LED数码管显示电子钟
LED数字电子钟设计电路及工作原理

LED数字电子钟设计电路及工作原理LED 电子钟的制作方法在很多电子报刊杂志上都可以见到,但大多数在断电后都要重新设置时间等参数,给使用带来很多不便。
也有用后备电池作为备用电源的,但往往体积较大。
本文介绍的LED 电子钟克服了以往的弊端,而且采用了家电通用的红外遥控器进行控制,方便使用。
有一路闹铃输出,可以通过遥控器设置闹铃时间及允许与否。
一.工作原理DS1302 为达拉斯公司的一种实时时钟芯片,主要特点是采用串行数据传输,可为掉电保护电源提供可编程的充电功能,并且可以关闭充电功能。
采用普通32768Hz 晶振。
AT89C2051 作为主控芯片,一是对接收到的红外遥控编码进行判断识别,并执行相应的处理;第二就是定期的读取时钟芯片DS1302 中的时间并把小时和肥以示在4 位LED 中;第三就是对设置的闹铃时间与实时时间进行比较,如果时间相同且闹铃允许,那么蜂鸣器就会以1 秒的周期鸣响一分钟,提醒使用者。
如果要停止鸣闹,只要按遥控器相应键就可以关闭闹铃。
闹铃时间保存在DS1302 自带的RAM 中,不需要单独的EEPROM。
二.硬件电路图一为电子钟的原理图IC2 为DS1302,电子爱好者可以向MAXIM 公司索取免费样品。
Y2 为32768 Hz 石英晶振,可以用普通电子表里的。
IC3 为三脚的塑封一体化红外接收头。
LED1-4 为高亮度共阳数码管。
89C2051 所用的晶振Y1 如果没有10MHz 也可以用其他12M 以内的代替,只要修改程序中YS1 和YS2 的延时参数,让其保持延时长度不变就行。
调整R2 可以改变数码管亮度。
P1 口接数码。
LED数字显示电子时钟源程序代码

LED数字显示电子时钟源程序代码程序:(注已完全经过调试,达到预期目的)#include<reg51.h>#define uchar unsigned char#define uint unsigned intuchar count=0;sbit LED=P1^0;uchar tab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; //显示数码管0,1,3,4,5,6,7,8,9 uchar miao=0,fen=0,hour=0;void delay(uint i) //延迟函数{uint j;for(;i>0;i--)for(j=124;j>0;j--);}void init(){ET0=1;TMOD=0x51; //选定定时器0,1和中断0,1TH0=(65536-25000)/256;TL0=(65536-25000)%256; //设定时器0时间为250ms一次ET1=1;TH1=0xff;TL1=0xff; //定时器1为中断EX0=1;IT0=1; //中断0开EX1=1;IT1=1; //中断1开TR0=1; //定时器0开TR1=1; //定时器1开EA=1; //总中断开}void display() //时钟显示函数{P0=tab[hour/10%10];P2=0xfe;delay(1);P0=tab[hour%10];P2=0xfd;delay(1);P0=tab[fen/10%10];P2=0xfb;delay(1);P0=tab[fen%10];P2=0xf7;delay(1);P0=tab[miao/10%10];P2=0xef;delay(1);P0=tab[miao%10];P2=0xdf;delay(1);}void main() //主函数{init();LED=0;while(1){display();}}void T0_int() interrupt 1 //定时器0函数{TH0=(65536-25000)/256;TL0=(65536-25000)%256;count++;if(count==20){count=0;miao= miao +1;LED=~LED;if(sec==60){miao=0;fen= fen +1;if(fen ==60){fen =0;hour=hour+1;if(hour==24)hour=0;}}}}void T1_int() interrupt 3 //定时器1函数控制秒针加1 {TH1=0xff;TL1=0xff;miao=miao+1;if(miao ==60)miao =0;}void I1_int() interrupt 2 //中断1函数控制按键分针加1 {EX0=0;fen= fen +1;if(fen ==60)fen =0;EX0=1;}void I0_int() interrupt 0 //中断函数0控制按键时针加1 {EX1=0;hour=hour+1;if(hour==24)hour=0;EX1=1;}。
LED数码管显示控制(共19张PPT)

LED数码管的发光二极管亮暗组合实质上就是不同电平的组合,也就是为LED数码管提供不同的代码,这些代码称为字形代码。
2、数码电子钟 动态显示就是一位一位地轮流点亮各位数码管,对每一位LED数码管来说,每隔一段时间点亮一次,即CPU需要时刻对数码管进行刷新,显
数码管静态显示方式的优点是连线简单,软件编程简 单,缺点是需要耗费大量的I/O端口资源。
在显示的数据较多时,会用到多个
数码管,如果用静态显示方式会占 用很多I/O口,这是可采用动态扫描 方式来实现。
动态显示就是一位一位地轮流点亮各位数码管,对 每一位LED数码管来说,每隔一段时间点亮一次,即 CPU需要时刻对数码管进行刷新,显示数据有闪烁 感,占用CPU的时间较长。并且,数码管的点亮既 与点亮时的导通电流有关,也与点亮时间、间隔时间 的比例有关。调整电流和时间的参数,可实现亮度较 高,较稳定的显示。若数码管的位数不大于8位时, 只需要两个8位I/O口。
(1)所有发光二极管的阳极连接在一起,这种连接方法称为共阳极接法。 当某个发光二极管导通时,相应地点亮某一点或某一段笔画,通过发光二极管不同的亮暗组合形成不同的数字、字母及其其他符号。
光二极管组成。这7个发光二极管a~g呈 调整电流和时间的参数,可实现亮度较高,较稳定的显示。
从表中可以看出共阴极与共阳极的字形代码互为补数。
LED数码管中的发光二极管有两种接法:
(1)所有发光二极管的阳极连接在一起, 这种连接方法称为共阳极接法。
叫做共阳极数码管
(2)所有发光二极管的阴极连接在一起, 这种连接方法称为共阴极接法。
叫做共阴极数码管
电子制作-LED流动显示电子钟

电子制作:LED流动显示电子钟电子钟有:指针式、液晶式、LED式三种。
前两种在光线较暗时就看不清楚,后一种一般采用数码管显示,体积较大,多用于公共场所,不太适合家用。
为此,笔者设计制作了一款LED流动显示电子钟,体积小巧,字形美观,且每天有4次闹铃,每次定时时间一到,蜂鸣器响20s,非常实用。
本制作采用64只LED排列成8乘以8点阵,采用流动循环显示方式。
右图所示即是18:28时间的显示效果。
1.工作原理本制作的硬件电路如下图所示。
主控电路图118:28时间显示效果图是非常便宜的89C2051单片机,c5、R6组成它的上电复位电路,Yl、C6、C7组成它的时钟电路。
Pl口作数据总线用,LED点阵的列数据(1~8)由IC2锁存,单片机的P3、2端口输出锁存正脉冲。
LED的行扫描信号(A~H)由IC3锁存,单片机的P3、3端口输出正脉冲锁存信号,按键状态由IC1读取,单片机的P3、5端口输出负向读取脉冲。
外接5v电源(可用一般的市售稳压电源)由Xl输入,无电时由内置的4.5V电池维持IC4的继续工作,以防计时中断。
本制作的软件部分相对复杂,限于篇幅,此处仅介绍显示方法。
以显示2为例,首先IC2输出00001110,IC3输出01111111使A行为低电平,其余行都是高电平,略延时后,IC2再输出00010001,IC3输出10111111使B行为低电平,其他行都是高电平,依此类推,IC2轮流输出00010001、00000010、00000100、00001000、00010001、00011111,IC3轮流使C、D、E、F、G、H端为低电平。
在显示下一行前,IC3输出一次短暂的11111111信号关断显示(相当于消隐),以防上一行的残影叠加在下一行中。
如此循环即可显示一个静止的2。
LED数码管设计的可调式电子钟说明说

LED数码管设计的可调式电子钟说明说可调式电子钟的设计理念是提供用户多样化的时间显示和闹钟设定选项,以满足用户不同的需求和喜好。
以下是对设计的详细说明:1.数码管显示:LED数码管采用7段共阳极连接方式,每个数码管由7个LED灯组成,通过控制各个LED灯的点亮与否,可以显示0-9的数字。
数码管的显示仿真效果要清晰、鲜明,确保用户可以轻松辨认时间。
2.时间调节功能:可调式电子钟具备时间调节的功能,用户可以通过按钮或旋钮调整时间。
其中旋钮可以实现小时和分钟的调节,而按钮可以实现小时和分钟的增加或减少。
设计时需考虑人机交互的便利性,确保时间调节操作简单明了。
3.闹钟设定:可调式电子钟还具备闹钟功能,用户可以设定一个或多个闹钟时间点。
用户可以通过按钮或旋钮设置闹钟的小时和分钟,还可以设定是否重复响铃。
闹铃可以通过声音、震动或LED灯闪烁等方式提醒用户。
为了避免误操作,设计时需要考虑设置闹钟的过程,确保用户能够轻松设置闹钟。
4.电源供应:可调式电子钟可采用外部电源或内置电池供电。
设计时需考虑到电源的稳定性和可靠性,确保时钟长时间准确运行。
当外部电源断开时,内置电池可以提供备用电源,防止时间设置的丢失。
5.背光功能:可调式电子钟还可以考虑添加背光功能,在光线不好的情况下,用户可以通过按下按钮或通过传感器自动点亮背光。
背光的亮度可以根据用户偏好进行调节。
6.美观设计:除了功能性,可调式电子钟的外观设计也很重要。
设计时可以考虑采用简约设计风格,以及时尚的外壳材料。
同时,数字显示的对齐和间距,以及按钮和旋钮的位置、大小都需要细致推敲,确保整体外观美观大方。
总之,可调式电子钟的设计需要满足用户对时间显示和闹钟功能的需求。
通过合理的控制功能,人性化的设计以及简洁好看的外观,可为用户提供一台方便、易用的电子钟。
8位数码管显示电子时钟c51单片机程序

8位数码管显示电子时钟c51单片机程序 /*8位数码管显示时间格式 055000 标示05点50分00秒S1 用于小时加1操作S2 用于小时减1操作S3 用于分钟加1操作S4 用于分钟减1操作*/#includereg52.hsbit KEY1=P3^0; //定义端口参数sbit KEY2=P3^1;sbit KEY3=P3^2;sbit KEY4=P3^3;sbit LED=P1^2; //定义指示灯参数code unsigned chartab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; //共阴极数码管09unsigned char StrTab[8]; //定义缓冲区unsigned char minute=19,hour=23,second; //定义并初始化为12:30:00void delay(unsigned int cnt){while(cnt);}/********************************************************** ********//* 显示处理函数 *//********************************************************** ********/void Displaypro(void){StrTab[0]=tab[hour/10]; //显示小时StrTab[1]=tab[hour%10];StrTab[2]=0x40; //显示StrTab[3]=tab[minute/10]; //显示分钟StrTab[4]=tab[minute%10];StrTab[5]=0x40; //显示StrTab[6]=tab[second/10]; //显示秒StrTab[7]=tab[second%10];}main(){TMOD |=0x01; //定时器0 10ms inM crystal 用于计时TH0=0xd8; //初值TL0=0xf0;ET0=1;TR0=1;TMOD |=0x10; //定时器1用于动态扫描 TH1=0xF8; //初值TL1=0xf0;ET1=1;TR1=1;EA =1;Displaypro(); //调用显示处理函数while(1){if(!KEY1) //按键1去抖以及动作{delay(10000);if(!KEY1){hour++;if(hour==24)hour=0; //正常时间小时加1Displaypro();}if(!KEY2) //按键2去抖以及动作 {delay(10000);if(!KEY2){hour;if(hour==255)hour=23; //正常时间小时减1 Displaypro();}}if(!KEY3) //按键去抖以及动作{delay(10000);if(!KEY3){minute++;if(minute==60)minute=0; //分加1Displaypro();}if(!KEY4) //按键去抖以及动作{delay(10000);if(!KEY4){minute;if(minute==255)minute=59; //分减1Displaypro();}}}}/********************************************************** ********//* 定时器1中断 *//********************************************************** ********/void time1_isr(void) interrupt 3 using 0 //定时器1用来动态扫描static unsigned char num;TH1=0xF8; //重入初值TL1=0xf0;switch (num){case 0:P2=0;P0=StrTab[num];break; //分别调用缓冲区的值进行扫描case 1:P2=1;P0=StrTab[num];break;case 2:P2=2;P0=StrTab[num];break;case 3:P2=3;P0=StrTab[num];break;case 4:P2=4;P0=StrTab[num];break;case 5:P2=5;P0=StrTab[num];break;case 6:P2=6;P0=StrTab[num];break;case 7:P2=7;P0=StrTab[num];break;default:break;}num++; //扫描8次,使用8个数码管if(num==8)num=0;}/******************************************************************//* 定时器0中断 *//********************************************************** ********/void tim(void) interrupt 1 using 1{static unsigned char count; //定义内部局部变量TH0=0xd8; //重新赋值TL0=0xf0;count++;switch (count){case 0:case 20:case 40:case 60:case 80:Displaypro();break; //隔一定时间调用显示处理case 50:P1=~P1;break; //半秒 LED 闪烁default:break;}if (count==100){count=0;second++; //秒加1 if(second==60){second=0;minute++; //分加1 if(minute==60){minute=0;hour++; //时加1 if(hour==24)hour=0;}}}}。
LED数码管使用详解

LED数码管使用详解LED数码管是一种常见的显示设备,它由七个发光二极管组成,可以显示数字、字母和一些特殊字符。
LED数码管广泛应用于计时器、计数器、电子钟表和计算器等电子设备中。
本文将详细介绍LED数码管的原理、工作方式和常见的使用场景。
一、LED数码管的原理七段数码管是将七个LED灯组成的,分别用a、b、c、d、e、f、g七个字母来表示。
每个字母对应一个段,不同的段可以通过控制对应的引脚(PIN)的高低电平来点亮或关闭。
通过控制这些引脚的电平,可以显示出不同的数字、字母和部分特殊字符。
二、LED数码管的工作方式LED数码管的工作方式是通过控制各个LED灯的点亮与否来显示相应的字符。
七段数码管通常由一个共阳极或共阴极的七段式数字表示器组成。
共阳极的意思是所有LED的阳极(长脚)都连接在一起,共用一个电压。
共阴极的意思是所有LED的阴极(短脚)都连接在一起,共用一个地。
当需要显示一些数字时,通过给相应的管脚(a到g)施加适当的高电平或低电平来点亮或关闭对应的LED灯。
例如,如果需要显示数字1,就只需要将a和b两个管脚连接到高电平,其余的管脚连接到低电平。
这样,数码管的a和b段就会点亮,显示出数字1的形状。
三、LED数码管的使用场景1.电子钟表:LED数码管由于其数字显示效果清晰、易读,被广泛应用于电子钟表或数码时钟中。
2.计时器和计数器:在需要进行计时和计数的场景中,如比赛计时、倒计时器等,LED数码管可以方便地显示时间或计数值。
3.温度显示器:LED数码管可以用于温度测量设备中,通过控制不同的管脚电平来显示温度值。
4.电子秤和电子计量器:在商店或实验室中,LED数码管可用于显示测量的重量或数量。
5.电子计算器:LED数码管常用于简单的电子计算器中,用于显示计算结果或输入的数字。
6.电子设备调试:在电子设备的调试过程中,可以使用LED数码管来显示和检查各种信号和状态。
7.数字显示面板:在需要显示数字或字母的面板上,可以使用LED数码管来显示相关信息。
【CPLD EPM570】Verilog实现数码管电子时钟

Verilog实现数码管电子时钟1 原理图8位8段LED数码管,实现时钟的秒、分、小时、日期年月日的显示,其中主显示月、日、小时和分,按住按键S1显示年和秒;8x8的LED阵列显示秒的跳变,每一分钟点亮一圈,8位LED的跑马灯以1秒的频率移动;S1~S4按键实现时钟的设置,S1显示年和秒,S2选择设置的时钟段,S3实现设置数据的增加,S4跳出设置;4x4的矩阵按键,用了K1~K10共10个键,实现数据1~9、0的输入,可用于设置时钟(参考实例图)。
数码管显示的原理图如下,2个4位的8段数码管,组成的8位8段数码管,每个4位数码管的数据线独立,其实是可以以总线形式连接在一起的,可以减少IO。
共阳极的供电端用了三极管增加驱动,否则IO供电驱动多个数码管时有困难。
按键检测及跑马灯原理图如下,共5个按键,其中一个作为Reset按键(设计未加电容,可以考虑优化),每个按键采用一个IO检测,低电平表示有按键按下。
共8个LED灯,每个灯采用一个IO驱动,高电平点亮。
8x8的矩阵LED,行H1-H8为共阳,采用三极管增加驱动,但此实验板采用5V供电,因此无论行控制信号输出高电平或是低电平,都会导致LED有供电,只是供电强弱不一样,但都可能点亮LED,所以实现时需要将不供电时输出高阻z,同理对数据信号V1-V8。
此矩阵显示原理也是分时显示每一列数据,轮流显示速率较快,让人眼无法反映识别出来,避免闪烁。
4x4的矩阵按键,8个IO,检测原理是IO63、66、67、68作为输出信号,轮流赋值高电平,IO59、60、61、62作为输入信号,检测对应的按键按下。
比如,在IO68赋值高电平时,检测到IO59信号为高电平,则表示按键K1被按下,本时钟只用了10个按键,K1~K10。
2 CPLD代码module clock (clk_24m, //24M时钟reset_n, //全局异步复位/******************************************* 8位8段数码管显示接口信号*******************************************/ Bit_line,Data_line_h,Data_line_l,/******************************************* 8位跑马灯接口信号*******************************************/ led_Bit_line,/******************************************* S1-S5按键信号*******************************************/Key_line,/*******************************************8x8 LED数码管矩阵接口信号*******************************************/Hline,Vline,/*******************************************按键阵列接口信号*******************************************/Keyarray_Vline,Keyarray_Hline);input wire clk_24m;input wire reset_n;output wire [7:0] Hline;output wire [7:0] Vline;output wire [7:0] Bit_line;output wire [0:7] Data_line_h;output wire [0:7] Data_line_l;output wire [7:0] led_Bit_line;input wire [3:0] Key_line;input wire [3:0] Keyarray_Vline;output wire [2:0] Keyarray_Hline;/*************************************************************** 内部分频时钟,便于计数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#include <reg51.h>#include <intrins.h>unsigned char data dis_digit;unsigned char key_s, key_v;unsigned char code dis_code[11]={0xc0,0xf9,0xa4,0xb0, // 0, 1, 2, 3 0x99,0x92,0x82,0xf8,0x80,0x90, 0xff};// 4, 5, 6, 7, 8, 9, offunsigned char data dis_buf[8];unsigned char data dis_index;unsigned char hour,min,sec;unsigned char sec100;sbit K1 = P1^4;sbit K2 = P1^5;bit scan_key();void proc_key();void inc_sec();void inc_min();void inc_hour();void display();void delayms(unsigned char ms);void main(void){P0 = 0xff;P2 = 0xff;TMOD = 0x11; // 定时器0, 1工作模式1, 16位定时方式TH1 = 0xdc;TL1 = 0;TH0 = 0xFC;TL0 = 0x17;hour = 12;min = 00;sec = 00;sec100 = 0;dis_buf[0] = dis_code[hour / 10]; // 时十位dis_buf[1] = dis_code[hour % 10]; // 时个位 dis_buf[3] = dis_code[min / 10]; // 分十位 dis_buf[4] = dis_code[min % 10]; // 分个位 dis_buf[6] = dis_code[sec / 10]; // 秒十位 dis_buf[7] = dis_code[sec % 10]; // 秒个位 dis_buf[2] = 0xbf; // 显示"-"dis_buf[5] = 0xbf; // 显示"-"dis_digit = 0xfe;dis_index = 0;TCON = 0x01;IE = 0x8a; // 使能timer0,1 中断TR0 = 1;TR1 = 1;key_v = 0x03;while(1){if(scan_key()){delayms(10);if(scan_key()){key_v = key_s;proc_key();}}}}bit scan_key(){key_s = 0x00;key_s |= K2;key_s <<= 1;key_s |= K1;return(key_s ^ key_v);}void proc_key(){EA = 0;if((key_v & 0x01) == 0) // K1{inc_hour();}else if((key_v & 0x02) == 0) // K2{min++;if(min > 59){min = 0;}dis_buf[3] = dis_code[min / 10]; // 分十位dis_buf[4] = dis_code[min % 10]; // 分个位}EA = 1;}void timer0() interrupt 1// 定时器0中断服务程序, 用于数码管的动态扫描// dis_index --- 显示索引, 用于标识当前显示的数码管和缓冲区的偏移量// dis_digit --- 位选通值, 传送到P2口用于选通当前数码管的数值, 如等于0xfe时,// 选通P2.0口数码管// dis_buf --- 显于缓冲区基地址{TH0 = 0xFC;TL0 = 0x17;P2 = 0xff; // 先关闭所有数码管P0 = dis_buf[dis_index]; // 显示代码传送到P0口P2 = dis_digit; //dis_digit = _crol_(dis_digit,1); // 位选通值左移, 下次中断时选通下一位数码管dis_index++; //dis_index &= 0x07; // 8个数码管全部扫描完一遍之后,再回到第一个开始下一次扫描void timer1() interrupt 3{TH1 = 0xdc;sec100++;if(sec100 >= 100){sec100 = 0;inc_sec();}}void inc_sec(){sec++;if(sec > 59){sec = 0;inc_min();}dis_buf[6] = dis_code[sec / 10]; // 秒十位 dis_buf[7] = dis_code[sec % 10]; // 秒个位}void inc_min(){min++;if(min > 59){min = 0;inc_hour();}dis_buf[3] = dis_code[min / 10]; // 分十位 dis_buf[4] = dis_code[min % 10]; // 分个位}void inc_hour(){hour++;if(hour > 23){hour = 0;}if(hour > 9)dis_buf[0] = dis_code[hour / 10]; // 时十位elsedis_buf[0] = 0xff; // 当小时的十位为0时不显示dis_buf[1] = dis_code[hour % 10]; // 时个位}void delayms(unsigned char ms)// 延时子程序{unsigned char i;while(ms--){for(i = 0; i < 120; i++);}}proteus 元件库中文注释)不知道你是否也在用proteus这款仿真软件,很多人说仿真是在理想条件下,得出的结果不太正确,所以很多人不推荐使用仿真。
但是懒猫认为存在即有价值,对于高手来说还用这个软件确实不是件好事,但对于初学者来说,直观的调试会让人感到更兴奋一些,不瞒大家说,懒猫初学51时第一个点灯程序就是在proteus上点灯的。
当然如果你一味的依懒于软件仿真,你不会学到单片机的真谛,毕竟仿真有限,纸上得来终觉浅,缘知此事要躬行!实践出真知……所以还是鼓励大家有条件的话多在实物上调试。
好了,费话不说了,还是把自己整理的东东拿出来吧,就是proteus元件库的中文注释,但愿对初学的你有所帮助^_^模拟芯片(Analog ICs)放大器(Amplifiers)比较器(Comparators)显示驱动器(Display Drivers)过滤器(Filters)数据选择器(Multiplexers)稳压器(Regulators)定时器(Timers)基准电压(Voltage Reference)杂类(Miscellananeous)电容(Capacitors)可动态显示充放电电容(Animated)音响专用轴线电容(Audio Grade Axial)轴线聚苯烯电容(Axial Lead Polypropene)轴线聚苯烯电容(Axial Lead Polystyrene)陶瓷圆片电容(Ceramic Disc)去耦片状电容(Decoupling Disc)普通电容(Generic)高温径线电容(High Temp Radial)高温径线电解电容(High Temperature Axial Electrolytic) 金属化聚酯膜电容(Metallised Polyester Film)金属化聚烯电容(Metallised Polypropene)金属化聚烯膜电容(Metallised Polypropene Film)小型电解电容(Miniture Electrolytic)多层金属化聚酯膜电容(Multilayer Metallised Polyestern Film)聚脂膜电容(Mylar Film)镍栅电容(Nickel Barrier)无极性电容(Non Polarised)聚脂层电容(Polyester Layer)径线电解电容(Radial Electrolytic)树脂蚀刻电容(Resin Dipped)钽珠电容(Tantalum Bead)可变电容(Variable)VX轴线电解电容(VX Axial Electolytic)连接器(Connectors)音频接口(Audio)D 型接口(D-Type)双排插座(DIL)插头(Header Blocks)PCB转接器(PCB Transfer)带线(Ribbon Cable)单排插座(SIL)连线端子(Terminal Blocks)杂类(Miscellananeous)数据转换器(Data Converter)模/数转换器(A/D converters)数/模转换器(D/A converters)采样保持器(Sample & Hold)温度传感器(Temperature Sensore) 调试工具(Debugging Tools)断点触发器(Breakpoint Triggers) 逻辑探针(Logic Probes)逻辑激励源(Logic Stimuli)二极管(Diode)整流桥(Bridge Rectifiers)普通二极管(Generic)整流管(Rectifiers)肖特基二极管(Schottky)开关管(Switching)隧道二极管(Tunnel)变容二极管(Varicap)齐纳击穿二极管(Zener)ECL 10000系列(ECL 10000 Series) 各种常用集成电路机电(Electromechanical)各种直流和步进电机电感(Inductors)普通电感(Generic)贴片式电感(SMT Inductors)变压器(Transformers)拉普拉斯变换(Laplace Primitives)一阶模型(1st Order)二阶模型(2st Order)控制器(Controllers)非线性模式(Non-Linear)算子(Operators)极点/零点(Poles/Zones)符号(Symbols)存储芯片(Memory Ics)动态数据存储器(Dynamic RAM)电可擦除可编程存储器(EEPROM)可擦除可编程存储器(EPROM)I2C总线存储器(I2C Memories)SPI总线存储器(SPI Memories)存储卡(Memory Cards)静态数据存储器(Static Memories)微处理器芯片(Microprocess ICs)6800 系列(6800 Family)8051 系列(8051 Family)ARM 系列(ARM Family)AVR 系列(AVR Family)Parallax 公司微处理器(BASIC Stamp Modules)HCF11 系列(HCF11 Family)PIC10 系列(PIC10 Family)PIC12 系列(PIC12 Family)PIC16 系列(PIC16 Family)PIC18 系列(PIC18 Family)Z80系列(Z80 Family)CPU 外设(Peripherals)杂项(Miscellaneous)含天线、ATA/IDE硬盘驱动模型、单节与多节电池、串行物理接口模型、晶振、动态与通用保险、模拟电压与电流符号、交通信号灯建模源(Modelling Primitives)模拟(仿真分析)(Analogy-SPICE)数字(缓冲器与门电路)(Digital--Buffers&Gates)数字(杂类)(Digital--Miscellaneous)数字(组合电路)(Digital--Combinational)数字(时序电路)(Digital--Sequential)混合模式(Mixed Mode)可编程逻辑器件单元(PLD Elements)实时激励源(Realtime Actuators)实时指示器(Realtime Indictors)运算放大器(Operational Amplifiers)单路运放(Single)二路运放(Dual)三路运放(Triple)四路运放(Quad)八路运放(Octal)理想运放(Ideal)大量使用的运放(Macromodel)光电子类器件(Optoelectronics)七段数码管(7-Segment Displays)英文字符与数字符号液晶显示器(Alphanumeric LCDs) 条形显示器(Bargraph Displays)点阵显示屏(Dot Matrix Display)图形液晶(Grphical LCDs)灯泡(Lamp)液晶控制器(LCD Controllers)液晶面板显示(LCD Panels Displays)发光二极管(LEDs)光耦元件(Optocouplers)串行液晶(Serial LCDs)可编程逻辑电路与现场可编程门阵列(PLD&FPGA)无子类电阻(Resistors)0.6W金属膜电阻(0.6W Metal Film)10W 绕线电阻(10W Wirewound)2W 金属膜电阻(2W Metal Film)3W 金属膜电阻(3W Metal Film)7W 金属膜电阻(7W Metal Film)通用电阻符号(Generic)高压电阻(High Voltage)负温度系数热敏电阻(NTC)排阻(Resisters Packs)滑动变阻器(Variable)可变电阻(Varistors)仿真源(Simulator Primitives)触发器(Flip-Flop)门电路(Gates)电源(Sources)扬声器与音响设备(Speaker&Sounders)无子分类开关与继电器(Switch&Relays)键盘(Keypads)普通继电器(Generic Relays)专用继电器(Specific Relays)按键与拨码(Switchs)开关器件(Switching Devices)双端交流开关元件(DIACs)普通开关元件(Generic)可控硅(SCRs)三端可控硅(TRIACs)热阴极电子管(Thermionic Valves)二极真空管(Diodes)三极真空管(Triodes)四极真空管(Tetrodes)五极真空管(Pentodes)转换器(Transducers)压力传感器(Pressures)温度传感器(Temperature)晶体管(Transistors)双极性晶体管(Bipolar)普通晶体管(Generic)绝缘栅场效应管(IGBY/Insulated Gate Bipolar Transistors结型场效应晶体管(JFET)金属-氧化物半导体场效应晶体管(MOSFET)射频功率LDMOS晶体管(RF Power LDMOS)射频功率VDMOS晶体管(RF Power VDMOS)单结晶体管(Unijunction)CMOS 4000系列(CMOS 4000 series TTL 74系列(TTL 74series) TTL 74增强型低功耗肖特基系列(TTL 74ALS Series) TTL 74增强型肖特基系列(TTL 74ASSeries) TTL 74高速系列(TTL 74F Series) TTL 74HC 系列/CMOS工作电平(TTL 74HC Series) TTL 74HCT系列/TTL工作电平(TTL 74HCT Series)TTL 74低功耗肖特基系列(TTL 74LS Series) TTL 74肖特基系列(TTL 74S Series)加法器(Adders)缓冲器/驱动器(Buffers&Drivers)比较器(Comparators)计数器(Counters)解码器(Decoders)编码器(Encoders)存储器(Memory)触发器/锁存器(Flip-Flop&Latches)分频器/定时器(Frequency Dividers & Timers) 门电路/反相器(Gates&Inverters)数据选择器(Multiplexers)多谐振荡器(Multivibrators)振荡器(Oscillators)锁相环(Phrase-Locked-Loop,PLL)寄存器(Registers)信号开关(Signal Switches)收发器(Tranxceivers)杂类逻辑芯片(Misc.Logic)。