用样本的频率分布估计总体分布

合集下载

用样本的频率分布估计总体分布(VI)

用样本的频率分布估计总体分布(VI)

收集样本数据
按照抽样计划进行数据收集,确保数据的真 实性和完整性。
数据整理
对收集到的数据进行整理,包括核对、筛选、 分类等,确保数据的质量。
数据的分组与频数统计
数据分组
根据研究目的和数据的特征,将数据分成若干组,以 便进行频数统计。
频数统计
对每组数据进行频数统计,计算每个组内的数据个数。
绘制频数分布表
03
估计总体分布
估计总体均值
计算样本均值
根据样本数据,计算所有数值的平均值,得到样本均值。
估计总体均值
将样本均值作为总体均值的估计值,即用样本均值来估计总体均 值。
误差分析
分析样本均值与总体均值的误差大小,了解估计的准确性和可靠 性。
估计总体方差
计算样本方差
根据样本数据,计算所有数值的方差,得到样 本方差。
根据每个组的频率,可以作出频率分布直方图。
实例结论总结
通过以上实例分析,我们可以看到, 通过将数据分组并计算每个组的频率, 可以大致估计出总体的分布情况。这 种方法适用于大样本数据,当样本量 足够大时,频率分布可以近似地代表 总体分布。
VS
பைடு நூலகம்
在实际应用中,可以根据需要选择合 适的分组方式和组距,以便更好地估 计总体分布。同时,需要注意样本的 代表性和数据的可靠性,以保证估计 结果的准确性。
估计总体方差
将样本方差作为总体方差的估计值,即用样本 方差来估计总体方差。
误差分析
分析样本方差与总体方差的误差大小,了解估计的准确性和可靠性。
估计总体分布形状
观察样本频率分布
01
根据样本数据,绘制频率分布直方图或曲线图,观察分布形状。
估计总体分布形状

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布频率分布是一种用于描述数据集中频次分布情况的统计工具,它描述了每个数值或数值范围出现的频率。

在样本中,我们可以利用频率分布来估计总体的频率分布,从而了解总体的特征。

为了确切估计总体的频率分布,我们需要采取一定的统计方法,下面将介绍一种常用的方法,直方图。

一、直方图的构建构建频率分布的首要任务是将数据分为不同的组或区间。

一般来说,我们会根据数据的特点选择合适的组距,然后根据不同的组距将数据分组。

例如,假设我们有一组数据代表了一些班级学生的测试成绩,我们选择了组距为10,那么我们可以将数据分为以下几个组:然后,我们统计每个组内数据出现的次数,即频次,得到每个组的频次数。

二、计算频率频率是频次的一个重要衍生指标,它反映的是不同数据值或数据范围在总体中的比例。

频率的计算公式为:频率=频次/总样本量在直方图中,我们通常将频率表示为每个组的相对频率。

这样可以更好地反映出组与组之间的差异。

三、绘制直方图绘制直方图是一种直观地表现频率分布的方法。

在直方图上,x轴表示不同的组或区间,y轴表示频率。

我们可以用矩形的高度来表示每个组的频率,矩形的宽度表示组距。

通过绘制多个矩形,可以将频率分布更直观地展示出来。

在绘制直方图时,需要注意以下几点:1.组距应该选择合适,既不过小也不过大,以保证直方图的直观性和准确性。

2.直方图的高度应该符合频率的大小,即高度越高表示频率越大。

3.直方图的矩形之间应该没有间隙,以保证数据的完整性。

四、利用样本频率分布估计总体频率分布样本的频率分布可以提供总体频率分布的一种估计方法。

我们可以基于样本数据构建直方图,并计算每个组的频率。

然后,我们可以将样本频率分布与总体的频率分布进行比较。

如果两个分布形状相似并且没有明显的偏差,那么我们可以认为样本的频率分布可以很好地估计总体的频率分布。

当然,在使用样本频率分布进行总体频率分布估计时,还需要注意以下几点:1.样本的选取应该具有代表性,以避免样本偏差对估计结果的影响。

用样本估计总体

用样本估计总体

用样本估计总体一、用样本的频率分布估计总体分布(1)频数、频率将一批数据按要求分为若干个组,各组内数据的个数,叫做该组的频数。

每组数除以全体数据的个数的商叫做该组的频率。

频率反映数据在每组中所占比例的大小。

(2)样本的频率分布根据随机所抽样本的大小,分别计算某一事件出现的频率,这些频率的分布规律(取值状况),就叫做样本的频率分布。

为了能直观地显示样本的频率分布情况,通常我们会将样本的容量、样本中出现该事件的频数以及计算所得的频率列在一张表中,叫做样本频率分布表。

(3)用样本频率分布估计总体的分布从一个总体得到一个包含大量数据的样本时,我们很难从一个个数字中直接看出样本所含的信息。

如果把这些数据形成频数分布或频率分布,就可以比较清楚地看出样本数据的特征,从而估计总体的分布情况。

用样本估计总体,是研究统计问题的一个基本思想方法,而对于总体分布,我们总是用样本的频率分布对它进行估计。

(4)频率分布直方图的特点从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容,所以,把数据表示成直方图后,原有的具体数据信息就被抹掉了。

(5)频率分布折线图把频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,如图所示。

为了方便看图,一般习惯于把频率分布折线图画成与横轴相连,所以横轴上的左右两端点没有实际意义。

(6)总体密度曲线①如果样本容量越大,所分组数越多,频率分布直方图中表示的频率分布就越接近于总体在各个小组内所取值的个数与总数比值的大小。

设想如果样本容量不断增大,分组的组距不断缩小,则频率分布直方图实际上是越来越接近于总体的分布,它可以用一条光滑曲线来描绘,这条光滑曲线就叫做总体密度曲线。

y f x()②总体密度曲线精确地反映了一个总体在各个区域内取值的百分比。

a b内的百分比就是图中带斜线部分的面积。

对本例来说,总体密度曲线呈产品尺寸落在(,)中间高两边低的“钟”形分布,总体的数据大致呈对称分布,并且大部分数据都集中在靠近中间的区间内。

用样本的频率分布估计总体的分布

用样本的频率分布估计总体的分布
用样本的频率分布估计总体的分布
影响组数与组距的因素
• 因素1:样本容量的大小; • 因素2:原始数据的精细程度; • 当样本容量不超过100时,常分成5-12组。
这是由统计经验获得的。
用样本的频率分布估计总体的分布
理论迁移
例 某地区为了了解知识分子的年龄结构, 随机抽样50名,其年龄分别如下:
42,38,29,36,41,43,54,43,34,44, 40,59,39,42,44,50,37,44,45,29, 48,45,53,48,37,28,46,50,37,44, 42,39,51,52,62,47,59,46,45,67, 53,49,65,47,54,63,57,43,46,58. (1)列出样本频率分布表; (2)画出频率分布直方图; (3)估计年龄在32~52岁的知识分子所占的比例 约是多少.
组距
连接频率分布直方图中 各小长方形上端的中点,
得到频率分布折线图
0.5 0.4 0.3 0.2 0.1
0.5 1 1.5
月均用 水量/t
2 2.5 3 3.5 4 4.5
用样本的频率分布估计总体的分布
总体密度曲线
当样本容量无限增大,分组的组距无限缩小,那么
频率分布折线图就会无限接近一条光滑曲线——总体密
用样本的频率分布估计总体的分布
用样本的频率分布估计总体的分布
练习:某中学高一(2)班甲,乙两 名同学自高中以来每场数学考试成 绩情况如下:
甲的得分:95,81,75,91,86, 89,71,65,76,88,94
乙的得分:83,86,93,99,88, 96,98,98,79,85,97
画出两人数学成绩茎叶图,请根据 茎叶图对两人的成绩进行比较。

2.2.1用样本的频率分布估计总体的分布课件(刘爱娟,2014.2.26)

2.2.1用样本的频率分布估计总体的分布课件(刘爱娟,2014.2.26)

• • • • • • • • • •
25.39 25.41 25.40 25.37 25.35 25.40 25.36 25.41 25.47 25.40
25.36 25.43 25.39 25.44 25.32 25.43 25.42 25.32 25.34 25.35
25.34 25.44 25.41 25.33 25.45 25.44 25.39 25.38 25.30 25.41
1.将每个数据分为茎(高位)和叶(低位) 两部分,在此例中,茎为十位上的数字, 叶为个位上的数字. 2.将最小茎和最大茎之间的数按大小次序 排成一列,写在中间. 3.将各个数据的叶按大小次序写在其茎的 左(右)侧.
用茎叶图表示数据的优点
一是从统计图上没有原始信息的损失,所 有的数据信息都可以从茎叶图中得到; 二是茎叶图可以在比赛是随时记录,方便 记录与表示。但茎叶图只便于表示两位有 效数字的数据,虽然可以表示两个人以上 的比赛结果(或两个以上的记录),但没 有表示两个记录那么直观、清晰
二、频率分布折线图
把频率分布直方图各个长方形上边的中点用线段 连接起来,就得到分布折线图。
三、总体密度曲线
• 频率分布直方图表明了所抽取的100件产品中, 尺寸落在各个小组内的频率大小.样本容量越大, 所分组数越多,各组的频率就越接近于总体在相 应各组取值的概率.设想样本容量无限增大,分
组的组距无限缩小,则频率分布直方图就会无限 接近于一条光滑曲线——总体密度曲线.它反映 了总体在各个范围内取值的规率.总体密度曲线
3、甲乙两个小组各10名学生的英语口语测试成绩如下(单位:分)
甲组 76 乙组 82 90 84 84 85 86 89 81 79 87 80 86 91 82 89 85 79 83 74

2.2.1 用样本的频率分布估计总体分布(共54张PPT)

2.2.1 用样本的频率分布估计总体分布(共54张PPT)

题型三
易错辨析
【例题 3】有一同型号的汽车 100 辆,为了了解这种汽车的耗油情况, 现从中随机抽取 10 辆在同一条件下进行耗油 1L 所行驶路程的试验, 得到的数据(单位:km)频率分布表如下: 分组 频数 频率 [12.45,12.95) 2 0.2 [12.95,13.45) 3 0.3 [13.45,13.95) 4 0.4 [13.95,14.45] 1 0.1 合计 10 1.0 试画出频率分布直方图.
解:甲、乙两人数学成绩的茎叶图如图所示. 从这个茎叶图上可以看出,乙同学的得分情况是大致对称的,中 位数是 98;甲同学的得分情况除一个特殊得分外,也大致对称,中位 数是 88.因此乙同学发挥比较稳定,总体得分情况比甲同学好.
用茎叶图表示数据的特点如下: ①用茎叶图表示数据有两个突出的优点,一是统计图上没有原始信 息的损失,所有的数据信息都可以从茎叶图中得到;二是茎叶图可以 在比赛时随时记录,用 3| 389 就表示了 33,38,39 这 3 个数据,方便记 录与表示.但茎叶图只便于表示两位有效数字的数据,虽然可以表示 两个人以上的比赛结果(或两个以上的记录),但没有表示两个记录 那么直观、清晰. ②茎叶图在样本数据较少,较为集中且位数不多时比较适用.由于它 较好地保留了原始数据,所以可以帮助分析样本数据的大致频率分 布,还可以用来分析样本数据的一些数字特征,如众数、中位数、平 均数等.
分析:依据步骤画出频率分布直方图;用样本中的百分比(即频率)来 估计长度在 5.75~6.05cm 之间的麦穗在这批麦穗中所占的百分比. 解:步骤是: (1)计算极差,7.4-4.0=3.4(cm). (2)决定组距与组数. 3.4 1 若取组距为 0.3cm,由于 =11 ,需分成 12 组,组数合适.于是取

用样本的频率分布估计总体分布教案

用样本的频率分布估计总体分布教案

用样本的频率分布估计总体分布教案教案:用样本的频率分布估计总体分布一、教学目标:1.了解频率分布的概念和作用;2.学会使用频率分布来估计总体分布;3.掌握构建频率分布表的方法;4.能够利用频率分布表对总体进行估计。

二、教学内容:1.频率分布的概念和作用2.构建频率分布表的方法3.利用频率分布表对总体进行估计三、教学过程:一、频率分布的概念和作用(10分钟)1.频率分布是指对一组数据中各个数值出现的次数进行统计,从而得到数值的分布情况。

2.频率分布的作用是可以帮助我们了解数据的分布规律,从而对总体进行估计。

二、构建频率分布表的方法(30分钟)1.确定数据的分组区间:首先需要确定分组的宽度,即把数据分为若干个区间。

常用的方法有等宽分组和等频分组。

2.计算各个分组的频数:统计每个区间内数据的个数。

3.计算各个分组的频率:将各个分组的频数除以总样本数量,得到各个分组的频率。

4.制作频率分布表:将各个分组的上界、下界、频数和频率列成表格。

三、利用频率分布表对总体进行估计(40分钟)1.利用频率分布表进行估计的方法有两种:直接估计和间接估计。

2.直接估计是通过频率分布表直接读取各个分组的频率来估计总体分布。

3.间接估计是通过频率分布表的图形化表示来估计总体分布,常用的图形有直方图和折线图。

4.对于直方图,可以通过观察分布的形状和峰值来估计总体的分布情况。

5.对于折线图,可以通过观察分布曲线的形状来估计总体的分布情况。

四、练习和小结(20分钟)1.让学生根据给定的数据,完成频率分布表的构建。

2.让学生根据给定的频率分布表,进行总体分布的估计。

3.对学生进行小结和概念回顾,检查他们对于频率分布和总体估计的理解程度。

四、教学反思:通过本节课的教学,学生能够了解频率分布的概念和作用,掌握构建频率分布表的方法,以及利用频率分布表对总体进行估计的方法。

在教学过程中,可以利用实际案例和练习来加深学生对于频率分布和总体估计的理解。

用样本的频率分布估计总体分布

用样本的频率分布估计总体分布

用样本的频率分布估计总体分布教学目标:(1)通过实例体会分布的意义和作用。

(2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图。

(3)通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计。

【创设情境】在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布。

【探究新知】〖探究〗:P55我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费。

如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等。

因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况。

(如课本P56)分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息。

表格则是通过改变数据的构成形式,为我们提供解释数据的新方式。

下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频率 组距
0.25×0.04+0.75×0.08+1.25×0.15+1.75× 0.22+2.25×0.25+2.75×0.14+3.25× 0.06+3.75×0.04+4.25×0.02=2.02(t). 平均数是2.02.
0. 5 0.4 0.3 0.2 0. 1 O
0.5
1
1.5
2
2.5
3
(4)估计电子元件寿命在400h以上的概率;
巩固练习题
寿命 100~200 200~300 300~400 400~500 频数 20 30 80 40 30 200 频率 0.10 0.15 0.40 0.20 0.15 1 累积频率 0.10 0.25 0.65 0.85 1
500~600
合计
60.5 73.5 62.5 74 65 59.5 76 68 64 69.5 59 66 63 69 63.5 61 63.5 62 65 67 59.5 60 71.5 65 60 58 65.5 61.5 70 63.5 55 73 70 68 59 58.5 64.5 66.5 64 64.5 62 58.5 根据这些数据 57.5 65.5 68 71 75 62 你能得出其他 64.5 67.5 73 68 64 72 70 信息吗 64.5 ?58 64 70.5 57 62 58 74 71 66 63.5 74.5 68.5 64 55.5 72.5 66.5 57 69.5 74 64.5 59 61.5 65.5 62.5 69.5 72 64.5 61 67.5 70.5 65 66 66.5 70 63 72 68.5 66.5 62.5 60.5 68 67 68.5 59.5
试根据上述数据画出样本的频率分布直方图,并对相应的 总体分布作出估计
获得频率分布的一般步骤: 1、求极差 2、确定组距与组数 3、分组 4、列频率分布表 5、绘频率分布直方图
列出频率分布表、画频率分布直方图的方法
一、计算最大值与最小值的差(也称极差), 从而知道这组数据的变动范围。 极差为:76 –55=21 二、决定组距与组数(将数据分组)
一、众数、中位数、平均数的概念
众数、中位数、平均数都是描述一组数据 的集中趋势的特征数,只是描述的角度不同, 其中以平均数的应用最为广泛. 众数:在一组数据中,出现次数最多的数 据叫做这组数据的众数. 中位数:将一组数据按大小依次排列,把处 在最中间位置的一个数据(或最中间两个数据的 平均数)叫做这组数据的中位数. 平均数:一组数据的算术平均数,即
( 4 ) .由频率分布表可知,寿 命在400h以上的电子 元件出现的频率为: 0.20 0.15 0.35 ,故我们 估计电子元件寿命在 400h以上的概率为: 0.35.
用样本的数字特征估计总体的实在特征
1.众数 2.中位数
3.平均数
4.方差 5.标准差
高二数学组:孔祥朋
基本概念
1.平均数、中位数和众数 (1)平均数:一组数据的总和除以数据的个数所得到 的商就是平均数 (2)中位数:如果将一组数据按从小到达的顺序依次 排律,当数据有奇数个时,处在最中间的一个数;当 数据有偶数个时,处在最中间两个数的平均数,是这 组数据的中位数。 (3)众数:出现次数最多(若有两个或几个数据出现 得最多,且出现的次数一样,这些数据都是这组数据 的众数;若每个数据出现的次数一样多,则认为这组 数据没有众数。) (4)在频率分布直方图中也可以找到众数、中位数。
思考1:在城市居民月均用水量样本数 据的频率分布直方图中,你认为众数应 在哪个小矩形内?由估计总体的众数 是什么?
取最高矩形下端 中点的横坐标 2.25作为众数.
O
0.5
1
1.5
2
2.5
3
3.5
4
4.5
月平
频率 组距
思考2:在频率分布直方图中,每个小 矩形的面积表示什么?中位数左右两 侧的直方图的面积应有什么关系?
3.5
4
4.5
月平
思考6:从居民月均用水量样本数据可知,该样本 的众数是2.3,中位数是2.0,平均数是1.973,这 与我们从样本频率分布直方图得出的结论有偏差, 你能解释一下原因吗?
频率分布直方图损失了一些样本数据,得 到的是一个估计值,且所得估计值与数据分 组有关. 注:在只有样本频率分布直方图的情况下,我 们可以按上述方法估计众数、中位数和平均 数,并由此估计总体特征.
组数:将数据分组,当数据在100个以内时,
按数据多少分成5-12组 组距:(1)指每个小组的两个端点的距离 (2)组距=极差/组数 三.决定分点
第1小组的起点尽量比极小值稍微减少一点
频数分布表
分组 [54.5,56.5) 频数累计 T 频数 2 频率 0.02
[56.5,58.5)
[58.5,60.5) [60.5,62.5)
0.14
0.16 0.13 0.11 0.08 0.07 0.03 1.00
频率/组距
体重(kg)
54.5 56.5 58.5 60.5 62.5 64.5 66.5 68.5 70.5 72.5 74.5 76.5
五.画频率分布直方图
注意:直方图的纵轴表•长方形的面积= 频率 组距 频率 示频率与组距的比值, 组距
总体分布的估计
1. 频数、频率的概念 2.样本的频率分布 3.频率分布表和频率分布直方图的制作 4.茎叶图的制作
平 度 市 第 九 中 学 纪 云 尚
为了考察一个总体的情况,在统计中通常 是从总体中抽取一个样本,用样本的有关 情况去估计总体相应的情况。这种估计大体 分为两类: 一类是用样本的频率分布去估计总体分布, 一类是用样本的某种数字特征(例如平均数、 方差等)去估计总体的相应数字特征
0. 5 0.4 0.3 0.2 0. 1 O 0.5 1 1.5 平均用水量(t)
2
2.5
3
3.5
4
4.5

频率 组距
思考4:平均数是频率分布直方图的“重 心”,在城市居民月均用水量样本数据的 频率分布直方图中,各个小矩形的重心在 哪里?从直方图估计总体在各组数据内的 平均数分别为多少?
0. 5 0.4
频率/组距
0
100 200 300 400 500 600 寿命(h)
巩固练习题
(3) 由 频 率 分 布 表 可 以 出 看, 寿 命 在 100h ~ 400 元件寿命在 100h ~ 400h的 概 率 为 : 0.65.
的电子元件出现的频为 率 : 0.65, 所 以 我 们 估 计 电 子
x=
1 ( x1 x 2 x n ) n
练习: 在一次中学生田径运动会上,参加 男子跳高的17名运动员的成绩如下表所示:
成绩 (单位:米)
1.50 2
1.60 1.65 1.70 3 2 3
1.75 1.80 1.85 1.90 4 1 1 1
人数
分别求这些运动员成绩的众数,中位数与平 均数 解:在17个数据中,1.75出现了4次,出现的 次数最多,即这组数据的众数是1.75. 上面表里的17个数据可看成是按从小到大 的顺序排列的,其中第9个数据1.70是最中间 的一个数据,即这组数据的中位数是1.70;
今天我们通过案例先学习总体分布的估计
一.频率分布
1.将一批数据按要求分成若干个组,各组内数 据的个数叫做该组的的频数. 2.每组数除以全体数据的个数的商叫做该组的 频率.频率反映数据在每组中所占比例的大 小. 3.根据随机所抽取样本的大小,分别计算某 一事件出现的分布规律叫做样本的频率分布。
例: 为了了解某地区高三学生的身体发育情况, 抽查了地区100名年龄为17.5岁至18岁的男生的体重 情况,结果如下(单位:kg):
三种数字特征的优缺点
1.众数体现了样本数据的最大集中点,但它显然对 其它数据信息的忽视使得无方各观地反映总体特 征。 2.中位数是样本数据所占频率的等分线,它不受少 数几个极端值的影响,这在某些情况下是优点, 但它对极端值的不敏感有时也会成为缺点。 3.由于平均数与每一个样本的数据有关,所以任何 一个样本数据的改变都会引起平均数的改变,这 是众数、中位数不具备的性质。也征引为如此与 众数、中位数比较起来,平均数可以反映出更多 的关于样本数据全体的信息。
总结
如何根据样本频率分布直方图,分别估计 总体的众数、中位数和平均数?
(1)众数:最高矩形下端中点的横坐标.
(2)中位数:直方图面积平分线与横轴 交点的横坐标. (3)平均数:每个小矩形的面积与小矩 形底边中点的横坐标的乘积之和.

三种数字特征的优缺点
1、众数体现了样本数据的最大集中 点,但它对其它数据信息的忽视使得无 法客观地反映总体特征.
这组数据的平均数是
x (1.5 2 1.6 3 1.85 1.9) 1.69
答:17名运动员成绩的众数、中位数、平均数 依次是1.75(米)、1.70(米)、1.69(米).
二 、众数、中位数、平均数与频率分布直方图的关系
频率 0. 组距 5 0.4 0.3 0.2 0. 1
频率 组距
总体在区间(a , b)内取值的频率
产品 尺寸 (mm)
a
b
巩固练习题
1.对某电子元件进行寿命追踪调查,情况如下:
寿命 个数 100~200 20 200~300 30 300~400 80 400~500 40 500~600 30
(1)列出频率分布表; (2)画出频率分布直方图; (3)估计电子元件寿命在100h~400h以内的概率;

正 正

正 正
6
10 10
0.06
0.10 0.10
[62.5,64.5)
相关文档
最新文档