用样本的频率分布估计总体分布PPT

合集下载

人教版高中数学必修3(A版) 用样本的频率分布估计总体分布 PPT课件

人教版高中数学必修3(A版) 用样本的频率分布估计总体分布  PPT课件
0.16
0.08 0.12 0.08 0.04 0.3 0.5 0.44
有数无形欠直观, 在频率直 有形无数难入微 方图中,
0.28
12%
3.5 4 4.5
0 .1
0
各小矩形 的面积的 总和等于1
0.5
1
1.5
2
2 .5
3
88%
月均用水量/t
探究:
同样一组数据,如果组距不同,横轴、纵轴的单位 不同,得到的图的形状也会不同。不同的形状给人以不 同的印象,这种印象有时会影响我们对总体的判断。观 察分别以1和0.1为组距的图象,谈谈你对图的印象。
0.036 0.032 0.028 0.024 0.020 0.016 0.012 0.008 0.004 o 90 100 110 120 130 140 150
次数
频率= 频数
第二小组频数 12 样本容量 150 样本容量 第二小组频率 0.08
频率分布折线图.
频率/组距 (取各小长方形上端中点, 并连线 )
0.6 0.5 0.4 0.3
0.3
0.16 0.12 0.08 0.04 0.28 0.5 0.44
0.2
0.1 0.08 0 0.5 1 1.5 2 2.5 3
3.5 4
4.5
月均用水量/t
利用样本频分布对总体分布进行相应估计 用样本分布直方图去估计相应的总体分布时, (1)样本容量越大,这种估计越精确。 一般样本容量越大,频率分布直方图就会越接 (2)当样本容量无限增大,组距无限缩小,那么相应的 近总体密度曲线,就越精确地反映了总体的分 频率折线图会无限接近于一条光滑曲线 ———总体密度曲线 布规律,即越精确地反映了总体在各个范围内 取值百分比。 (3)总体密度曲线反映了总体在各个范围内取值的百

高中数学人教新课标B版必修3--《2.2.1用样本的频率分布估计总体的分布》课件4

高中数学人教新课标B版必修3--《2.2.1用样本的频率分布估计总体的分布》课件4

1
解1:总睡眠时间约为 6.25×5+6.75×17 +7.25×33+7.75×37+8.25×6+8.75×2 =739(h)
故平均睡眠时间约为7.39h 解2:求各组中值与对应频率之积的和, 6.25×0.05+6.75×0.17+7.25×0.33+7.75× 37+8.25×0.06+8.75×0.02 =7.39(h)
解:估计该单位职工的平均年收入为 12500×10%+17500×15%+22500×20%+ 27500×25%+32500×15%+37500×10%+ 45000×5%=26125(元) 答:估计该单位人均年收入约为26125元.
练习题: 1.若M个数的平均数是x,N个数的平均数
Mx Ny
(2)中位数不受少数几个极端数据的影 响,容易计算,它仅利用了数据中排在中 间的数据的信息。当样本数据质量比较差, 即存在一些错误数据时,应该用抗极端数 据强的中位数表示数据的中心值。
(3)平均数受样本中的每一个数据的影 响,“越离群”的数据,对平均数的影响 也越大,与众数和中位数相比,平均数代 表了数据更多的信息,当样本数据质量比 较差时,使用平均数描述数据的中心位置 可能与实际情况产生较大的误差。
2.2.2 用样本的数字特征估计 总体的数字特征(一)
一、众数、中位数、平均数
(1)众数:在样本数据中,频率散布最 大值所对应的样本数据或出现次数最多的 那个数据。
(2)中位数:样本数据中,累计频率为 0.5时所对应的样本数据或将数据按大小 排列,位于最中间的数据(如果数据的个 数为偶数,就取当中两个数据的平均数作 为中位数)。

人教a版必修三:《2.2.1用样本的频率分布估计总体分布(2)》ppt课件(33页)

人教a版必修三:《2.2.1用样本的频率分布估计总体分布(2)》ppt课件(33页)

明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
2.2.1(二)
探究点二:茎叶图
思考3 一般地,画出一组样本数据的茎叶图的步骤如何?
答 第一步,将每个数据分为“茎”(高位)和“叶”(低位)两部分;
第二步,将最小的茎和最大的茎之间的数按大小次序排成一列,写在左(右)侧; 第三步,将各个数据的叶按次序写在茎右(左)侧.
第二章 统 计
§2.2 用样本估计总体
2.2.1 用样本的频率分布估计总体分布(二)
本节知识目录
2.2.1(二)
用样本
明目标、知重点
的频率
分布估
填要点、记疑点 探究点一 探要点、究所然 探究点二 当堂测、查疑缺 频率分布折线图、总体 密度曲线的概念 茎叶图
计总体
分布
(二)
明目标、知重点
填要点、记疑点
中称这条光滑曲线为总体密度曲线.那么下图中阴影部分的面积有何实际意义?
答 图中阴影部分的面积,就是总体在区间(a,b)内的取值的百分比.
明目标、知重点 填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
2.2.1(二)
探究点一:频率分布折线图、总体密度曲线的概念
思考 5
对于一个总体,如果存在总体密度曲线,能否通过样本数据准确地画出总
明目标、知重点 填要点、记疑点
主目录

B.x甲>x乙;甲比乙成绩稳定 D.x甲<x乙;甲比乙成绩稳定
探要点、究所然 当堂测、查疑缺
探要点、究所然
2.2.1(二)
探究点二:茎叶图
解析 从茎叶图可知,甲五次成绩中一次茎为8,一次茎为9,而乙五次成绩中,茎 8和茎9各两次,故可知x甲<x乙,乙比甲成绩稳定.

2.2.1用样本的频率分布估计总体分布课件人教A版必修

2.2.1用样本的频率分布估计总体分布课件人教A版必修

• 解析:在频率分布直方图中,用小矩形的 面 积 表 示 频 率 , 即 4×0.08 = 0.32 , 频 数 = 4×0.09×100=36,用样本的频率估计总体 的概率.
• 答案:(1)0.32 (2)36 (3)0.08
• 5.为了了解中学生身体发育情况,对某中 学高一年级部分女生身高进行了一次测量, 所得数据整理后列出了频率分布表如下:
• 迁移变式2 (2010·北京高考)从某小学随机
抽取100名同学,将他们的身高(单位:厘米) 数据绘制成频率分布直方图(如图4).由图 中数据可知a=________.若要从身高在[120 , 130),[130 ,140),[140,150]三组内的学生中, 用分层抽样的方法选取18人参加一项活动, 则从身高在[140,150]内的学生中选取的人数 应为________.
• (3)通过观察茎叶图,可以发现品种A的平均 亩产量约为411.1千克,品种B的平均亩产量 为397.8千克.由此可知品种A的平均亩产量 比品种B的平均亩产量高,但品种A的亩产 量不够稳定,而品种B的亩产量比较集中在 平均亩产量附近.
• [点评] 画茎叶图时,用中间的数表示数据 的十位和百位数,两边的数分别表示两组 数据的个位数.要先确定中间的数取数据 的哪几位,填写数据时边读边填.比较数 据时从数据分布的对称性、中位数、稳定 性等几方面来比较.绘制茎叶图的关键是 分清茎和叶,一般地说数据是两位数时, 十位数
答案:0.030 3
• 类型三 茎叶图及应用
• [例3] 某良种培育基地正在培育一种小麦 新品种A,将其与原有一个优良品种B进行 对照实验,两种小麦各种植了25亩,所得 亩产数据(单位:千克)如下:
• 品种A:
• 357,359,367,368,375,388,392,399,400,405,41 2,414,415,421,423,423,427,430,430,434,443,4 45,445,451,454

2.2.1用样本的频率分布估计总体的分布课件(刘爱娟,2014.2.26)

2.2.1用样本的频率分布估计总体的分布课件(刘爱娟,2014.2.26)

• • • • • • • • • •
25.39 25.41 25.40 25.37 25.35 25.40 25.36 25.41 25.47 25.40
25.36 25.43 25.39 25.44 25.32 25.43 25.42 25.32 25.34 25.35
25.34 25.44 25.41 25.33 25.45 25.44 25.39 25.38 25.30 25.41
1.将每个数据分为茎(高位)和叶(低位) 两部分,在此例中,茎为十位上的数字, 叶为个位上的数字. 2.将最小茎和最大茎之间的数按大小次序 排成一列,写在中间. 3.将各个数据的叶按大小次序写在其茎的 左(右)侧.
用茎叶图表示数据的优点
一是从统计图上没有原始信息的损失,所 有的数据信息都可以从茎叶图中得到; 二是茎叶图可以在比赛是随时记录,方便 记录与表示。但茎叶图只便于表示两位有 效数字的数据,虽然可以表示两个人以上 的比赛结果(或两个以上的记录),但没 有表示两个记录那么直观、清晰
二、频率分布折线图
把频率分布直方图各个长方形上边的中点用线段 连接起来,就得到分布折线图。
三、总体密度曲线
• 频率分布直方图表明了所抽取的100件产品中, 尺寸落在各个小组内的频率大小.样本容量越大, 所分组数越多,各组的频率就越接近于总体在相 应各组取值的概率.设想样本容量无限增大,分
组的组距无限缩小,则频率分布直方图就会无限 接近于一条光滑曲线——总体密度曲线.它反映 了总体在各个范围内取值的规率.总体密度曲线
3、甲乙两个小组各10名学生的英语口语测试成绩如下(单位:分)
甲组 76 乙组 82 90 84 84 85 86 89 81 79 87 80 86 91 82 89 85 79 83 74

2.2.1 用样本的频率分布估计总体分布(共54张PPT)

2.2.1 用样本的频率分布估计总体分布(共54张PPT)

题型三
易错辨析
【例题 3】有一同型号的汽车 100 辆,为了了解这种汽车的耗油情况, 现从中随机抽取 10 辆在同一条件下进行耗油 1L 所行驶路程的试验, 得到的数据(单位:km)频率分布表如下: 分组 频数 频率 [12.45,12.95) 2 0.2 [12.95,13.45) 3 0.3 [13.45,13.95) 4 0.4 [13.95,14.45] 1 0.1 合计 10 1.0 试画出频率分布直方图.
解:甲、乙两人数学成绩的茎叶图如图所示. 从这个茎叶图上可以看出,乙同学的得分情况是大致对称的,中 位数是 98;甲同学的得分情况除一个特殊得分外,也大致对称,中位 数是 88.因此乙同学发挥比较稳定,总体得分情况比甲同学好.
用茎叶图表示数据的特点如下: ①用茎叶图表示数据有两个突出的优点,一是统计图上没有原始信 息的损失,所有的数据信息都可以从茎叶图中得到;二是茎叶图可以 在比赛时随时记录,用 3| 389 就表示了 33,38,39 这 3 个数据,方便记 录与表示.但茎叶图只便于表示两位有效数字的数据,虽然可以表示 两个人以上的比赛结果(或两个以上的记录),但没有表示两个记录 那么直观、清晰. ②茎叶图在样本数据较少,较为集中且位数不多时比较适用.由于它 较好地保留了原始数据,所以可以帮助分析样本数据的大致频率分 布,还可以用来分析样本数据的一些数字特征,如众数、中位数、平 均数等.
分析:依据步骤画出频率分布直方图;用样本中的百分比(即频率)来 估计长度在 5.75~6.05cm 之间的麦穗在这批麦穗中所占的百分比. 解:步骤是: (1)计算极差,7.4-4.0=3.4(cm). (2)决定组距与组数. 3.4 1 若取组距为 0.3cm,由于 =11 ,需分成 12 组,组数合适.于是取

高一数学用样本的频率分布估计总体分布3(教学课件201908)

高一数学用样本的频率分布估计总体分布3(教学课件201908)
高中数学学业水平考试总复习
必修3 第二章 统计
第二课时 总体特征估计与相关关系分析
学习目标
1.了解样本数据标准差的意义和作用; 理解用样本的频率分布估计总体分布、 用样本的数字特征估计总体的数字特征; 理解样本;了解利用散点 图直观认识变量之间的相关关系;知道 最小二乘法,了解根据给出的线性回归 方程系数公式建立线性回归方程.
【问题4】样本平p均1257数t30 和方差的计算与应用
例1 某人5次上班途中所花的时间 (单位:分钟)分别为x,y,10,11,9. 已知这组数据的平均数为10,方差为2, 求|x-y|的值.
|x-y|=4
;https:///about-brighten-home-loans/ 铂腾房贷

今成倅刑止其身 吾始惧邓艾之事 王澄闻其名 魏太常 先是河南官舍多妖怪 除尚书郎 当此之时 以疾去官 帝深纳焉 衍疾郭之贪鄙 敦又送所得台中人书疏 允之字季度 时年五十七 伎艺过人 又云可退据零桂 未发 赞曰 寻迁大司马 起楼橹 齐王芳立 天地所不容 然能善算轻重 尊宗茂亲 并在大位 愍帝为皇太子 濬夜梦悬三刀于卧屋梁上 徒结白论 陈留就国 病卒 而东南二方 传于世 迁散骑侍郎 宣帝弟魏司隶从事安城亭侯通之子也 封为襄阳县侯 交得长主 乃杀之 自领幽州 泰始三年 先王议制 必致游戏 领豫州刺史 祖植 诏濬修舟舰 及颖薨 及蜀中乱 张由赵残 母柳氏为鲁国太夫人 尚之 立 以齐之梁邹益封 以功封永安亭侯 遏塞流水 恺既失职 恒以为辱 节欲然后操全 宜识吾此意 明帝时唯有通事刘泰等官 有牛名 加散骑常侍 王恺以帝舅奢豪 为晋宗英 帝善之 皆曲有故 从容任职 而今复言 是大戒也 臣以革法创制 而至于议改 以涛守大鸿胪 涛曰 咸宁初追加封谥 一也 承曰 而 家无储积 既而地疑致逼 处仲第三 齐国左思 观等受贾后密旨

随机抽样用样本估计总体正态分布.ppt

随机抽样用样本估计总体正态分布.ppt

各自特点
从总体中逐个 抽取
将总体分成几 层进行抽取
将总体均分成 几部分,按事 先确定的规则 在各部分抽取
相互联 系
最基本 的抽样 方法
各层抽 样时采 用简单 随机抽

在起始 部分抽 样时采 用简单 随机抽

23
适用范 围
总体中 的个体 数较少
总体由 差异明 显的几 部分组

总体中 的个体 数较多
2.频率分布直方图会使样本的一些数字特征更明显,
9
(2)依题意,ξ 的可能取值为 0,1,2,3,则 P(ξ=0)=CC31382=1545,P(ξ=1)=CC14C31228=2585, P(ξ=2)=CC24C31218=1525,P(ξ=3)=CC31342=515. 因此,ξ 的分布列如下:
所以 Eξ=0×1545+1×2585+2×1525+3×515=1.
体的方差最小,0
21
1.统计的基本思想方法是用样本估计总体,即用局 部推断整体,这就要求样本应具有很好的代表性, 而样本良好客观的代表性,完全依赖抽样方法. 三种抽样方法的比较:
22
类别 简单随机抽样
分层抽样
系统抽样
共同点
①抽样过程中 每个个体被抽 取的概率是相 等的;②均属 于不放回抽样
在区间(68,75)中的概率.
7
素材1
设矩形的长为 a,宽为 b,其比满足 b∶a=
5-1 2
≈0.618,这种矩形给人以美感,称为黄金矩形.黄金矩
形常应用于工艺品设计中.下面是某工艺品厂随机抽取
两个批次的初加工矩形宽度与长度的比值样本:
甲批次:0.598 0.625 0.628 0.595 0.639
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考7:在实际中,取a=3t一定能保证85%以上
的居民用水不超标吗?哪些环节可能会导致结论 出现偏差?
分组时,组距的大小可能会导致结论出现偏差, 实践中,对统计结论是需要进行评价的.
12
思考8:对样本数据进行分组,其组数是由哪
些因素确定的?
对样本数据进行分组,组距的确定没有固定的 标准,组数太多或太少,都会影响我们了解数 据的分布情况.数据分组的组数与样本容量有关, 一般样本容量越大,所分组数越多.按统计原理, 若样本的容量为n,分组数一般在(1+3.3lgn) 附近选取.当样本容量不超过100时,按照数据 的多少,常分成5~12组.
7
思考1:上述100个数据中的最大值和最小值分
别是什么?由此说明样本数据的变化范围是什么?
0.2~4.3
思考2:样本数据中的最大值和最小值的差称
为极差.如果将上述100个数据按组距为0.5进行 分组,那么这些数据共分为多少组?
(4.3-0.2)÷0.5=8.2
8
思考3:以组距为0.5进行分组,上述100个数据
2.2用样本估计总体
1
问题提出
1.随机抽样有哪几种基本的抽样方法? 简单随机抽样、系统抽样、分层抽样.
2.随机抽样是收集数据的方法,如何通 过样本数据所包含的信息,估计总体的 基本特征,即用样本估计总体,是我们 需要进一步学习的内容.
2
通过图、表、计算来分析样本数据,找出数 据中的规律,就可以对总体作出相应的估计.
月均用水量/t
15
频率
组距
0.5 0.4 0.3 0.2 0.1
宽度:组距
高度:
频率 组距
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
上图称为频率分布直方图,其中横轴表示月均用 水量,纵轴表示频率/组距. 频率分布直方图中各 小长方形的宽度和高度在数量上有何特点?
16
思考2:频率分布直方图中各小长方形的面
可以推测该市全体居民月均用水量分布的大致情 况,给市政府确定居民月用水量标准提供参考依 据,这里体现了一种什么统计思想?
用样本的频率分布估计总体分布.
11
思考6:如果市政府希望85%左右的居民每月的
用水量不超过标准,根据上述频率分布表,你对 制定居民月用水量标准(即a的取值)有何建议?
88%的居民月用水量在3t以下,可建议取a=3.
频数分布的表示形式有: ①样本频数分布表 ②样本频数分布条形图 ③样本频数分布直方图
4
2.2.1用样本的频率分布 估计总体分布(1)
5
知识探究(一):频率分布表
【问题】 我国是世界上严重缺水的国家之一,
城市缺水问题较为突出,某市政府为了节约生活 用水,计划在本市试行居民生活用水定额管理, 即确定一个居民月用水量标准a,用水量不超过a 的部分按平价收费,超出a的部分按议价收费. 通过抽样调查,获得100位居民2007年的月均用 水量如下表(单位:t):
6
3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6 3.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.4 3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8 3.3 2.8 2.3 2.2 1.7 1.3 3.6 1.7 0.6 4.1 3.2 2.9 2.4 2.3 1.8 1.4 3.5 1.9 0.8 4.3 3.0 2.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0 2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.3 2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4 2.5 2.6 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.4 2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2
思考9:若以0.1或1.5为组距对上述100个样本数据
分组合适吗?
13
思考10:一般地,列出一组样本数据的频率分布
表可以分哪几个步骤进行?
第一步,求极差. (极差=样本数据中最大值与最小值的差)
第二步,决定组距与组数. (设k=极差÷组距,若k为整数,则组数=k, 否则,组数=【k】+1)
第三步,确定分点,将数据分组.
用样本去估计总体,是研究统计问题的一 个基本思想.
这种估计一般分成两种: ①是用样本的频率分布估计总体的分布. ②是用样本的数字特征(如平均数、标准差 等)估计总体的数字特征.
初中时我们学习过样本的频数分布,包括频数、频 率的概念,频数分布表和频数分布直方图的制作.
3
频数分布
样本中所有数据所有数据(或数据组)的频数的分布变化 规律叫做样本的频数分布.
8 0.08
[1,1.5) 正 正 正 15 0.15
[1.5,2) 正 正 正 正 22 0.22
[2,2.5) 正 正 正 正 正 25 0.25
[2.5,3) 正 正
14 0.14
[3,3.5) 正 一
6 0.06
[3.5,4)
4 0.04
[4,4.5]
2 0.02
合计
100 1.00
10
思考5:上表称为样本数据的频率分布表,由此
第四步,统计频数,计算频率,制成表格. (频
数=样本数据落在各小组内的个数, 频率=频
数÷样本容量)
14
知识探究(二):频率分布直方图
思考1:为了直观反映样本数据在各组中的
分布情况,我们将上述频率分布表中的有关 信息用下面的图形表示:
频率 组距 0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5
共分为9组,各组数据的取值范围可以如何设定?
[0,0.5),[0.5,1),[1,1.5),…,[4,4.5].
思考4:如何统计上述100个数据在各组中的频
数?如何计算样本数据在各组中的频率?你能将 这些数据用表格反映出来吗?
9
分 组 频数累计 频数 频率
[0,0.5)
4 0.04
[0.5,1) 正
积表示什么?各小长方形的面积之和为多少?
频率
组距
0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
各小长方形的面积=对应频率
相关文档
最新文档