用样本频率分布体分布

合集下载

人教版高中数学必修3(A版) 用样本的频率分布估计总体分布 PPT课件

人教版高中数学必修3(A版) 用样本的频率分布估计总体分布  PPT课件
0.16
0.08 0.12 0.08 0.04 0.3 0.5 0.44
有数无形欠直观, 在频率直 有形无数难入微 方图中,
0.28
12%
3.5 4 4.5
0 .1
0
各小矩形 的面积的 总和等于1
0.5
1
1.5
2
2 .5
3
88%
月均用水量/t
探究:
同样一组数据,如果组距不同,横轴、纵轴的单位 不同,得到的图的形状也会不同。不同的形状给人以不 同的印象,这种印象有时会影响我们对总体的判断。观 察分别以1和0.1为组距的图象,谈谈你对图的印象。
0.036 0.032 0.028 0.024 0.020 0.016 0.012 0.008 0.004 o 90 100 110 120 130 140 150
次数
频率= 频数
第二小组频数 12 样本容量 150 样本容量 第二小组频率 0.08
频率分布折线图.
频率/组距 (取各小长方形上端中点, 并连线 )
0.6 0.5 0.4 0.3
0.3
0.16 0.12 0.08 0.04 0.28 0.5 0.44
0.2
0.1 0.08 0 0.5 1 1.5 2 2.5 3
3.5 4
4.5
月均用水量/t
利用样本频分布对总体分布进行相应估计 用样本分布直方图去估计相应的总体分布时, (1)样本容量越大,这种估计越精确。 一般样本容量越大,频率分布直方图就会越接 (2)当样本容量无限增大,组距无限缩小,那么相应的 近总体密度曲线,就越精确地反映了总体的分 频率折线图会无限接近于一条光滑曲线 ———总体密度曲线 布规律,即越精确地反映了总体在各个范围内 取值百分比。 (3)总体密度曲线反映了总体在各个范围内取值的百

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布频率分布是一种用于描述数据集中频次分布情况的统计工具,它描述了每个数值或数值范围出现的频率。

在样本中,我们可以利用频率分布来估计总体的频率分布,从而了解总体的特征。

为了确切估计总体的频率分布,我们需要采取一定的统计方法,下面将介绍一种常用的方法,直方图。

一、直方图的构建构建频率分布的首要任务是将数据分为不同的组或区间。

一般来说,我们会根据数据的特点选择合适的组距,然后根据不同的组距将数据分组。

例如,假设我们有一组数据代表了一些班级学生的测试成绩,我们选择了组距为10,那么我们可以将数据分为以下几个组:然后,我们统计每个组内数据出现的次数,即频次,得到每个组的频次数。

二、计算频率频率是频次的一个重要衍生指标,它反映的是不同数据值或数据范围在总体中的比例。

频率的计算公式为:频率=频次/总样本量在直方图中,我们通常将频率表示为每个组的相对频率。

这样可以更好地反映出组与组之间的差异。

三、绘制直方图绘制直方图是一种直观地表现频率分布的方法。

在直方图上,x轴表示不同的组或区间,y轴表示频率。

我们可以用矩形的高度来表示每个组的频率,矩形的宽度表示组距。

通过绘制多个矩形,可以将频率分布更直观地展示出来。

在绘制直方图时,需要注意以下几点:1.组距应该选择合适,既不过小也不过大,以保证直方图的直观性和准确性。

2.直方图的高度应该符合频率的大小,即高度越高表示频率越大。

3.直方图的矩形之间应该没有间隙,以保证数据的完整性。

四、利用样本频率分布估计总体频率分布样本的频率分布可以提供总体频率分布的一种估计方法。

我们可以基于样本数据构建直方图,并计算每个组的频率。

然后,我们可以将样本频率分布与总体的频率分布进行比较。

如果两个分布形状相似并且没有明显的偏差,那么我们可以认为样本的频率分布可以很好地估计总体的频率分布。

当然,在使用样本频率分布进行总体频率分布估计时,还需要注意以下几点:1.样本的选取应该具有代表性,以避免样本偏差对估计结果的影响。

用样本估计总体

用样本估计总体

用样本估计总体一、用样本的频率分布估计总体分布(1)频数、频率将一批数据按要求分为若干个组,各组内数据的个数,叫做该组的频数。

每组数除以全体数据的个数的商叫做该组的频率。

频率反映数据在每组中所占比例的大小。

(2)样本的频率分布根据随机所抽样本的大小,分别计算某一事件出现的频率,这些频率的分布规律(取值状况),就叫做样本的频率分布。

为了能直观地显示样本的频率分布情况,通常我们会将样本的容量、样本中出现该事件的频数以及计算所得的频率列在一张表中,叫做样本频率分布表。

(3)用样本频率分布估计总体的分布从一个总体得到一个包含大量数据的样本时,我们很难从一个个数字中直接看出样本所含的信息。

如果把这些数据形成频数分布或频率分布,就可以比较清楚地看出样本数据的特征,从而估计总体的分布情况。

用样本估计总体,是研究统计问题的一个基本思想方法,而对于总体分布,我们总是用样本的频率分布对它进行估计。

(4)频率分布直方图的特点从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容,所以,把数据表示成直方图后,原有的具体数据信息就被抹掉了。

(5)频率分布折线图把频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,如图所示。

为了方便看图,一般习惯于把频率分布折线图画成与横轴相连,所以横轴上的左右两端点没有实际意义。

(6)总体密度曲线①如果样本容量越大,所分组数越多,频率分布直方图中表示的频率分布就越接近于总体在各个小组内所取值的个数与总数比值的大小。

设想如果样本容量不断增大,分组的组距不断缩小,则频率分布直方图实际上是越来越接近于总体的分布,它可以用一条光滑曲线来描绘,这条光滑曲线就叫做总体密度曲线。

y f x()②总体密度曲线精确地反映了一个总体在各个区域内取值的百分比。

a b内的百分比就是图中带斜线部分的面积。

对本例来说,总体密度曲线呈产品尺寸落在(,)中间高两边低的“钟”形分布,总体的数据大致呈对称分布,并且大部分数据都集中在靠近中间的区间内。

人教高中数学必修三2.2.1用样本的频率分布估计总体分布课件

人教高中数学必修三2.2.1用样本的频率分布估计总体分布课件

频率散布直方图以面积的情势反应了数据落在 各个小组的频率的大小.
作业
1、课时训练 P73 2、探究咱班学生的身高
散布情况 3、探究频率散布折线图和
总密度曲线
频率 组距 0.5 0.4 0.3 0.2 0.1
宽度:组距
高度:
频率 组距
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
画频率散布直方图
频率/组距
注意:
① 这里的纵坐标不是频率, 而是频率/组距;
0.50 0.40
0.50 ② 某个区间上的频率用
0.44
这个区间矩形的面积表示;
2.2.1用样本的频率散布 估计总体散布
学习目标
1、理解并学会画频率散布表; 2、掌握频率散布直方图的画法,
并能理解在频率散布直方图 中用面积表示频率。
一、复习回顾
1.我们已经学习了哪些抽样的方法?
简单随机抽样
系统抽样
分层抽样
随机抽样是收集数据的方法,如何通过 样本数据所包含的信息,估计总体的基 本特征,即用样本估计总体,是我们需 要进一步学习的内容.
二、样本估计总体的方法
一般分成两种: ①用样本的频率散布估计总体的散布. ②用样本的数字特征(如平均数、标准差 等)估计总体的数字特征.
• 我国是世界上严重缺水的国家之一。
如何划在本市试
行居民生活用水定额管理,即确定一个居民月用 水量标准a , 用水量不超过a的部分按平价收费,超 过a的部分按议价收费。
思考:由上表,大家可以得到什么信息?
三、样本分析
一般通过表、图、计算来分析 数据,帮助我们找出样本数据中的 规律,使数据所包含的信息转化成 直观的容易理解的情势。

高一必修3 2.2.2用样本的频示范课率分布估计总体的分布

高一必修3  2.2.2用样本的频示范课率分布估计总体的分布

不足:
当样本数据较多或数据位数较多时,茎叶图就 显得不太方便。
P71练习3、下面一组数据是某生产车间30名工人 某日加工零件的个数,请设计适当的茎叶图表示 这组数据,并由这图出发说明一下这个车间此日 的生产情况。 134 112 117 126 128 124 122 116 113 107 116 132 127 128 126 121 120 118 108 110 133 130 124 116 117 123 122 120 112 112
甲:13, 51, 23, 8, 26, 38, 16, 33, 14, 28, 39 乙:49, 24, 12, 31, 50, 31, 44, 36, 15, 37, 25, 36, 39 用茎叶图表示两人成绩,并比较甲、乙成绩并得出统计 结论 甲 乙 8 4, 6, 3 3, 6, 8 3, 8, 9 1 0 1 2 3 4 5 2, 5, 1, 4, 0 5 4 6, 1, 6, 7, 9 9



统计结论:
1、乙运动员的得分基本是对称的,叶的分布 是“单峰”的,有10/13集中在茎2,3,4上, 中位数是36;甲运动员的得分除一个特殊得 分(51分)外,中位数是2பைடு நூலகம்.
2、乙运动员的平均得分大于甲运动员的平均 得分(乙运动员得分普遍大于甲运动员的得 分)。
3、乙运动员的得分比甲运动员的得分更集 中。乙运动员更稳定。
频率分布直方图如下:
频率
组距
0.50 0.40 0.30 0.20 0.10 月均用水量 /t 4.5
0.5
1 1.5 2 2.5 3
3.5 4
作用:
能反映数据的变化趋势
二、总体密度曲线 利用样本频率分布对总体分布进行相应估计

高一数学人教A版必修3课件:2.2.1-2用样本的频率分布估计整体分布

高一数学人教A版必修3课件:2.2.1-2用样本的频率分布估计整体分布

知识迁移
例1 在某小学500名学生中随机抽样得到 100人的身高如下表(单位cm) :
身高区间
[122,126) [126,130) [130,134) [134,138) [138,142)


2
8
9
[150,154)
18
[154,158)
28
身高区间
[142,146) [146,150)


15
思考5:当总体中的个体数比较少或样 本数据不密集时,是否存在总体密度曲 线?为什么?
不存在,因为组距不能任意缩小. 思考6:对于一个总体,如果存在总体密 度曲线,这条曲线是否惟一?能否通过 样本数据准确地画出总体密度曲线?
探究(二):茎叶图
频率分布表、频率分布直方图和折 线图的主要作用是表示样本数据的分布 情况,此外,我们还可以用茎叶图来表 示样本数据的分布情况.
小结作业
1.用样本的频率分布估计总体分布,当总体 中的个体数取值很少时,可用茎叶图估计总 体分布;当总体中的个体数取值较多时,可 将样本数据适当分组,用频率分布表或频率 分布直方图估计总体分布. 2.总体密度曲线可看成是函数的图象,对一 些特殊的密度曲线,其函数解析式是可求的. 3.茎叶图中数据的茎和叶的划分,可根据 样本数据的特点灵活决定.
10
6
4
(1)列出样本频率分布表; (2)画出频率分布直方图; (3)估计该校学生身高小于134cm的人数约 为多少?
(1)频率分布表:
分 组 频数 频率
[122,126) [126,130) [130,134) [134,138) [138,142) [142,146) [146,150) [150,154) [154,158)

用样本的频率分布估计总体的分布》教学设计

必修3《2.2.1 用样本的频率分布估计总体的分布》教学设计北京师范大学附属实验中学曹付生一、教学内容分析1.教学主要内容:本节课选自人教B版必修三,第二章第二小节,《用样本的频率分布估计总体的分布》,需要2课时完成,本节课是第一课时。

主要是画出样本的频率分布直方图,并能通过频率分布直方图对总体进行简单的估计。

2.教材编写特点本节是本章教材的第二小节,前面研究了随机抽样的方法及数据收集。

本节课主要研究对收集样本如何进行处理,突出对数据描述、处理的方法,特别是频率分布直方图画法,后面接着研究总体密度曲线、用样本的数字特征估计总体的数字特征以及正态曲线等,可以说本节课内容承上启下,地位非常重要。

从教材编写的角度来看,也正是要体现这一特点。

教材编写,通过对样本分析和总体估计的过程,突出了统计的实用性,从实际出发,收集数据,进行分析整理,再回到实际问题,感受数学对实际生活的需要,体现了统计的思想及其在实际问题中的应用价值,真正体会数学知识与现实生活的联系。

3.教材内容的数学核心思想教材内容的数学核心思想是用样本的频率分布直方图估计总体的统计思想方法。

4.我的思考:本节课重在教会学生绘制频率分布直方图,引导学生通过频率分布直方图分析总体的分布,体会统计的思想、方法。

在通读了教材的基础上,与人教A版的相应内容作了比较,再结合学生的情况,最终选择A版内容,更利于完成教学目标。

(1)人教A版教材中的例子与学生关系紧密,提出的问题更切合学生实际。

背景的熟悉使学生易于课堂参与。

(2)教材中问题的设计利于学生统计思想的建立等。

统计思想方法是数学的一个重要的思想方法,中学学习统计,除了掌握必要的统计知识之处,关键是让学生建立统计在现实生活中具有重要的作用,具有统计意识,同时体会到统计结果随机性、科学性,能作为总体的分布的合理性,是生活中某些问题决策必不可少的依据。

统计教学的核心目标正是让学生体会统计思维的特点和作用。

因此在设计中,从实际问题出发,再回到实际问题的决策,前后呼应,使学生真正体会数据处理的全过程、统计应用于现实生活的全过程,突出统计的思想、方法。

用样本的频率分布估计总体的分布

33
142,146
20
146,150
11
150,154
6
154,158
5
(1)列出样本频率分布表; (2)画出频率分布直方图; (3)估计身高小于 134cm的人数占总人数者智不达。——《墨子· 修身》
例 2、甲、乙两个小组各 10 名学生的英语口语测试成绩如下(单位:分) : 甲组 76 90 84 86 81 87 86 82 85 83 乙组 82 84 85 89 79 80 91 89 79 74 试用茎叶图表示两个小组的成绩,找出中位数。
三、当堂检测 1. 在频率分布直方图中,所有矩形的总面积( ) A.大于 1 B.小于 1 C.等于 1 D.不能确定 2. 下列关于频率分布直方图的说法中,正确的是( ) A 直方图的高表示取某数的频率 B 直方图的高表示该组上的个体在样本中出现频数与组距的比值 C 直方图的高表示该组上的个体在样本中出现的频率 D 直方图的高表示该组上的个体在样本中出现频率与组距的比值 3. 为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得 数据整理后列出了频率分布表如下: 组 别 频数 1 4 20 15 8 m
用样本的频率分布估计总体的分布
【使用说明及学法指导】 1.先精读一遍教材, 用红色笔勾画; 再针对导学案问题导学部分阅读并回答, 时间不超过 15 分钟; 2.限时完成导学案合作探究部分,书写规范;3.找出自己的疑惑点;4.必须记住的内容。 【学习目标】
规律总结
1. 学会列频率分布表,画频率分布直方图、频率折线图和茎叶图。 2. 通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选 择上述方法分析样本的分布,准确地做出总体估计。
四、课后巩固 1.若一个样本的极差为 12.4,组距为 2,则该组数据分成的组数是( ) A.5 B.6 C.7 D.8 2.将一组数据分成 6 组, 若第 1,2,3,5,6 组的频率分别为 0.1, 0.15, 0.2, 0.2, 0.15, 0.05,则第 4 组的频率是( ) A.0.1 B.0.15 C.0.2 D.0.05 3.有 100 名学生,每人只能参加一个运动队,其中参加足球队的有 30 人,参加篮球队的 有 27 人,参加排球队的有 23 人,参加乒乓球队的有 20 人. (1)列出学生参加运动队的频率分布表. (2)画出频率分布直方图.

2.2.1用样本的频率分布估计总体的分布课件(刘爱娟,2014.2.26)


• • • • • • • • • •
25.39 25.41 25.40 25.37 25.35 25.40 25.36 25.41 25.47 25.40
25.36 25.43 25.39 25.44 25.32 25.43 25.42 25.32 25.34 25.35
25.34 25.44 25.41 25.33 25.45 25.44 25.39 25.38 25.30 25.41
1.将每个数据分为茎(高位)和叶(低位) 两部分,在此例中,茎为十位上的数字, 叶为个位上的数字. 2.将最小茎和最大茎之间的数按大小次序 排成一列,写在中间. 3.将各个数据的叶按大小次序写在其茎的 左(右)侧.
用茎叶图表示数据的优点
一是从统计图上没有原始信息的损失,所 有的数据信息都可以从茎叶图中得到; 二是茎叶图可以在比赛是随时记录,方便 记录与表示。但茎叶图只便于表示两位有 效数字的数据,虽然可以表示两个人以上 的比赛结果(或两个以上的记录),但没 有表示两个记录那么直观、清晰
二、频率分布折线图
把频率分布直方图各个长方形上边的中点用线段 连接起来,就得到分布折线图。
三、总体密度曲线
• 频率分布直方图表明了所抽取的100件产品中, 尺寸落在各个小组内的频率大小.样本容量越大, 所分组数越多,各组的频率就越接近于总体在相 应各组取值的概率.设想样本容量无限增大,分
组的组距无限缩小,则频率分布直方图就会无限 接近于一条光滑曲线——总体密度曲线.它反映 了总体在各个范围内取值的规率.总体密度曲线
3、甲乙两个小组各10名学生的英语口语测试成绩如下(单位:分)
甲组 76 乙组 82 90 84 84 85 86 89 81 79 87 80 86 91 82 89 85 79 83 74

用样本的频率分布估计总体分布


2.2
用样本估计总体
2.2.1用样本的频率分布估计总体分布
第二课时
问题提出
1.列出一组样本数据的频率分布表 可以分哪几个步骤进行? 第一步,求极差.
第二步,决定组距与组数.
第三步,确定分点,将数据分组.
第四步,统计频数,计算频率,制成 表格.
2.频率分布直方图是在平面直角坐标 系中画若干个依次相邻的小长方形,这 些小长方形的宽、高和面积在数量上分 别表示什么? 组距、频率除以组距、频率.
0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
频率 组距
总体密度曲线
总体在区间 (a,b)内取 值的百分比.
O
a b 月均用水量/t
思考4:在上述背景下,相应的频率分布折线 图越来越接近于一条光滑曲线,统计中称这 条光滑曲线为总体密度曲线.那么图中阴影部 分的面积有何实际意义?
思考5:当总体中的个体数比较少或样 本数据不密集时,是否存在总体密度曲 线?为什么?
不存在,因为组距不能任意缩小. 思考6:对于一个总体,如果存在总体密 度曲线,这条曲线是否惟一?能否通过 样本数据准确地画出总体密度曲线?
探究(二):茎叶图
频率分布表、频率分布直方图和折 线图的主要作用是表示样本数据的分布 情况,此外,我们还可以用茎叶图来表 示样本数据的分布情况.
思考5:上表称为样本数据的频率分布表, 由此可以推测该市全体居民月均用水量 分布的大致情况,给市政府确定居民月 用水量标准提供参考依据,这里体现了 一种什么统计思想?
用样本的频率分布估计总体分布.
思考6:如果市政府希望85%左右的居民每 月的用水量不超过标准,根据上述频率分 布表,你对制定居民月用水量标准(即a的 取值)有何建议? 88%的居民月用水量在3t以下,可建议取a=3. 思考7:在实际中,取a=3t一定能保证85%以 上的居民用水不超标吗?哪些环节可能会导 致结论出现偏差? 分组时,组距的大小可能会导致结论出现偏 差,实践中,对统计结论是需要进行评价的.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用样本频率分布体分布————————————————————————————————作者:————————————————————————————————日期:2.2.1 用样本的频率分布估计总体的分布荣成二中宋海燕目的要求通过实例体会分布的意义和作用,在表示数据的过程中,学会列出频率分布表、画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点。

教学过程1.实例引课为了解某地区女中学生的身体发育情况,不仅要了解其平均身高,还要了解身高在哪个范围内的学生多,哪个范围内的学生少.为了解某次考试成绩,不仅应知道平均成绩,还应知道90分以上占多少,80分~90分占多少,……,不及格占多少等.要解决上面的两个问题,需要从总体中得到一个包含大量数据的样本,并且把这些数据形成频率分布,就可以比较清楚地看出样本数据的特征,从而估计总体的分布情况。

2.引出课题:用样本的频率分布估计总体的分布看下面的例子某钢铁加工厂生产内径为25.40mm的钢管,为了掌握产品的生产状况,需要定期对产品进行检测。

又由于产品的数量巨大,不可能一一检测所有的钢管,因而通常采用随机抽样的办法。

如果把这些钢管的内径看成总体,我们可以从中随机抽取的100件钢管进行检测,把这100件钢管的质量分布情况作为总体的质量分布情况来看待。

根据规定,钢管内径的尺寸在区间25.325~25.475内为优等品,我们特别希望知道所有生产的钢管中优等品所占的比例,这时就可以用样本的分布情况估计总体的分布情况。

下面的数据是一次抽样中的100件钢管的内径尺寸:(幻灯示).25.39 25.36 25.34 25.42 25.45 25.38 25.39 25.42 25.47 25.3525.41 25.43 25.44 25.48 25.45 25.43 25.46 25.40 25.51 25.4525.40 25.39 25.41 25.36 25.38 25.31 25.56 25.43 25.40 25.3825.37 25.44 25.33 25.46 25.40 25.49 25.34 25.42 25.50 25.3725.35 25.32 25.45 25.40 25.27 25.43 25.54 25.39 25.45 25.4325.40 25.43 25.44 25.41 25.53 25.37 25.38 25.24 25.44 25.4025.36 25.42 25.39 25.46 25.38 25.35 25.31 25.34 25.40 25.3625.41 25.32 25.38 25.42 25.40 25.33 25.37 25.41 25.49 25.3525.47 25.34 25.30 25.39 25.36 25.46 25.29 25.40 25.37 25.3325.40 25.35 25.41 25.37 25.47 25.39 25.42 25.47 25.38 25.39上面的100个数据有点散乱,从中很难看出产品质量的分布情况,必须对样本数据用统计的方法加以概括和整理。

下面我们列出这组样本数据的频率分布表、频率分布直方图,步骤如下:(1)计算级差(一组数据中最大值与最小值的差)25.26-25.24=0.32(2)决定组距与组数(样本容量不超过100时,组数常分为5~12组)如果组距定为0.03,那么级差/组距=0.32/0.03=10 2/3于是应将样本数据分成11组(组距还可以定为其他的数值)(3)决定分点将第1组的起点定为25.235,组距为0.03,这样所分的11个组是:[25.235,25.265][25.265,25.295]……(4)列频率分布表分组个数累计频数频率25.235~25.265 1 1 0.0125.265~25.295 2 2 0.0225.295~25.325 5 5 0.0525.325~25.355 12 12 0.1225.355~25.385 18 18 0.1825.385~25.415 25 25 0.2525.415~25.445 16 16 0.1625.445~25.475 13 13 0.1325.475~25.505 4 4 0.0425.505~25.535 2 2 0.0225.535~25.565 2 2 0.02合计100 100 1.00(5)绘制频率分布直方图注:(1)小长方形的面积=组距×频率/组距=频率各长方形的面积总和等于1(2)从频率分布表或频率分布直方图容易看出,优等品所占的比例等于0.12+0.18+0.25+0.16+0.13=0.84,于是可以估计出所有生产的钢管中有84%的优等品。

(3)用样本的频率分布估计总体的分布时,要使样本能够很好的反映总体的特性,必须随机抽样。

由于抽样的随机性,可以想到,如果随机抽取另外一个容量为100的样本,所形成的样本频率分布一般会与前一个样本频率分布有所不同。

但是,它们都可以近似地看作总体的分布。

(4)从频率分布直方图可以清楚的看出数据分布的总体态势,但是直方图本身得不出原始的数据内容。

所以,把数据表示成直方图后,原有的具体数据信息就被抹掉了。

3.频率分布折线图把频率分布直方图各个长方形上边的中点用线段连接起来,就得到分布折线图。

4.总体密度曲线频率分布直方图表明了所抽取的100件产品中,尺寸落在各个小组内的频率大小.样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,则频率分布直方图就会无限接近于一条光滑曲线——总体密度曲线.它反映了总体在各个范围内取值的概率.总体密度曲线能够更好的反映总体在各个范围内的百分比,能够提供更准确的信息。

根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积.5.茎叶图常用的统计图表还有茎叶图,下面的例子就是用茎叶图表示数据。

例:某赛季甲、乙两名篮球运动员每场比赛的得分情况如下:甲的得分:12,15,24,25,31,31,36,36,37,39,44,49,50。

乙的得分:8,13,14,16,23,26,28,33,38,39,51。

注:中间的数字表示得分的十位数字。

旁边的数字分别表示两个人得分的个位数字从上面这个茎叶图上可以看出,甲运动员的得分情况是大致对称的,中位数是36;乙运动员的得分情况除一个特殊得分外,也大致对称,中位数是26。

因此甲运动员的发挥比较稳定,总体得分情况比乙运动员好。

用茎叶图表示数据有两个突出的优点,一是从统计图上没有原始信息的损失,所有的数据信息都可以从茎叶图中得到;二是茎叶图可以在比赛是随时记录,方便记录与表示。

但茎叶图只便于表示两位有效数字的数据,虽然可以表示两个人以上的比赛结果(或两个以上的记录),但没有表示两个记录那么直观、清晰。

6.课堂练习1)、对于样本频率分布直方图与总体密度曲线的关系,下列说法中正确的是( ) (A )频率分布直方图与总体密度曲线无关 (B )频率分布直方图就是总体密度曲线(C )样本容量很大的频率分布直方图就是总体密度曲线(D )如果样本容量无限增大,分组的组距无限减小,那么频率分布直方图就会无限接近于总体密度曲线2)、在用样本频率估计总体分布的过程中,下列说法中正确的是( ) (A )总体容量越大,估计越精确 (B )总体容量越小,估计越精确 (C )样本容量越大,估计越精确 (D )样本容量越小,估计越精确3)、10个小球分别编有号码1,2,3,4,其中1号球4个,2号球2个,3号球3个,4号球1个,数0.4是指1号球占总体分布的( )(A )频数 (B )概率 (C )频率 (D )累计频率4)、已知样本:12 7 11 12 11 12 10 10 9 8 13 12 10 9 6 11 8 9 8 10那么频率为0.25的样本的范围是( )(A ) (B ) (C ) (D )5)、频率分布直方图中,小长方体的面积等于( )(A )相应各组的频数 (B )相应各组的频率 (C )组数 (D )组距6)、在总体密度曲线中,总体在区间(a ,b )内取值的概率就是直线______、_______、_______和总体密度曲线围成的图形的面积.7)、对100位大学毕业生在该年七月份求职录取情况调查结果如下:20人录取在行政机关,31人录取在公司,3人录取在银行,18人录取在学校,其余的还在求职中.那么七月0 1 2 38 34 52 54甲 乙份这100位大学生还未被录取的概率为_______________.8)、一个容量为n的样本分成若干组,已知某组的频数和频率分别为30和0.25,则n=_______________.9)分组频数频率[10.75, 10.85) 3[10.85, 10.95) 9[10.95, 11.05) 13[11.05, 11.15) 16[11.15, 11.25) 26[11.25, 11.35) 20[11.35, 11.45) 7[11.45, 11.55) 4[11.55, 11.65) 2合计 100(1)完成上面的频率分布表.(2)根据上表,画出频率分布直方图.(3)根据上表,估计数据落在[10.95,11.35)范围内的概率约为多少?解:(1)(2)略.(3)数据落在[10.95,11.35]范围的频率为0.13+0.16十0.26+0.20落在[10.95,11.35]内的概率约为0.75.10)教科书第67页练习B第2、3题.7.归纳小结①获得样本的频率分布的步骤:(1)求最大值与最小值的差;(2)确定组距与组数;(3)决定分点;(4)列频率分布表;(5)绘制频率分布直方图.②图形优点缺点频率分布直方图1)易表示大量数据都是一些信息2)直观的反映分布的情况茎叶图1)无信息损失只能处理样本容量较小数据2)随时记录,方便记录和表示8.布置做业教科书第69页练习A第3、4题。

相关文档
最新文档