高中数学 2.2.1 用样本的频率分布估计总体分布优秀教案 新人教A版必修3

合集下载

【优化方案】2012高中数学 第2章2.2.1用样本的频率分布估计总体分布课件 新人教A版必修3

【优化方案】2012高中数学 第2章2.2.1用样本的频率分布估计总体分布课件 新人教A版必修3

课堂互动讲练
考点突破 频率分布表、 频率分布表、频率分布直方图及折 线图 频率分布表是反映总体频率分布的表格, 频率分布表是反映总体频率分布的表格, 一般内容有数据的分组、频率的统计、 一般内容有数据的分组、频率的统计、频 数和频率等内容.根据这个表格, 数和频率等内容.根据这个表格,就可以 在坐标系中画频率分布直方图. 在坐标系中画频率分布直方图.
4.茎叶图的特点 . 当样本数据较少时, 当样本数据较少时,用茎叶图表示数据 的效果较好,它不但可以保留所有信息, 的效果较好,它不但可以保留所有信息, 而且可以随时记录, 而且可以随时记录,给数据的记录和表 示都带来了方便. 示都带来了方便.
问题探究 1.什么是总体分布? .什么是总体分布? 提示: 总体分布是指总体取值的分布规律, 提示 : 总体分布是指总体取值的分布规律 , 即 某小组数据在总体数据中所占的比例大小. 某小组数据在总体数据中所占的比例大小. 2.在一组测量长度的数据 单位:cm)中最小数 单位: .在一组测量长度的数据(单位 中最小数 据为15.2, 最大数据为 据为 , 最大数据为20.3, 如果组距为 , 那 , 如果组距为1, 么画频率分布直方图时, 可分为几组较好? 么画频率分布直方图时 , 可分为几组较好 ? 第 一组数据及最后一组数据,如何限定区间? 一组数据及最后一组数据,如何限定区间? 提示:因为20.3-15.2=5.1,可分为 组,第一 提示:因为 - = ,可分为6组 组可限定为(15.1,16.1),最后一组为 组可限定为 , (20.1,21.1). .思维总结】 【思维总结】绘制茎叶图的关键是分清茎和
一般地说, 如果数据是整数(至少为两位 叶 . 一般地说 , 如果数据是整数 至少为两位 数 )的 , 除个位数字以外的其它数字为 “ 茎 ” , 的 除个位数字以外的其它数字为“ 个位数字为“ 如果是小数的, 个位数字为“叶”;如果是小数的,通常把整 数部分作为“ 小数部分作为“ 数部分作为“茎”,小数部分作为“叶”.解 题时要根据数据特点合理选择茎和叶. 题时要根据数据特点合理选择茎和叶.

人教a版必修三:《2.2.1用样本的频率分布估计总体分布(2)》ppt课件(33页)

人教a版必修三:《2.2.1用样本的频率分布估计总体分布(2)》ppt课件(33页)

明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
2.2.1(二)
探究点二:茎叶图
思考3 一般地,画出一组样本数据的茎叶图的步骤如何?
答 第一步,将每个数据分为“茎”(高位)和“叶”(低位)两部分;
第二步,将最小的茎和最大的茎之间的数按大小次序排成一列,写在左(右)侧; 第三步,将各个数据的叶按次序写在茎右(左)侧.
第二章 统 计
§2.2 用样本估计总体
2.2.1 用样本的频率分布估计总体分布(二)
本节知识目录
2.2.1(二)
用样本
明目标、知重点
的频率
分布估
填要点、记疑点 探究点一 探要点、究所然 探究点二 当堂测、查疑缺 频率分布折线图、总体 密度曲线的概念 茎叶图
计总体
分布
(二)
明目标、知重点
填要点、记疑点
中称这条光滑曲线为总体密度曲线.那么下图中阴影部分的面积有何实际意义?
答 图中阴影部分的面积,就是总体在区间(a,b)内的取值的百分比.
明目标、知重点 填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
2.2.1(二)
探究点一:频率分布折线图、总体密度曲线的概念
思考 5
对于一个总体,如果存在总体密度曲线,能否通过样本数据准确地画出总
明目标、知重点 填要点、记疑点
主目录

B.x甲>x乙;甲比乙成绩稳定 D.x甲<x乙;甲比乙成绩稳定
探要点、究所然 当堂测、查疑缺
探要点、究所然
2.2.1(二)
探究点二:茎叶图
解析 从茎叶图可知,甲五次成绩中一次茎为8,一次茎为9,而乙五次成绩中,茎 8和茎9各两次,故可知x甲<x乙,乙比甲成绩稳定.

高一必修3 2.2.2用样本的频示范课率分布估计总体的分布

高一必修3  2.2.2用样本的频示范课率分布估计总体的分布

不足:
当样本数据较多或数据位数较多时,茎叶图就 显得不太方便。
P71练习3、下面一组数据是某生产车间30名工人 某日加工零件的个数,请设计适当的茎叶图表示 这组数据,并由这图出发说明一下这个车间此日 的生产情况。 134 112 117 126 128 124 122 116 113 107 116 132 127 128 126 121 120 118 108 110 133 130 124 116 117 123 122 120 112 112
甲:13, 51, 23, 8, 26, 38, 16, 33, 14, 28, 39 乙:49, 24, 12, 31, 50, 31, 44, 36, 15, 37, 25, 36, 39 用茎叶图表示两人成绩,并比较甲、乙成绩并得出统计 结论 甲 乙 8 4, 6, 3 3, 6, 8 3, 8, 9 1 0 1 2 3 4 5 2, 5, 1, 4, 0 5 4 6, 1, 6, 7, 9 9



统计结论:
1、乙运动员的得分基本是对称的,叶的分布 是“单峰”的,有10/13集中在茎2,3,4上, 中位数是36;甲运动员的得分除一个特殊得 分(51分)外,中位数是2பைடு நூலகம்.
2、乙运动员的平均得分大于甲运动员的平均 得分(乙运动员得分普遍大于甲运动员的得 分)。
3、乙运动员的得分比甲运动员的得分更集 中。乙运动员更稳定。
频率分布直方图如下:
频率
组距
0.50 0.40 0.30 0.20 0.10 月均用水量 /t 4.5
0.5
1 1.5 2 2.5 3
3.5 4
作用:
能反映数据的变化趋势
二、总体密度曲线 利用样本频率分布对总体分布进行相应估计

高中数学人教版必修3 2.2.1用样本的频率分布估计总体分布 教案 (系列五)

高中数学人教版必修3 2.2.1用样本的频率分布估计总体分布 教案 (系列五)

6.为了解某校高三学生的视力情况,随机地抽查了该校 100 名高三学生的视
珍贵文档
专业文档
力情况,得到频率分布直方图, 如右,由于不慎将部分数据丢失,但知道前 4 组的频 数成等比数列,后 6 组的频数成等差数列,设最大频 率为 a,视力在 4.6 到 5.0 之间的学生数为 b,则 a, b 的值分别为( A.0,27,78 C.2.7,78
(4.3-0.2)÷0.5=8.2 思考 3: 以组距为 0.5
进行分组, 上述 100 个数据共分为 9 组, 各组数据的取值范围可以如何设定? [0,0.5),[0.5,1),[1,1.5),…,[4,4.5].思考 4:如何统计上述 100 个数 据在各组中的频数?如何计算样本数据在各组中的频率?你能将这些数据 用表格反映出来吗?
5.(广东文 7、艺术理 6)下面左图是某县参加 2007 年高考的学生身高条形统计图, 从左到右 的各条形表示的学生人数依次记为 A1、A2、 …、 A10(如 A2 表示身高(单位:cm) (150,155) 内的学生人数) .右图是统计左图中身高在一定范围内学生人数的一个算法流 程图.现要统计身高在 160~180cm(含 160cm,不含 180cm)的学生人数,那么在 流程图中的判断框内应填写的条件是(B) A.i<9 B. i<8 C. i<7 D. i<6
⑴列出样本的频率分布表和画出频率分布直方图; ⑵根据样本的频率分布估计,小于 30.5 的数据约占多少?
2. (2006 年全国卷 II)一个社会调查机构就某地居民的月收入调查了 10 000 人,并根据所得数据画了样本的频率分布直方图(如下图) .为了分析居民 的收入与年龄、学历、职业等方面的关系,要从这 10 000 人中再用分层抽样 方法抽出 100 人作进一步调查, 则在 [2500, 3000] (元) 月收入段应抽出

2014高中数学 2.2.1 用样本频率分布估计总体分布课件(3)新人教A版必修3

2014高中数学 2.2.1 用样本频率分布估计总体分布课件(3)新人教A版必修3

诱思探究1
甲、乙两人比赛得分记录如下: 甲:13, 51, 23, 8, 26, 38, 16, 33, 14, 28, 39 乙:49, 24, 12, 31, 50, 31, 44, 36, 15, 37, 25, 36, 39 用茎叶图表示两人成绩,说明哪一个成绩好.

8 4, 6, 3 3, 6, 8 3, 8, 9 1 0 1 2 3 4 5
(4)乙运动员的成绩基本对称,而且大多数集中在 中间值附近,甲运动员的成绩大致对称,分布较均匀。 (从数据分布的对称性角度考虑) 因此,从以上比较可以看出:乙运动员的成绩比 甲运动员的成绩更好。
课堂练习
1.课本第71页练习第3题
解:
茎 10 11 12 13
叶 78 27636806722 6842786104320 4230
课堂小结
在样本的频率分布估计总体分布中学习的主要 内容: 1.列频率分布表; 3.画茎叶图; 4.利用相关知识进行分析,并作出判断。 2.画频率分布直方图;
课外作业
1.课本第81页习题2.1A组 1.(1)(2) 2.《阳光课堂》课时训练(十一)
月收入(元)
2.一个高中研究性学习小组对本地区2009年至2011年快餐公 司发展情况进行了调查,制成了该地区快餐公司个数情况的 条形图和快餐公司盒饭年销售量的平均数情况条形图(如图), 根据图中提供的信息可以得出这三年中该地区每年平均销售 85万盒. 盒饭_________
1 解析 由题意可知三年的平均值为 (30×1+45×2+90×1.5)=85. 3
由茎叶图可以看出该车间30名工人的日加工零件个 数稳定在120件左右。
2.如图是某赛季甲、乙两名篮球运动员参加的每场比赛

人教A版必修3《2.2.1用样本的频率分布估计总体分布》优化训练ppt课件

人教A版必修3《2.2.1用样本的频率分布估计总体分布》优化训练ppt课件

(1)列出样本频率分布表; (2)画出频率分布直方图. 解:(1)在样本数据中,最大值是 518,最小值是 483,极 差为 35.
35 3 若取组距为 4,则 4 =84,要分为 9 组,组数合适,故取
组距为 4,分 9 组,分点比数据多一位小数,故把第一组起点
稍微小一点,故分组如下:
[482.5,486.5],[486.5,490.5],„,[514.5,518.5].
(2)频率分布直方图,如图 D13.
图 D13
【变式与拓展】
2.为了让学生了解环保知识,增强环保意识,某中学举行
了一次“环保知识竞赛”,共有 900 名学生参加了这次竞赛.为 了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为 整数,满分为 100 分)进行统计.请你根据尚未完成并有局部污损 的频率分布表和频率分布直方图(如图 2-2-3),解答下列问题: (1)填充频率分布表的空格(将答案直接填在表格内);
列表如下: 分组 [482.5,486.5) [486.5,490.5) [490.5,494.5) [494.5,498.5) [498.5,502.5) [502.5,506.5) [506.5,510.5) [510.5,514.5) [514.5,518.5] 合计 频数累计 正 正正正 正正正正 正正 正正 正正正 正 频数 8 3 17 20 14 10 19 6 3 100 频率 0.08 0.03 0.17 0.20 0.14 0.10 0.19 0.06 0.03 1.00
当数据由整数部分和小数部分组成时,可以把整数部分作为
________ ,小数部分作为________. 茎 叶
练习 2:为了了解某校教师使用多媒体进行教学的情况,

必修三2.2样本估计总体

必修三2.2样本估计总体

2.2.1《用样本的频率分布估计总体分布(一)》导学案【学习目标】1. 在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图;2、通过实例体会频率分布直方图与频率折线图和茎叶图的各自特征,能恰当选择上述方法分析样本的分布,准确做出对总体的估计;【课前导学与探究】情境导入:在NBA某赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50 乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定? 如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布。

1.讨论:通过抽样方法收集数据的目的是什么?2.通常我们对总体作出的估计一般分成两种,一种是用 , 另一种是 。

3.频率分布是指一个样本数据在样本容量中所占比例的大小,一般可以用 反映样本的频率分布。

其一般步骤为:(1) 求极差,即计算 ;(2) 决定 ;○1组距与组数的确定没有确切的标准,将数据分组时组数应力求合适,以使数据的发布规律能较清楚地呈现出来. ○2组数与样本容量有关,一般样本容量越大,分的组数也越多,当样本容量不超过100时,常分5~12组. ○3组距的选择.组距= ,组距的选择力求取整,如果极差不利于分组(不能被组数整除)可适当增大极差,如在左右两端各增加适当的范围(尽量使两端增加的量相同); (3) 将数据 ;(4) 列 ;一般为四列:分组、频数累计、频数、频率,最后一行是合计,其中频数合计应是 ,频率合计是(5) 画频率分布直方图,画图时,应以横轴表示分组,纵轴表示 ,其相应组距上的频率等于 ,即每个=⨯=频率小长方形的面积组距组距 ,且各小长方形的面积的总和等于 。

4.频率分布折线图连接频率分布直方图中 的中点,就得到频率分布折线图.5.总体密度曲线:在做频率折线图时随着所分的组数增加,组距减小,相应的 图会越来越接近于一条 ,称之为 .【精讲点拨】例1、 在某小学500名学生中随机抽样得到100人的身高如下表(单位cm) : (1)列出样本频率分布表; (2)画出频率分布直方图;(3)估计该校学生身高小于134cm 的人数约为多少?【巩固练习】1.关于频率直方图的下列有关说法正确的是( )A .直方图的高表示取某数的频率B .直方图的高表示该组上的个体在样本中出现的频率C .直方图的高表示取某组上的个体在样本中出现的频数与组距的比值D .直方图的高表示取该组上的个体在样本中出现的频率与组距的比值 2( )A .0.80B .0.65C .0.40D .0.253.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1) 第二小组的频率是多少?样本容量是多少? (2) 若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3) 在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。

人教版高中数学必修3A版用样本的频率分布估计总体分布课件

人教版高中数学必修3A版用样本的频率分布估计总体分布课件
2.2.1用样本的频率分布估计总体分布(2)
复习:一、画频率分布直方图的步骤:
1、求极差(即一组数据中最大值与最小值的差) 它 反映一组数据的变化范围。 2、决定组距与组数(将数据分组) ①组距与组数的确定没有固定的标准,需要尝试与选择。 ②组数与样本容量有关,一般样本容量越大,所分组数越 极差 多。当样本容量在100个以内时,常分5-12组。 组数= 组距 注意区间的开闭(先闭后开) 3、 将数据分组: 4、列出频率分布表.(频数:落在各小组内的数据的个 数,频率:每小组的频数与数据总数的比值) 第几组频数 第几组频率 样本容量 5、画出频率分布直方图。
我们可以画出茎叶图,也就是中间的数表示十位数, 旁边的数表示两个人得分的个位数,就象一棵树的茎 与叶子一样,能更直观地看出这两个人的得分情况。
1、某赛季甲、乙两名篮球运动员每场比赛得分的原始记录 如下: (1)甲运动员得分:13,51,23,8,26,38,16,33,14,28,39 (2)乙运动员得分: 49,24,12,31,50,31,44,36,15,37,25,36,39
茎叶图

8 4ห้องสมุดไป่ตู้6 3 3 6 8 0 1 2 5 5 4

2
3
3 8 9
1 6 1 6 7 9
4 9
4 1
5
0
1、某赛季甲、乙两名篮球运动员每场比赛得分的原始记录 如下: (1)甲运动员得分:13,51,23,8,26,38,16,33,14,28,39 (2)乙运动员得分: 49,24,12,31,50,31,44,36,15,37,25,36,39 甲 12, 15, 24, 25, 31, 31, 36, 36, 37, 39, 44, 49, 50.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备课资料
下表是1 002名学生身高的频率分布表,根据数据画出:
1.频率分布直方图;
2.频率分布折线图;
3.总体密度曲线.
分组频数累计频数频率[150.5,153.5) 4 4 0.04
[153.5,156.5) 12 8 0.08
[156.5,159.5) 20 8 0.08
[159.5,162.5) 31 11 0.11
[162.5,165.5) 53 22 0.22
[165.5,168.5) 72 19 0.19
[168.5,171.5) 86 14 0.14
[171.5,174.5) 93 7 0.07
[174.5,177.5) 97 4 0.04 [177.5,180.5]100 3 0.03 合计100 1
解:1.画频率分布直方图
(1)根据频率分布表,作直角坐标系,以横轴表示身高,纵轴表示频率/组距.
(2)在横轴上标上表示的点.
(3)在上面各点中,分别以连接相邻两点的线段为底作矩形,高等于该组的频率/组距(如下图).
一般地,作频率分布直方图的方法为:
把横轴分成若干段,每一段对应一个组的组距,以此线段为底作矩形,高等于该组的频率/组距,这样得到一系列矩形,每一个矩形的面积恰好是该组上的频率.这些矩形构成了频率分布直方图.
2.画频率分布折线图
在频率分布直方图中,取相邻矩形上底边的中点顺次连结起来,就得到频率分布折线图(简称频率折线图)如下图:
3.画总体密度曲线
如果样本容量取得足够大,分组的组距取得足够小,则相应的频率折线图将趋于一条光滑的曲线,称这条光滑的曲线为总体的密度曲线.(如下图)。

相关文档
最新文档