第五讲 材料的热稳定性

合集下载

材料的热稳定性研究与评价

材料的热稳定性研究与评价

材料的热稳定性研究与评价引言:在现代科技的发展中,材料的热稳定性一直是研究的重点之一。

热稳定性是指材料在高温环境下的稳定性能,研究和评价材料的热稳定性对于材料的使用和应用有着重要意义。

本文将探讨材料的热稳定性研究与评价的重要性以及常见的研究方法和技术。

第一部分:热稳定性的重要性热稳定性是材料在高温环境中的性能表现,对于各行业的材料应用都至关重要。

例如,在汽车工业中,发动机材料的热稳定性决定了汽车的耐高温性能;在航空航天工业中,航天器的外部材料需要经受极端的高温环境,其热稳定性直接关系到航天器的安全性能。

因此,研究和评价材料的热稳定性对于材料行业的发展和进步具有重要意义。

第二部分:热稳定性研究的方法1. 热失重分析法热失重分析法是一种常见的研究材料热稳定性的方法。

该方法通过加热样品并测量样品质量的变化,可以得到样品随温度变化的热分解情况。

通过对不同温度下的热失重曲线进行分析,可以评估材料在高温下的热稳定性能。

2. 红外光谱分析红外光谱方法可以用来研究材料的结构和化学性质,进一步研究材料的热稳定性。

通过红外光谱的变化可以判断材料在高温下是否发生了化学反应或结构改变,从而评价材料的热稳定性。

3. 差示扫描量热法差示扫描量热法是一种测量材料在加热或冷却过程中释放或吸收的热量的方法。

通过测量材料的热量变化可以得到材料的热分解温度和热稳定性。

这种方法在研究材料在高温环境中的行为以及材料的热稳定性评价中具有广泛的应用。

第三部分:热稳定性的评价研究材料的热稳定性需要进行科学的评价,常见的评价指标包括:1. 熔点和热分解温度:热分解温度是指材料开始分解的温度,可以通过前述的差示扫描量热法来测定。

熔点则是材料的熔化温度,也是评价材料热稳定性的重要指标。

2. 完全分解温度:完全分解温度是指材料在高温下完全失重的温度,通过热失重分析等方法可以获得。

完全分解温度越高,说明材料在高温下的稳定性越好。

3. 结构性能:研究材料的热稳定性也需要关注材料的结构性能变化。

材料热学性能之材料的热稳定性

材料热学性能之材料的热稳定性
• 而实际上有些材料在热冲击下产生裂纹,即 使裂纹是从表面开始,在裂纹的瞬时扩张过程 中也可能被微孔、晶界或金属相所阻止,而不 致引起材料的完全断裂。
• 这一现象按强度-应力理论就不能解释。应 从断裂力学观点出发,以应变能一断裂能为判 据的理论。
书山有路勤为径, 学海无涯苦作舟
•2.抗热应力损伤因子R″′ 、R″″
• 对于通常在对流及辐射传热条件下观察到的比较低的 表面传热系数,S.S.Manson发现 [ ]max=0.31 。即

,另
,
•令
所以
书山有路勤为径, 学海无涯苦作舟
——第二热应力因子(J/(cm·s)),
见图3.17。
书山有路勤为径, 学海无涯苦作舟
• 3.冷却速率引起材料中 的温度梯度及热应力
见图3.15。
书山有路勤为径, 学海无涯苦作舟
根据广义虎克定律:
解得:
• 在t=0的瞬间,
,如果此时达到材料
的极限抗拉强度σf,则前后二表面将开裂破坏,代入上 式:
书山有路勤为径, 学海无涯苦作舟
•对于其它非平面薄板状材料制品
•式中:S=形状因子(shape factor),μ=泊松比。
•三、抗热冲击断裂性能
书山有路勤为径, 学海无涯苦作舟
• 当平板表面以恒定速率 冷却时,温度分布呈抛物线
,表面Ts比平均温度Ta低, 表面产生张应力σ+,中心温 度Tc比Ta高,所以中心是压 应力σ-。假如样品处于加热 过程,则情况正好相反。
• 实际无机材料受三向热应力,三个方向都会有涨缩 ,而且互相影响,下面分析一陶瓷薄板的热应力状态,
书山有路勤为径, 学海无涯苦作舟
• 例如,一块玻璃平板从373K的沸水中掉入273K的 冰水溶中,假设表面层在瞬间降到273K,则表面层趋 于的收缩,然而,此时内层还保留在373K,并无收缩 ,这样,在表面层就产生了一个张应力。而内层有一 相应的压应力,其后由于内层温度不断下降,材料中 热应力逐渐减小,见图3.14。

材料热稳定性

材料热稳定性

材料热稳定性
材料的热稳定性是指材料在高温环境下的稳定性能,是一个重要的材料性能指标。

材料在高温环境下的稳定性能直接影响着材料的应用范围和使用寿命。

因此,研究材料的热稳定性对于材料的设计、制备和应用具有重要意义。

首先,材料的热稳定性与材料的化学结构密切相关。

在高温环境下,材料分子内部的键合和分子结构会发生变化,从而影响材料的性能。

一些有机材料在高温下容易发生分解、氧化等反应,导致材料性能下降甚至失效。

因此,设计和选择具有良好热稳定性的材料是至关重要的。

其次,材料的热稳定性与材料的热分解温度密切相关。

热分解温度是指材料在高温下开始分解的温度。

热分解温度越高,说明材料在高温环境下的稳定性越好。

因此,提高材料的热分解温度是提高材料热稳定性的重要途径之一。

可以通过改变材料的结构、添加稳定剂等方式来提高材料的热分解温度,从而提高材料的热稳定性。

另外,材料的热稳定性还与材料的热氧化稳定性密切相关。

热氧化稳定性是指材料在高温下与氧气发生氧化反应的抵抗能力。

一些高分子材料在高温下容易发生氧化反应,导致材料性能下降。

因此,提高材料的热氧化稳定性也是提高材料热稳定性的重要途径之一。

可以通过添加抗氧化剂、改变材料的结构等方式来提高材料的热氧化稳定性,从而提高材料的热稳定性。

综上所述,材料的热稳定性是一个重要的材料性能指标,与材料的化学结构、热分解温度、热氧化稳定性等密切相关。

研究材料的热稳定性对于材料的设计、制备和应用具有重要意义,可以通过改变材料的结构、添加稳定剂、抗氧化剂等方式来提高材料的热稳定性,从而拓展材料的应用范围,提高材料的使用寿命。

材料力学性能---热稳定性

材料力学性能---热稳定性
Anhui University of Technology Materials Physics Properties
14
2. 对于多孔、粗粒、干压和部分烧结的制品,目的是提 高抗热冲击损伤性能,措施有: 降低材料的强度σf,提高弹性模量E,使 材料在胀缩时所储存的用以开裂的弹性 应变能小; 选择断裂表面能2reff大的材料,一旦开裂 就会吸收较多的能量使裂纹很快止裂。
5
2. 热应力的计算 (1) 平面陶瓷薄板:
αl E σx =σz = ∆T 1− µ
在t = 0的瞬间, σ x=σz=σmax,如果正好 达到材料的极限抗拉强 度σf ,则前后两表面开 平面陶瓷薄板的热应力图 裂破坏,从而得材料所 能承受的最大温差为: (2) 对于其他非平面薄板状材料:
∆Tmax
适用于一般的玻璃、陶瓷和电子 陶瓷材料
Anhui University of Technology
Materials Physics Properties
7
1. 第一热应力断裂抵抗因子R
σ f (1 − µ ) 由 ∆Tmax = 可知: Tmax值越大,说明材料能承 αl E 受的温度变化越大,即热稳定性越好。
3 2 rm
11
Anhui University of Technology
Materials Physics Properties
1.5 热稳定性
四、抗热冲击损伤性能
对于一些含有微孔的材料和非均质金属陶瓷,裂纹在瞬 时扩张过程中,可能被微孔和晶界等所阻止,而不致引起材 料的完全断裂。 考虑问题的出发点: 从断裂力学的观点出发,以应变能-断裂能为判据,即 材料的破坏不仅是裂纹的产生(包括原材料中的裂纹),而 且还包括裂纹的扩展和传播,尽管有裂纹,但当把它抑制在 一个很小的范围,也可能不致使材料的完全破坏。

材料物理化学教案中的材料的热分解与热稳定性

材料物理化学教案中的材料的热分解与热稳定性

材料物理化学教案中的材料的热分解与热稳定性材料的热分解与热稳定性在材料物理化学教学中占据着重要的地位。

通过对材料在高温下的性能变化进行研究,我们可以深入了解材料的结构与性质之间的关系,为材料的开发与应用提供有益的指导。

本文将介绍材料的热分解过程以及热稳定性的测定方法,并对其在教学中的应用进行探讨。

一、材料的热分解过程材料的热分解是指材料在高温下发生化学反应,破坏原有结构,并形成新的化合物或分解产物的过程。

这一过程常常伴随着能量的吸收或释放,直接影响材料的性能表现。

材料的热分解反应速率与反应温度密切相关,通常遵循阿累尼乌斯方程。

通过研究材料的热分解过程,我们可以了解材料在高温工艺中的稳定性,预测材料在不同条件下的失效机制,为材料的应用提供参考与优化建议。

二、热稳定性的测定方法热稳定性是指材料在高温下的稳定性能,即材料在高温环境下保持相对结构与性能的能力。

热稳定性的测定方法多种多样,我们常用的包括差热分析法(DSC)、热重分析法(TGA)以及热膨胀分析法(TMA)等。

差热分析法是利用样品与参比物在加热或降温过程中吸热或放热的差别,来分析材料的热分解过程。

差热分析曲线能够直观地反映材料的热稳定性,并提供反应的起始与终止温度等信息。

热重分析法通过对样品在升温过程中质量的变化进行测量,来评估材料的失重与热分解行为。

热重分析曲线可以反映材料的热分解过程与机理,对于材料的热稳定性研究具有重要意义。

热膨胀分析法是通过对样品在升温过程中长度或体积的变化进行测量,来研究材料的热膨胀性能以及热分解过程。

热膨胀分析曲线能够提供材料在高温下的热稳定性信息,为材料设计与性能优化提供依据。

三、热分解与热稳定性在教学中的应用热分解与热稳定性在材料物理化学教学中具有广泛的应用价值。

首先,通过对材料的热分解过程进行实验研究,学生能够亲身体验材料在高温条件下的性能变化,加深对热稳定性的理解。

例如,在实验中可以观察材料的差热分析曲线,了解热分解的起始与终止温度,以及反应的速率等关键参数。

材料热稳定性分析

材料热稳定性分析

材料热稳定性分析材料热稳定性是指材料在高温条件下是否能够保持其性能和形状的能力。

高温会引起一系列材料的物理、化学、结构和力学变化,因此材料热稳定性分析对于高温应用领域的材料选型、设计优化和使用寿命的评估具有重要意义。

1.高温引起的材料变化高温可引起多种材料变化,主要包括以下几个方面:(1)化学变化:材料中的化学键可由于高温裂解或结合变得更加稳定,导致材料的化学成分发生变化。

(2)微观结构变化:材料中的晶体结构和晶粒尺寸会随着高温的作用而发生变化,包括晶格的缩放、错位、析出、再溶和再结晶等。

(3)物理变化:材料的物理性质会发生改变,例如电导率、热传导率、热膨胀系数、磁性能等。

(4)力学性能变化:氧化、腐蚀和生锈等对材料的力学性能产生极大的影响,材料在高温下还可能发生拉伸、弯曲、断裂等力学变化。

2.材料热稳定性分析方法材料热稳定性分析方法包括工程测量法、热分析法和微观分析法等。

(1)工程测量法:通过对材料在高温下的形状、尺寸、重量、材料伸长率等方面进行实验测量,来分析材料在高温下的稳定性。

(2)热分析法:热重分析、热膨胀分析和差热分析等专用仪器可以通过加热样品并记录样品重量、长度、热量等参数的变化,来评估材料在高温下的化学、物理、结构和力学性质变化,可以用来判断材料的高温稳定性。

(3)微观分析法:透射电子显微镜、扫描电子显微镜和X射线衍射等技术可以对热稳定性变化的微观结构进行分析和观察,包括晶粒、晶体结构、相变等。

3.材料的选择与设计对于要求高温稳定性的材料和构件来说,材料的选择及设计至关重要。

(1)材料要选择具有高温稳定性的材料,如高温合金、耐火材料等,还要考虑材料的成本、可加工性和配套性等。

(2)构件的设计应该尽可能地减少热应力的集中,材料内部的孔洞和缺陷应该进行修补,减少材料的缺陷和故障的发生。

(3)处理过程的优化,如熔炼和热处理等的加工工艺和调控方法,可以改善材料的高温稳定性。

4.结论材料热稳定性分析是对材料高温应用性能评估的重要手段,对于选择和设计高温应用材料和构件具有基础性和指导性的意义。

材料热稳定性的测定

材料热稳定性的测定

材料热稳定性的测定一、实验目的1、了解陶瓷测定热稳定性的实际意义。

2、了解影响热稳定性的因素及提高热稳定性的措施。

3、掌握热稳定性的测定原理及测定方法。

二、实验原理热稳定性(抗热震性)是指陶瓷材料能承受温度剧烈变化而不破坏的性能。

普通陶瓷材料由多种晶体和玻璃相组成,因此在室温下具有脆性,在外应力作用下会突然断裂。

当温度急剧变化时,陶瓷材料也会出现裂纹或损坏。

测定陶瓷的热稳定性可以控制产品的质量,为合理应用提供依据。

陶瓷的热稳定性取决于坯釉料配方的化学成分、矿物组成、相组成、显微结构、坯釉料制备方法、成型条件及烧成制度等工艺因素以及外界环境。

由于陶瓷内外层受热不均匀,坯料与釉料的热膨胀系数差异而引起陶瓷内部产生应力,导致机械强度降低,甚至发生分裂现象。

一般陶瓷的热稳定性与抗张强度成正比,与弹性模量、热膨胀系数成反比。

而导热系数、热容、密度也在不同程度上影响热稳定性。

釉的热稳定性在较大程度上取决于釉的热膨胀系数。

要提高陶瓷的热稳定性首先要提高釉的热稳定性。

陶瓷坯体的热稳定性则取决于玻璃相、莫来石、石英及气孔的相对含量、粒径大小及其分布状况等。

陶瓷制品的热稳定性在很大程度上取决于坯釉的适应性,所以它也是带釉陶瓷抗后期龟裂性的一种反映。

陶瓷热稳定性测定方法一般是把试样加热到一定的温度,接着放入适当温度的水中,判定方法为:1)根据试样出现裂纹或损坏到一定程度时,所经受的热变换次数;2)经过一定次数的热冷变换后机械强度降低的程度来决定热稳定性;3)试样出现裂纹时经受的热冷最大温差来表示试样的热稳定性,温差愈大,热稳定性愈好。

陶瓷热稳定性的测定方法一般是将试样(带釉的瓷片或器皿)置于电炉内逐渐升温到220℃,保温30分钟,迅速将试样投入染有红色的20℃水中10分钟,取出试样擦干,检查有无裂纹。

或将试样置于电炉内逐渐升温,从150℃起,每隔20℃将试样投入20±2℃的水中急冷一次,直至试样表面发现有裂纹为止,并将此不裂的最高温度为衡量瓷器热稳定性的数据。

材料的热稳定性

材料的热稳定性
σ(1 − µ ) 他将第二断裂抗抵因子 R ′ = Eα
中的σ 中的σ
用弹性应变释放率G表示。 用弹性应变释放率G表示。
πcσ 2 将,G = E
R′ = GE
即 σ=
GE πc
代入第二热应力
断裂抵抗因子表示式,得: 断裂抵抗因子表示式,
λ 1 G λ × (1 − µ ) = × (1 − µ ) πc Eα πc E α G λ 表达裂纹抗破坏的能力。 表达裂纹抗破坏的能力。 × E α
式中:2γeff为断裂表面能(J/m2)。 R″′ 实际上是材料的弹性应变能释放率的倒数, 用来比较具有相同断裂表面能的材料。 R″″ 用来比较具有不同断裂表面能的材料。 R″′ 或R″″ 值高的材料抗热应力损伤性好。
3.裂纹安定性因子
D.P.H.Hasselman曾试图统一上述二种理论。 Hasselman曾试图统一上述二种理论。 曾试图统一上述二种理论
(3)高温陶瓷热稳定性的评定及测试方法
高温陶瓷材料是以加热到一定温度后, 高温陶瓷材料是以加热到一定温度后 , 在水中 急冷, 急冷 , 然后测其抗折强度的损失率来评定它的热 稳定性。 稳定性。
二、热应力
式中:σ=内应力(thermal stress),E=弹性模量 (elastic modulus),α=热膨胀系数(heat expansion coefficient), =弹性应变(elastic strain)。
1.抗热应力断裂抵抗因子的局限性
抗热冲击断裂是从热弹性力学的观点出发, 以强度-应力为判据,认为材料中热应力达到抗 张强度极限后,材料就产生开裂,一旦有裂纹 成核就会导致材料的完全破坏。 而实际上有些材料在热冲击下产生裂纹,即 使裂纹是从表面开始,在裂纹的瞬时扩张过程 中也可能被微孔、晶界或金属相所阻止,而不 致引起材料的完全断裂。 这一现象按强度-应力理论就不能解释。应从 断裂力学观点出发,以应变能一断裂能为判据 的理论。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 材料的热稳定性
顾修全
中国矿业大学 材料科学与工程学院
本章内容
热容 热膨胀 热传导 热稳定性
示例
汽车尾气处理用催化剂载体主要是蜂窝 陶瓷,目前国外对蜂窝陶瓷载体的研究 已较成熟,主要为莫来石、氮化硅、碳 化硅等。目前研究工作主要集中在降低 热膨胀系数,提高抗热震性和改善成型 工艺、烧成工艺等。
材料从陶瓷过渡到金属的过程中,耐热性逐渐降低,机 械强度逐渐升高。
热应力在材料两端均很小,在材料中部过渡区达到峰值 (比突变界面的应力峰值小得多),
具有缓和热应力的功能。
金属和陶瓷构成的材料特性 (a)无梯度 (b)有梯度
航天方面
90年代初,日本开发了小动力火箭燃烧器和热遮蔽材料用的梯 度功能材料,目前已研制出能耐1700℃的ZrO2/Ni梯度功能材 料,用作马赫数大于20的并可重复使用的航天飞机机身材料。 空天飞机高速飞行时机身和机翼的温度也高达上千K,只能采 用热防护梯度材料解决热应力问题。 梯度功能材料也可用于普通飞机的喷气燃烧器。
中国矿业大学 材料科学与工程学院
中国矿业大学 材料科学与工程学院
中国矿业大学 材料科学与工程学院
中国矿业大学 材料科学与工程学院
中国矿业大学 材料科学与工程学院
例如,对平面陶瓷薄板
薄板突然冷却时,瓷体外表面温度低,中间 温度高。则热应力:
x 方向上
x
z 方向上
z
y 方向上
0
在材料断裂的瞬间,σx =σz =σmax,若它恰好达到
火箭燃烧室
空天飞机
船舶方面
在舰船甲板上可采用含热障的、抗摩擦或抗冲击的梯度功能 材料涂层,或设计连续增强纤维排列的逐级梯度,显著提高 它们的缺口阻力,抑制微观裂纹扩张,大幅改善甲板的抗高 应变速率变形和冲击性能,对舰船的防护及搭载飞行器具有 重要意义。
航空母舰甲板
汽车方面
为对柴油机或汽油机活塞头进行热保护,需在钢基底上喷 涂厚度大于2 mm的ZrO2涂层。如果直接在金属上覆盖陶瓷, 在构件投入使用前就会导致界面脱层。 通过覆盖一些陶瓷含量不断增加的金属-陶瓷复合梯度涂层, 可保证涂层力学完整性,保护活塞。
热稳定性
第四节 材料的热稳定性
热稳定性的表示方法 热应力及第一热应力断裂抵抗因子 抗热冲击损伤性 提高抗热冲击断裂性能的措施 梯度功能材料
4. 提高抗热冲击断裂性能的措施
提高材料强度σ,减小弹性模量E,使比值提高 提高材料的热导率λ,使 R' 提高 减小材料的热膨胀系数α 减小表面热传递系数 h 减小产品的有效厚度 rm
功能
一致
梯度化
梯度功能材料主要特征有:
材料的组分和结构呈连续性梯度变化; 材料内部没有明显的界面; 材料的性质也呈连续性梯度变化。
ZrO2-CrNi合金FGM横截 面,白色的陶瓷粉末与黑 色的合金粉末含量呈连续 性梯度变化,没有明显的 界面。
金属-陶瓷构成的热应力缓和梯度功能材料,对高 温侧壁采用耐热性好的陶瓷材料,低温侧壁使用导 热和强度好的金属材料。
日用瓷: 加热 急冷 提高温度加热 急冷
逐渐提高加热温度重复操作,直至龟裂。
龟裂前一次温度
普通耐火材料: 加热到一定温度保温
急冷
重复操作直到试件失重20 %。
操作次数
第四节 材料的热稳定性
热稳定性的表示方法 热应力及第一热应力断裂抵抗因子 抗热冲击损伤性 提高抗热冲击断裂性能的措施 梯度功能材料
2. 热应力及第一热应力断裂抵抗因子
第四节 材料的热稳定性
热稳定性的表示方法 热应力及第一热应力断裂抵抗因子 抗热冲击损伤性 提高抗热冲击断裂性能的措施 梯度功能材料
5. 梯度功能材料
1987年,日本平井敏雄、新野正之和渡边龙三人提出使金 属和陶瓷复合材料的组分、结构和性能呈连续变化的热防 护梯度功能材料的概念。
1990年,日本召开第一届梯度功能材料国际研讨会。
梯度功能材料的原理及特点
梯度功能材料由几种性质不同的材料组成, 但与复合材料之间有明显区别。
梯度功能材料与复合材料比较
材料 设计思想 结合方式 微观组织
复合材料 材料优点的相互
复合
化学键/物理键
梯度材料
特殊功能为目标
分子间力/化学键/物 理键
界面处非均质
均质/非均质
宏观组织
均质/突变 非均质(连续变化)
热应力:由于材料热膨胀或收缩引起的内应力。


E
l l


E T T0
热应力可导致材料的断裂破坏或发生不希望的塑性变形。
起源:
热胀冷缩 材料中的温度梯度
加热过程 压应力 负值 冷却过程 张应力 正值
多相复合材料中各相膨胀系数的差异
中国矿业大学 材料科学与工程学院
材料强度,则会出现开裂破坏,则不使材料受热冲击断裂 的最大温差:
μ为泊松比 σf 极限抗拉强度
对非薄板材料
抗热冲击断裂性能
第一热应力抵抗因子 R
温差的影响
第二热应力抵抗因子 R'
热导率λ 传热的途径 材料表面散热率
第三热应力抵抗因子 R''
以强度—应力 为判据
导温系数
第四节 材料的热稳定性
梯度复合管
1993年,美国国家标准技术研究所开始以“开发超高温耐 氧化保护涂层”为目标进行梯度功能材料研究。
最近,通过改变复合两相的配制,在复合材料内部形成精 细的构造梯度。
梯度功能材料已经发展成为当前结构材料和功能材料研究 领域中的重要主题之一。
摩擦升温后,梯度材料变化较小 普通材料则变成兰紫色
压电陶瓷器件
本章小结
材料的热容
经典理论 量子理论 影响因素
材料的膨胀
物理本质 影响因素
材料的热传导
基本概念 物理机制 影响因素
材料的热稳定性
热应力 提高抗冲击断裂性能的措施
表示热学性能的参数比较
热容(比热容) 热膨胀系数
定义
C Q T
T

1 lT
dl dT
物理本质 经典理论 作用力曲线
燃料电池
光学器件方面
梯度功能材料推动一个新的光学分支梯度折射率光学的形成,在光学器件中 有大量应用。 梯度折射率透镜体积小、焦距短、消像 差性好,组成的光学系统可大大减少非 球面组件数,简化光学器件结构。 梯度折射率光纤可以自聚焦,提高耦合 效率。
梯度折射透镜
棒透镜
生物医学方面
羟 基 磷 灰 石 (HA) 陶 瓷 和 钛 或 Ti6Al-4V合金组成的梯度功能材料 可作为仿生人工关节和牙齿。 HA是生物相容性优良的生物活性 陶瓷,钛及其合金生物相容性也 很好,强度高, 人造牙的齿根外表采用耐磨性优 良的HA陶瓷,内部采用可承受较 大变形的钛或Ti-6Al-4V合金。
中国矿业大学 材料科学与工程学院
什么是热稳定性?
不同应用条件下,因工况环境的不同, 对材料的要求也不同。
日用陶瓷:能承受的温度差为200 K左右的热冲击。 火箭喷嘴:瞬时可承受3000 ~ 4000 K温差的热冲击。
无机材料或其它脆性材料的热稳定性比 较差。
1. 热稳定性的表示方法
对试样或制品的热稳定性评定,通常还是采用比较 直观的方法。
同电导率——成分关系
பைடு நூலகம்
热稳定性的表示方法 热应力及第一热应力断裂抵抗因子 抗热冲击损伤性 提高抗热冲击断裂性能的措施 梯度功能材料
3. 抗热冲击损伤性
材料中裂纹的产生、扩散以及蔓延的程度与材料积存 的弹性应变能和裂纹扩展的断裂应变能有关。
对含有微孔的材料和非均质的金属陶瓷有效。
可能积存的弹性应变能 裂纹蔓延时所需的断裂表面能
热容
随温度升高而增大,较高温时趋于平缓。
热膨胀系数 类似于热容和温度的关系。
导热系数
随温度升高,先迅速升高然后下降, 至高温时趋缓。 同电导率与温度关系
化学成分的影响
热容
符合线性定律,
C

n

X
iCi
i 1
热膨胀系数 同热容与化学成分关系
热导率
合金导热系数低于任何组成元素的导热 系数,二元合金在50 %处导热系数最低。
柴油机活塞头
汽油机活塞头
核反应方面
核反应堆内壁温度高达数千K。 如果其内壁材料采用单纯双层结构,热传导不好,孔洞较多, 热应力下有剥离倾向。 采用金属/陶瓷结合的梯度材料,能消除热传递及热膨胀引起 的应力,解决界面问题,可替代目前不锈钢/陶瓷复合材料。
核反应堆
能源方面
固体氧化物燃料电池堆的新型设计是采用金属/陶 瓷的多层梯度结构,它们与金属整体互连。 组分梯度性过渡可有效减小电池充放电对电极材 料引起的微观应力,延长电池使用寿命,有效降 低成本,简化制造。
梯度功能材料制成的 人造牙
烧结后特别适于植入人体,在保证良好的生物 相容性的同时提供一定的支撑强度,还可以显著提高 牙齿的缺口阻力,抑制微观裂纹损伤。
HA-玻璃-钛功能梯度复合材料截面示意图
电子材料方面
PZT压电陶瓷广泛用于制造超声波振子、陶瓷滤波器
等电子元件,但其在温度稳定性和失真振荡方面存在一 定问题。 通过调整材料组成,使其梯度化,能使压电系数和温度 系数得到最恰当的分配,提高压电器件的性能和寿命。
第四节 材料的热稳定性
热稳定性的表示方法 热应力及第一热应力断裂抵抗因子 抗热冲击损伤性 提高抗热冲击断裂性能的措施 梯度功能材料
什么是热稳定性?
热稳定性(抗热震性): 材料承受温度变化而不致破坏的能力。
抗热冲击损坏 抗热冲击断裂性 抵抗瞬时断裂(急冷急热)
主要针对脆性和低延性材料
抗热冲击损伤性 抵抗循环作用的热冲击 主要针对高低延性材料 热疲劳
相关文档
最新文档