力的存在,流体会损失一部分压力。
这种压力损失是衡量流体流动特性的重要指标之一。
压力损失通常随着流速、管道形状和粗糙度等因素的变化而变化。
减小压力损失可以提高流体流动的效率。
4. 流体流动的数学模型4.1 守恒方程守恒方程是描述流体流动过程中质量、动量和能量守恒的基本方程。
流体力学基础知识概述

流体力学基础知识概述流体力学是研究流体运动及其力学性质的学科领域,它对于了解和分析自然界中的流体现象、工程设计和科学研究都具有重要的意义。
本文将对流体力学的基础知识进行概述,帮助读者对该领域有一个全面的了解。
一、流体的特性流体是一种连续变形的物质,其特性包括两个基本的属性:质量和体积。
质量是指流体的总重量,而体积则表示流体占据的空间。
流体还具有可压缩性和不可压缩性之分,可压缩流体如气体在受力时体积可变,不可压缩流体如液体则在受力时体积基本保持不变。
二、流体的力学性质1. 流体的静力学性质:静力学研究的是流体在静态平衡下的性质。
静力学方程描述了流体静力平衡的条件,在不同的情况下有不同的方程形式。
例如,对于不可压缩流体,静力平衡方程可以表示为斯托克斯定律。
2. 流体的动力学性质:动力学研究的是流体在运动状态下的性质。
根据流体的性质和流动条件,可以使用纳维-斯托克斯方程或欧拉方程来描述流体运动。
这些方程可以通过流体的质量守恒、动量守恒和能量守恒得到。
三、流体的流动类型根据流体的运动方式,流体力学将流动分为两种基本类型:层流和湍流。
层流是指流体以有序、平稳的方式流动,流线相互平行且不交叉;而湍流则是流体运动不规则、混乱的状态,流线交叉、旋转和变化。
层流和湍流的转变由雷诺数决定,雷诺数越大,流动越容易变为湍流。
雷诺数是流体力学中一个无量纲的参数,通过流体的密度、速度和长度等特性计算而来。
四、流体的流速分布流体在管道或河流等容器中的流速分布可以通过速度剖面来描述,速度剖面是指流体速度随离开管道中心轴距离的变化关系。
一般情况下,流体在靠近管道壁面处速度较小,在中心位置处速度较大。
速度剖面可用来研究流体流动的特性,例如通过计算剖面的斜率可以确定流体的平均速度。
此外,流体的速度分布还受到管道壁面的摩擦力和流体性质的影响。
五、流体的流量计算流量是指单位时间内通过某一横截面的流体体积,计算流体流量是流体力学中的一项重要任务。
流体力学基础流体的性质与流体力学原理

流体力学基础流体的性质与流体力学原理流体力学基础——流体的性质与流体力学原理流体力学是研究流体运动和流体力学基本原理的学科,广泛应用于航空、航海、能源、化工等领域。
本文将介绍流体的性质以及流体力学的基本原理。
一、流体的性质流体指的是气体和液体,在力学中被视为连续介质。
流体具有以下几个主要的性质:1. 可流动性:与固体不同,流体具有较低的粘性和内聚力,因此可以流动。
流体的流动性使其在工程领域中应用广泛,并且流体力学正是研究流体流动的力学学科。
2. 不可压性:对于液体来说,密度变化相对较小,一般可视为不可压缩的。
而对于气体来说,变化较大的压力会引起密度变化,所以流体力学中对气体流动的研究需要考虑密度的变化。
3. 流体静力学压力:流体静力学压力是由于流体自身重力或外力作用下的压力差异引起的。
流体中的每一点都承受来自其周围流体的压力。
4. 流体动力学压力:流体动力学压力是由于流体的动力作用引起的压力差异。
当流体以较高速度通过管道或物体时,流体动力学压力扮演着重要的角色。
二、流体力学原理流体力学原理是研究流体运动的基本规律,它由庞加莱提出的运动方程、贝努利定律、连续方程等组成。
以下将分别介绍这几个基本原理:1. 流体运动方程:流体运动方程描述了流体在空间中运动的规律。
流体运动方程包括质量守恒方程、动量守恒方程和能量守恒方程。
质量守恒方程指出质量在流体中不会凭空消失或产生;动量守恒方程描述了流体运动中受到的作用力和压力的关系;能量守恒方程则研究了流体在流动过程中的能量转化。
2. 贝努利定律:贝努利定律是流体力学中最为著名的定律之一。
它说明了在无粘度和定常状态下,流体在不同位置的速度、压力和高度之间存在着一种平衡关系。
贝努利定律在飞行器设计和管道流动等领域中有广泛的应用。
3. 材料导数:材料导数是流体力学中用来描述物质随时间变化的速率的重要概念。
对于流体来说,由于其非刚性的特性,物质随时间的变化需要通过材料导数来描述,它包括时间导数和空间导数。
流体的主要力学性质

微观机制:分子间吸引力、分子不规则运动的动量交换。
流体力学-- Fluid Mechanics
天河学院 建筑工程系
Construction Engineering Department ,TianHe College
流体的黏性受温度的影响很大,而且液体和气体的黏性随温度的变化是不 同的。液体的黏性随温度升高而减小,气体的黏性随温度升高而增大。
造成液体和气体的黏性随温度不同变化的原因是由于构成它们黏性的主要 因素不同。分子间的吸引力是构成液体黏性的主要因素,温度升高,分子间的 吸引力减小,液体的黏性降低;构成气体黏性的主要因素是气体分子作不规则 热运动时,在不同速度分子层间所进行的动量交换。温度越高,气体分子热运 动越强烈动量交换就越频繁,气体的黏性也就越大。
二、流体的主要力学性质
2、粘性(viscosity)
y
F
U
b
uy
(1)牛顿内摩擦定律——Newton’s 实验
A
FU
du
Ab
dy
——内摩擦力。
Hale Waihona Puke 产生原因:分子引力;分子动量交换。
——动力粘性系数(Pa.s) 。 值越大,流体
越粘,抵抗变形运动的能力越强。
——运动粘性系数(m^2/s)。
二、流体的主要力学性质 2、粘性(viscosity) (2) 理想流体与粘性流体
理想流体: 的 0流体(无粘性流体)
粘性流体: 的0 流体(真实流体) (3) 牛顿流体和非牛顿流体
牛顿流体: c的on流st 体。剪应力和变 形速率满足线性关系。
非牛顿流体: (d的u 流dy体) 。剪切应力 和变形速率不满足线性关系。
理想流体和真实流体的比较研究

理想流体和真实流体的比较研究流体力学是研究流体运动和相互作用的学科,其中涉及到理想流体和真实流体的比较研究。
理想流体是一种理论假设,它假设流体是无黏性的、可压缩性小的,而真实流体则会存在黏性和可压缩性。
本文将对理想流体和真实流体进行比较研究,以及它们在流体力学中的应用。
一、理想流体的特性理想流体是一种理想化的流体模型,它具有以下特性:1. 无黏性:理想流体假设没有内部摩擦力,即没有黏性,流体分子之间相互之间没有相互作用力。
2. 不可压缩性:理想流体假设密度恒定不变,不随外部力的作用而发生变化。
3. 无摩擦:理想流体中不存在摩擦力,流体在运动时的能量损失完全归因于形成流体流动的外力。
二、真实流体的特性真实流体是指真实世界中存在的流体,它与理想流体相比具有以下特性:1. 黏性:真实流体内部具有一定的摩擦力,即黏性,黏性的存在会导致能量损失和流动阻力。
2. 可压缩性:真实流体在受到外力作用时,会发生密度和体积的变化,即可压缩性。
3. 摩擦:真实流体中存在摩擦力,摩擦会使流体在受力作用下产生能量损失。
三、理想流体和真实流体的比较1. 黏性差异:理想流体假设没有黏性,而真实流体存在黏性。
黏性的存在会引起能量损失和阻力,限制了真实流体的流动性能。
2. 可压缩性差异:理想流体假设是不可压缩的,而真实流体是可压缩的。
真实流体在受到外部作用时,会发生密度和体积的变化。
3. 摩擦差异:理想流体中不存在摩擦,而真实流体具有内部和外部摩擦力。
摩擦会使流体流动的能量损失更大。
四、理想流体和真实流体在流体力学中的应用1. 理想流体的应用:理想流体常用于建立理论模型,方便分析和计算。
例如,在空气动力学中,常使用理想气体模型进行空气流动的研究和计算,以获得飞行器受力和阻力的特性。
2. 真实流体的应用:真实流体在实际应用中更为常见。
例如,在工程中,通过研究真实流体的黏性和摩擦特性,可以优化管道和流体系统的设计,并减少能量损失。
此外,真实流体的可压缩性也是航空航天领域中重要的研究方向,以确保航天器在高速飞行中的稳定性和安全性。
流体力学

• 从微观上讲,流体是由大量的彼此之间有一定间 隙的单个分子所组成,而且分子总是处于随机运 动状态。 • 从宏观上讲,流体视为由无数流体质点(或微团) 组成的连续介质。 – 所谓质点,是指由大量分子构成的微团,其尺 寸远小于设备尺寸,但却远大于分子自由程。
– 这些质点在流体内部紧紧相连,彼此间没有间 隙,即流体充满所占空间,称为连续介质。
③判断安装是否合适:若
H g实
H 低于 g允
,则说明安装
合适,不会发生汽蚀现象,否则,需调整安装高度。
④欲提高泵的允许安装高度,必须设法减小吸入管路的
阻力。泵在安装时,应选用较大的吸入管路,管路尽 可能地短,减少吸入管路的弯头、阀门等管件,而将 调节阀安装在排出管线上。
4.1.4离心泵的类型与选用
• 注意:
• 对于静止流体,由于各流层间没有相对运动,粘滞性不 显示。 • 流体粘滞性的大小通常用动力粘滞性系数μ和运动粘滞 性系数ν来反映,它们是与流体种类有关的系数,粘滞 性大的流体,μ和ν的值也大,它们之间存在一定的比例 关系。 μ = νρ • 流体的粘滞性还与流体的温度和所受压力有关,受温度 影响大,受压力影响小。实验证明,水的粘滞性随温度 的增高而减小,而空气的粘滞性却随温度的增高而增大。
• (3)恒定流 流体运动时,流体中任一位置的压强、 流速等运动要素不随时间变化,这种流体运动称 为恒定流,如图1.11(a)所示。 • (4)非恒定流 流体运动时,流体中任一位置的运 动要素如压强、流速等随时间变化而变化,这种 流体运动称为非恒定流,如图1.11(b)所示。
四、流体的输送机械
常用的流体输送机械
2.汽蚀余量:
汽蚀余量NPSH :
泵入口处的动压头与静压头之和与以液柱高度表示的被输送液体在 操作温度下的饱和蒸汽压之差。
流体力学流体性质讲解

粘性、扩散性、热传导性
这种流体的输运性质,从微观上看,是通过分子的 无规则热运动及分子的相互碰撞实现的,分子在无 规则热运动中,将原先所在区域的流体宏观性质输 运到另一个区域,再通过分子的相互碰撞,交换、 传递了各自的物理量,从而形成新的平衡态。
流体的输运性质,主要指动量输运、能量输运、 质量输运,从宏观上看,它们分别表现为粘滞 现象、导热现象、扩散现象。
水 1.785 106 m2/s
1000C
水 0.282 103 Pa s
水 0.294 106 m2/s
-40C
空气 1.49 105 Pa s
空气 0.98105 m2/s
1000C
空气 2.18105 Pa s
空气 2.31105 m2/s
一般按具体流动中压缩程度的大小分类: 可压缩流 不可压缩流体
d 0
dt
一般地,当 / 5 时,按不可压缩流处理 一般情况下,水和其它液体认为不可压缩,可 忽略其密度变化。 低速气体流动(速度小于100米/秒),通常也按不 可压缩流处理 也与研究问题有关,如空气中声波,要考虑压缩性。
它起源于分子间的相互作用和跨界面的动量交换
粘滞现象示意图
流体粘滞现象
A层流体具有较大的动量
B层流体分子具有较小的动量
(气体)分子无规则运动及碰撞导致A、B两层
流体动量发生变化,
(液体分子为分子间吸引力作用),在相邻流体
层间产生内摩擦,存在一个平行于流体层的剪切力。
动量定理
d
(
mv)
F
1
( T )p
1 v
v ( T )p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单位质量流体的质量力
(2)表面力 将
Fn
F
S
F
S
分解为法向 F n 和切向 F t
P lim Fn S
即压强
Ft 0
(理想或静止流体)
1.3 流体的压缩性和膨胀性
一、流体的压缩性 一定温度下升高一个单位压强时,体积的相对缩小量
1
1 dV V dp
1 d
dp
: 弹性模量E:Pa
二、膨胀性 一定压强下,温度升高1个单位时体积的相对增加量。 温度膨胀系数
1 dV V dT 1 dv v dT 1 d
T
1.4 流体的粘性 1. 流体粘性及内摩擦概念
牛顿在《自然哲学的数学原理》指出: 相邻两层流体作相对运动时存在内摩擦作用,称为粘性力。
2
常温常压下,水和空气的粘度系数分别为 水: 1 10 m / s 0.01cm / s
6 2 2
空气: 15 10 m / s 0.15cm / s
5 2 2
水 1 / 15 空气 =
例:套筒固定,轴均匀旋转,其间隙充满油液,求施于轴
上的扭矩。油=900kg/m3;油=2105m2/s;=150s-1; D=100 mm;d=99.5 mm;L=120mm。
液体表面性质 1)表面张力是指液体与气体 交界面上的张应力δ,单位 N/m 2) 表面张力现象: ⑴ 肥皂泡 ⑵ 洗洁剂 ⑶ 毛细现象
p 2 R
p ( 1 R1 1 R2 )
• 流体粘性形成原因:
(1)两层液体之间的粘性力主要由分子内聚力形成
(2)两层气体之间的粘性力主要由分子动量交换形成
2 牛顿内摩擦定律
牛顿在《自然哲学的数学原理》中假设:“流体两部分由于缺乏润滑而引 起的阻力,同这两部分彼此分开的速度成正比”。粘性切应力为:
dV dy
上式称为牛顿内摩擦定律,它表明: ⑴粘性切应力与速度梯度成正比; ⑵粘性切应力与接触面积成正比; ⑶与流体物性无关; (4)与接触面压强无关。 速度梯度=角变形速度
m v
z · P
v
0
y
x
好处
分子效应 连续介质
介质连续,可引用数学方法
3积含有足够多的分子
v*
v
1.2 作用在流体上的力
1 作用力的分类 重力
(1)质量力(体积力)
R X i Y j Z k
F
B
惯性力 电磁力
流体力学
▲ 在流体内部压强可向任何方向传递;
▲ 在一定条件下流体内部可形成超乎想象的复杂结构。
1.1 流体的力学特性和连续介质模型
二、连续介质模型 1 流体质点概念
(1) 无线性尺度、无热运动的点
(2) 将临界体积范围内的分子平均特性赋于此点。 2 连续介质假设: 假设流体是由连续分布的流体质点组成的介质。 不研究复杂的分子运动,而着眼于宏观运动
1.1 流体的力学特性和连续介质模型
一、流体的力学特性
▲ 在剪切力持续作用下,流体能产生无限大的变形
流体的力学定义是:在任何微小剪切力的持续作用下能够连续不断变形 的物质,称为流体。
流体与固体在宏观力学行为方面的主要差异是流体具有易变形性 易变形性表现在
在剪切力停止作用时,流体不作任何恢复变形;
任何微小剪切力的持续作用下能够连续不断变形。
牛顿流体和非牛顿流体
3 粘度
1)动力粘度 μ
粘度的单位是Pa•s(帕秒)或 kg/m•s
• 温度对流体粘度的影响很大
气体:T升高,μ增加,气体粘性由分子不 规则热运动产生; 液体: T升高,μ减小,液体粘性由分子 内聚力产生。
理想流体和非理想流体
粘度 2)运动粘度
ρ
运动粘度的单位是
m /s
D d L d y 0 V = d /2
解:轴表面 处处相等,切应力产生阻力矩。
油=900kg/m3, 油= 2105m2/s, =150s-1
D=100 mm;d=99.5 mm; L=120mm d
d 2
du dy
2 D d 2
q =
dL =0.5油油d3L/(D-d)=1.0Nm