计算方法与matlab
Matlab中常用的数值计算方法

Matlab中常用的数值计算方法数值计算是现代科学和工程领域中的一个重要问题。
Matlab是一种用于数值计算和科学计算的高级编程语言和环境,具有强大的数值计算功能。
本文将介绍Matlab中常用的数值计算方法,包括数值积分、数值解微分方程、非线性方程求解和线性方程组求解等。
一、数值积分数值积分是通过数值方法来近似计算函数的定积分。
在Matlab中,常用的数值积分函数是'quad'和'quadl'。
'quad'函数可以用于计算定积分,而'quadl'函数可以用于计算无穷积分。
下面是一个使用'quad'函数计算定积分的例子。
假设我们想计算函数f(x) = x^2在区间[0, 1]上的定积分。
我们可以使用如下的Matlab代码:```f = @(x) x^2;integral = quad(f, 0, 1);disp(integral);```运行这段代码后,我们可以得到定积分的近似值,即1/3。
二、数值解微分方程微分方程是描述自然界各种变化规律的数学方程。
在科学研究和工程应用中,常常需要求解微分方程的数值解。
在Matlab中,可以使用'ode45'函数来求解常微分方程的数值解。
'ode45'函数是采用基于Runge-Kutta方法的一种数值解法。
下面是一个使用'ode45'函数求解常微分方程的例子。
假设我们想求解一阶常微分方程dy/dx = 2*x,初始条件为y(0) = 1。
我们可以使用如下的Matlab代码:```fun = @(x, y) 2*x;[x, y] = ode45(fun, [0, 1], 1);plot(x, y);```运行这段代码后,我们可以得到微分方程的数值解,并绘制其图像。
三、非线性方程求解非线性方程是指方程中包含非线性项的方程。
在很多实际问题中,我们需要求解非线性方程的根。
计算方法与matlab语言中相对误差和有效数字之间的关系

计算方法与matlab语言中相对误差和有效数字之间的
关系
matlab语言中相对误差和有效数字之间的关系是matlab中定量评估
精度的一种方法。
一般来说,相对误差表示一个数值与它的参考值的
数量差异的百分比,与有效数字的关系是这样的,如果有一个数值的
有效数字为n,则这个数值的相对误差最多不超过5$\times 10^{-n}$。
计算有效数字数也是matlab语言中精度分析的一个重要量,有效数字
表示数值中有效有意义的数字位数,它可以反映数据的精度和数据信
息的完整性。
例如有一个十进制表示的128.45,这里的有效数字是四位,即1、2、8、4、5。
数字的有效位数越多,这个数值的精度就越高,但是有效数字也具有一定的限度,如果超过了限度,该数据的结果可
能已经不能够准确地反映所需结果。
同时,与相对误差相关的一个量是绝对误差,它表示一个数与它的参
考值差异的最小值。
这个数据与有效数字是没有关系的,只要数值存
在绝对误差,不论有效数字为多少位,其相对误差也都是超过5$\times 10^{-n}$的。
总结来讲,matlab语言中,有效数字是限制数值精度的一个量,而相
对误差则是定量评价结果精度的一种方法,它们之间没有直接的关系,但是有效数字的存在会影响到相对误差的准确度。
MATLAB中的数学计算方法详解

MATLAB中的数学计算方法详解在科学研究和工程领域中,数学计算方法的应用是不可避免的。
MATLAB作为一种强大的数学工具,提供了丰富的数学函数和算法,为用户提供了便捷的数学计算方式。
本文将详细介绍MATLAB中常用的数学计算方法,包括数值计算、符号计算以及优化算法等。
一、数值计算方法数值计算是MATLAB中应用最广泛的数学计算方法之一。
它通过将数值代入数学模型,利用数值逼近的方式求得近似解。
MATLAB提供了各种数值计算函数,如插值、积分、微分等。
下面我们将介绍其中几种常用的数值计算方法。
1. 插值方法插值是一种通过已知数据点来估计未知数据点的方法。
在MATLAB中,可以使用interp1函数实现一维数据的插值。
该函数支持多种插值方法,例如线性插值、样条插值等。
用户只需提供已知的数据点和插值点,即可得到插值结果。
2. 数值积分方法数值积分是计算定积分近似值的方法。
在MATLAB中,可以使用quad函数来进行一维定积分计算。
该函数采用自适应的数值积分算法,能够适应不同类型的函数。
用户只需提供被积函数和积分区间,即可得到积分结果。
3. 数值微分方法数值微分是计算函数导数的方法。
在MATLAB中,可以使用diff函数对函数进行数值微分。
该函数可以计算一阶和二阶导数,还支持多点数值微分和符号数值微分。
通过数值微分,可以方便地求得函数在给定点的导数近似值。
二、符号计算方法符号计算是指在计算过程中处理符号表达式而不是数值。
MATLAB的Symbolic Math Toolbox提供了强大的符号计算功能,可以进行代数操作、求解方程、求导、积分等。
下面我们将介绍几种常用的符号计算方法。
1. 代数操作在MATLAB中,可以使用符号计算功能进行代数操作,如多项式求解、多项式展开、多项式化简等。
通过定义符号变量和符号表达式,可以进行各种代数计算,方便用户进行复杂的代数操作。
2. 方程求解MATLAB的符号计算工具箱提供了solve函数用于求解方程。
matlab数值计算方法

Matlab提供了多种数值计算方法,以下是其中一些常用的方法:
1. 整数计算:Matlab中的计算方式和计算器类似,可以直接输入数值然后加上运算符进行运算。
2. 小数计算:小数计算的方式和整数相似。
3. 分数计算:Matlab可以切换至分数模式,这一点较计算器等具有较大优势。
4. 赋值运算:Matlab中除了和计算器一样直接运算,还能进行赋值运算,直接将其中一个值赋值后,带入运算即可。
5. 多重赋值运算:Matlab在数值计算的时候,还支持多重赋值计算。
这样可以很方便的求解列出的问题。
以上内容仅供参考,建议查阅Matlab官方文档获取更全面和准确的信息。
计算方法与MATLAB应用的课程思政思考与探索

对未来课程思政的展望与规划
展望
未来我们将继续深入研究课程思政的教学 理念,不断优化教学设计,提高教学质量 ,培养更多具有社会责任感、团队协作精 神的高素质人才。
规划
我们将进一步完善课程思政的教学体系, 加强与其他学科的交叉融合,推动课程思 政在全校范围内的普及和推广,为培养德 才兼备的高素质人才做出更大的贡献。
03
Matlab应用在课程思政 中的角色
Matlab在数学建模与算法实现中的优势
高效数学计算
01
Matlab具有强大的数学计算功能,可以快速处理复杂的数学
问题,有助于学生理解算法原理。
直观图形展示
02
Matlab可以绘制各种复杂的图形,帮助学生更好地理解数学
概念和原理。
模块化编程
03
Matlab采用模块化编程方式,方便学生理解算法的结构和逻
思政教育的重要性
• 思政教育旨在培养学生的道德观念、社会责任感和职业素 养。在当今社会,具备良好思政素质的学生将更有能力应 对职业生涯中的挑战和问题。将思政教育融入专业课程, 有助于学生树立正确的价值观和人生观,提高他们的综合 素质。
思政教育与计算方法课程的结合
• 将思政教育与计算方法课程相结合,可以引导学生更好地理解算法背后的逻辑和原理,激发他们对数学和 计算机科学的兴趣。同时,通过引入实际案例和项目,学生可以在实践中培养解决问题的能力,增强团队 合作精神和创新意识。
02
计算方法课程思政元素挖 掘
数学建模与实际问题解决
总结词
培养学生解决实际问题的能力
详细描述
计算方法课程中,通过引入实际问题,让学生了解数学建模在解决实际问题中的应用。例如,通过讲 解如何解决线性方程组、最优化问题等,让学生感受到数学建模在解决实际问题中的重要性。
数值计算方法matlab程序

数值计算方法matlab程序嘿,朋友们!今天咱就来聊聊数值计算方法和那厉害的 Matlab 程序呀!你说数值计算方法像不像一个神奇的魔法盒子呀,里面装满了各种奇妙的技巧和算法。
它能帮我们解决好多好多复杂的数学问题呢!不管是求解方程,还是处理数据,它都能大显身手。
而 Matlab 程序呢,就像是这个魔法盒子的钥匙!有了它,我们就能轻松地打开这个盒子,尽情地利用里面的宝贝。
你想想看呀,当我们面对那些让人头疼的数学式子,自己手动去算得算到啥时候呀。
但有了 Matlab,那可就不一样啦!它能快速又准确地给出结果,就像有个超级聪明的小助手在帮我们干活。
比如说,我们要算一个很复杂的函数的积分。
要是自己去慢慢算,可能头发都要掉光啦!可 Matlab 呢,几下子就给我们搞定了,这多厉害呀!它还能绘制各种漂亮的图形呢!我们可以用它把那些抽象的数据变成直观的图像,一下子就能看出数据的规律和特点。
这就好比把一堆乱麻整理得清清楚楚,明明白白。
而且呀,Matlab 学起来也不难哦!只要我们用心去学,多练习练习,很快就能掌握它的基本用法啦。
到时候呀,我们就可以像个小魔法师一样,轻松地运用数值计算方法和 Matlab 程序解决各种难题。
咱再说说它的实用性吧。
在很多领域,比如工程、科学研究、金融等等,都离不开数值计算方法和 Matlab 呀。
工程师们用它来设计新产品,科学家们用它来分析实验数据,金融分析师们用它来预测市场趋势。
这可不是一般的厉害呀!你难道不想拥有这样一个强大的工具吗?让它帮你在学习和工作中更加得心应手。
总之呢,数值计算方法和 Matlab 程序就像是一对好搭档,它们能让我们的数学之旅变得轻松又有趣。
别再犹豫啦,赶紧去探索这个神奇的世界吧!相信你一定会爱上它们的!怎么样,还不赶紧去试试?。
数值计算方法matlab程序

数值计算⽅法matlab程序function [x0,k]=bisect1(fun1,a,b,ep)if nargin<4ep=1e-5;endfa=feval(fun1,a);fb=feval(fun1,b);if fa*fb>0x0=[fa,fb];k=0;return;endk=1;while abs(b-a)/2>epx=(a+b)/2;fx=feval(fun1,x);if fx*fa<0b=x;fb=fx;elsea=x;fa=fx;k=k+1;endendx0=(a+b)/2;>> fun1=inline('x^3-x-1');>> [x0,k]=bisect1(fun1,1.3,1.4,1e-4)x0 =1.3247k =7>>N=500;endif nargin<3ep=1e-5;endx=x0;x0=x+2*ep;while abs(x-x0)>ep & kx0=x;x=feval(fun1,x0);k=k+1;endx0=x;if k==Nwarning('已达最⼤迭代次数')end>> fun1=inline('(x+1)^(1/3)');>> [x0,k]=iterate1(fun1,1.5)x0 =1.3247k =7>> fun1=inline('x^3-1');>> [x0,k]=iterate1(fun1,1.5)x0 =Infk =9>>Steffesen加速迭代(简单迭代法的加速)function [x0,k]=steffesen1(fun1,x0,ep,N) if nargin<4N=500;endx=x0;x0=x+2*ep;k=0;while abs(x-x0)>ep & kx0=x;y=feval(fun1,x0);z=feval(fun1,y);x=x0-(y-x0)^2/(z-2*y+x0);k=k+1;endx0=x;if k==Nwarning('已达最⼤迭代次数')end>> fun1=inline('(x+1)^(1/3)');>> [x0,k]=steffesen1(fun1,1.5)x0 =1.3247k =3>> fun1=inline('x^3-1');>> [x0,k]=steffesen1(fun1,1.5)x0 =1.3247k =6Newton迭代function [x0,k]=Newton7(fname,dfname,x0,ep,N) if nargin<5N=500;endendx=x0;x0=x+2*ep;k=0;while abs(x-x0)>ep & kx0=x;x=x0-feval(fname,x0)/feval(dfname,x0);k=k+1;endx0=x;if k==Nwarning('已达最⼤迭代次数')end>> fname=inline('x-cos(x)');>> dfname=inline('1+sin(x)');>> [x0,k]=Newton7(fname,dfname,pi/4,1e-8) x0 =0.7391k =4⾮线性⽅程求根的Matlab函数调⽤举例:1.求多项式的根:求f(x)=x^3-x-1=0的根:>> roots([1 0 -1 -1])ans =1.3247-0.6624 + 0.5623i-0.6624 - 0.5623i2.求⼀般函数的根>> fun=inline('x*sin(x^2-x-1)','x')fun =Inline function:fun(x) = x*sin(x^2-x-1)>> fplot(fun,[-2 0.1]);grid on-1.5956>> x=fzero(fun,[-1 -0.1])x =-0.6180[x,f,h]=fsolve(fun,-1.6)x =-1.5956f =1.4909e-009h =1(h>0表⽰收敛,h<0表⽰发散,h=0表⽰已达到设定的计算函数值的最⼤次数)第三章:线性⽅程组的数值解法1. ⾼斯消元法function [A,x]=gauss3(A,b)%本算法⽤顺序⾼斯消元法求解线性⽅程组n=length(b);A=[A,b];for k=1:n-1A((k+1):n,(k+1):(n+1))=A((k+1):n,(k+1):(n+1))-A((k+1):n,k)/A(k,k)*A(k,(k+1):(n+1)); A((k+1):n,k)=zeros(n-k,1);A;endx=zeros(n,1);%上⾯为消元过程x(n)=A(n,n+1)/A(n,n);for k=n-1:-1:1x(k)=(A(k,n+1)-A(k,(k+1):n)*x((k+1:n)))/A(k,k);end%上⾯为回代过程>> A=[2 3 4;3 5 2;4 3 30];>> b=[6,5,32]'b =>> [A,x]=gauss3(A,b)A =2.00003.00004.0000 6.00000 0.5000 -4.0000 -4.00000 0 -2.0000 -4.0000x =-1382列选主元的⾼斯消元法:function [A,x]=gauss5(A,b)%本算法⽤列选主元的⾼斯消元法求解线性⽅程组n=length(b);A=[A,b];for k=1:n-1%选主元[ap,p]=max(abs(A(k:n,k)));p=p+k-1;if p>kt=A(k,:);A(k,:)=A(p,:);A(p,:)=t;end%消元A((k+1):n,(k+1):(n+1))=A((k+1):n,(k+1):(n+1))-A((k+1):n,k)/A(k,k)*A(k,(k+1):(n+1)); A((k+1):n,k)=zeros(n-k,1);end%回代x=zeros(n,1);x(n)=A(n,n+1)/A(n,n);>> A=[2 3 4;3 5 2;4 3 30]; b=[6,5,32]';>> [A,x]=gauss5(A,b)A =4.0000 3.0000 30.0000 32.00000 2.7500 -20.5000 -19.00000 0 0.1818 0.3636x =-1382三⾓分解法:Doolittle 分解function [L,U]=doolittle1(A)n=length(A);U=zeros(n);L=eye(n);U(1,:)=A(1,:);L(2:n,1)=A(2:n,1)/U(1,1);for k=2:nU(k,k:n)=A(k,k:n)-L(k,1:k-1)*U(1:k-1,k:n);L(k+1:n,k)=A(k+1:n,k)-L(k+1:n,1:k-1)*U(1:k-1,n)/U(k,k); End y=zeros(n,1);x=y;y(1)=b(1);for i=2:ny(i)=b(i)-L(i,1:i-1)*y(1:i-1);endx(n)=y(n)/U(n,n);for i=n-1:-1:1x(i)=(y(i)-U(i,i+1:n)*x(i+1:n))/U(i,i);end>> A=[1 2 3;2 5 2 ;3 1 5];b=[14 18 20]';>> [L,U,x]=doolittle1(A,b)3 -8 1U =1 2 30 1 -40 0 -36x =2.83331.33332.8333平⽅根法:function [L,x]=choesky3(A,b)n=length(A);L=zeros(n);L(:,1)=A(:,1)/sqrt(A(1,1));for k=2:nL(k,k)=A(k,k)-L(k,1:k-1)*L(k,1:k-1)';L(k,k)=sqrt(L(k,k));for i=k+1:nL(i,k)=(A(i,k)-L(i,1:k-1)*L(k,1:k-1)')/L(k,k); endendy=zeros(n,1);x=y;y(1)=b(1)/L(1,1);for i=2:ny(i)=(b(i)-L(i,1:i-1)*y(1:i-1))/L(i,i);endx(n)=y(n)/L(n,n);for i=n-1:-1:1x(i)=(y(i)-L(i+1:n,i)'*x(i+1:n))/L(i,i);end>> A=[4 -1 1;-1 4.25 2.75;1 2.75 3.5]-1.0000 4.2500 2.75001.00002.75003.5000>> b=[4 6 7.25]'b =4.00006.00007.2500[L,x]=choesky3(A,b)L =2.0000 0 0-0.5000 2.0000 00.5000 1.5000 1.0000x =111>>迭代法求⽅程组的解Jacobi迭代法:function [x,k]=jacobi2(a,b,x0,ep,N)%本算法⽤Jacobi迭代求解ax=b,⽤分量形式n=length(b); k=0;if nargin<5N=500;endif nargin<4ep=1e-5;endif nargin<3x0=zeros(n,1);y=zeros(n,1);while norm(x-x0,inf)>ep & kk=k+1;x0=x;for i=1:ny(i)=b(i);for j=1:nif j~=iy(i)=y(i)-a(i,j)*x0(j);endendif abs(a(i,i))<1e-10|k==Nwarning('a(i,i) is too small');returnendy(i)=y(i)/a(i,i);endx=y;enda=[4 3 0;3 4 -1; 0 -1 4];b=[24 30 -24]';[x,k]=jacobi2(a,b)x =3.00004.0000-5.0000k =59Gauss-seidel迭代法:function [x,k]=gaussseide2(a,b,x0,ep,N)%本算法⽤Gauss-seidel迭代求解ax=b,⽤分量形式n=length(b); k=0;if nargin<5N=500;endendif nargin<3x0=zeros(n,1);y=zeros(n,1);endx=x0;x0=x+2*ep;while norm(x-x0,inf)>ep & kk=k+1;x0=x;y=x;for i=1:nz(i)=b(i);for j=1:nif j~=iz(i)=z(i)-a(i,j)*x(j);endendif abs(a(i,i))<1e-10|k==Nwarning('a(i,i) is too small');returnendz(i)=z(i)/a(i,i);x(i)=z(i);endend[x,k]=gaussseide2(a,b)x =3.00004.0000-5.0000k =25最速下降法function [x,k]=zuisuxiajiang(A,b,x0,ep,N)N=500;endif nargin<4ep=1e-8;endif nargin<3x0=ones(n,1);endx=x0;x0=x+2*ep;r=b-A*x;d=r;k=0;while norm(x-x0,inf)>ep & kk=k+1;x0=x;lamda=(d'*d)/(d'*A*d);x=x0+lamda*d;r=b-A*x;d=r;endif k==Nwarning('已达最⼤迭代次数')end共轭梯度算法function [x,k]=gongertidufa(A,b,x0,ep,N) %本算法⽤共轭梯度算法求解正定⽅程组Ax=b,,n=length(b);if nargin<5N=500;endif nargin<4ep=1e-8;x0=x+2*ep;r=b-A*x;d=r;k=0;while norm(x-x0,inf)>ep & kx0=x;lamda=(r'*r)/(d'*A*d);r1=r;x=x0+lamda*d;r=b-A*x;beta=(r'*r)/(r1'*r1);d=r+beta*d;endif k==Nwarning('已达最⼤迭代次数') end常微分⽅程数值解function [x,y]=Euler1(fun,xspan,y0,h)%本算法⽤欧拉格式计算微分⽅程y'=f(x,y)的解。
科学计算与MATLAB语言

科学计算与MATLAB语言科学计算与MATLAB语言科学计算是指应用数学、计算机科学以及工程学等领域的理论和方法,对科学问题进行数值求解的过程。
计算机在科学计算中扮演着重要的角色,它的高效运算和储存能力,使得繁琐的计算工作得以快速完成。
而MATLAB语言则是一种常用于科学计算和工程计算的高级技术计算语言和交互式环境。
MATLAB语言的特点:1.功能强大:MATLAB拥有强大的科学计算工具箱和第三方工具箱,可以进行高效的数学计算和数据分析。
2.易于学习:MATLAB具有简单、直观的语法,使用函数式编程思想,可以快速掌握。
3.交互式调试:MATLAB具有良好的交互式环境,可以方便地查看变量值、测试代码等。
4.可移植性:MATLAB可以在多个平台上运行,包括Windows、MacOS、Linux等。
MATLAB语言在科学计算中的应用:1.数值计算和模拟MATLAB提供了许多常用的数学计算函数,包括线性代数运算、数值逼近、微积分、概率统计等,可以进行各种数值计算和模拟。
例如,使用MATLAB可以求解方程组、矩阵求逆、求解微分方程等,这些都是科学计算中常见的问题。
2.数据可视化MATLAB拥有丰富的数据可视化工具,可以帮助用户将数据转化为图表或图形,以便更好地理解和分析数据。
例如,使用MATLAB可以绘制线性图、散点图、条形图、饼图等,还可以绘制三维图形,如曲面图、散点图等,这些图表可以直观地展示数据的特征和规律。
3.图像处理MATLAB具有强大的图像处理功能,可以进行图像处理、图像分析和图像增强等操作。
例如,使用MATLAB可以对图像进行滤波、二值化、边缘检测、形态学操作等处理,还可以进行图像复原和图片合成等。
4.信号处理MATLAB可以进行信号处理,是信号处理领域中广泛使用的工具。
例如,使用MATLAB可以进行数字信号滤波、频域分析、信号采样和重构等操作,还可以进行自适应信号处理和时间序列分析等。
总之,MATLAB语言在科学计算中扮演着重要的角色,可以帮助科学家、工程师和研究人员解决各种科学计算问题,实现更高效、更准确的科学计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y -6.5
-81.0 3.0 56.5 84.0 -38.5 -66.5
Z 9
9 8 8 4 9 9
船的吃水深度为5英尺,在矩形区域(75,200)*(-50,150) 里的哪些地方船要避免进入
high=[129 7.5 140 141.5 108.5 28 88 147 185.5 22.5 195 137.5 105.5 85.5 157.5 -6.5 107.5 -81 77 3 81 56.5 162.5 84 117.5 -38.5 162 -66.5
1.某游乐场新建一个鱼塘,在钓鱼季节来临之际前将鱼放入鱼塘,鱼 塘的平均深度为6m,开始计划时每3平方米有一条鱼,并在钓鱼季节结束 时所剩下鱼是开始的25%,如果一张钓鱼证可以钓鱼20条。 试问:最多可以卖出多少钓鱼证? 鱼塘的平面图如下:(鱼塘平面图关于x轴对称)
2.某研究所为了研究氮肥(N)的施肥量与土豆产量的影响,做了10次实 验,实验数据见下表,其中ha代表公顷,t代表吨,kg代表千克。 试分析氮肥的施肥量与土豆产量之间的关系(提示:拟合函数)
分解法
1. LU分解法 2 cholesky分解法
X=A\b
对方程组Ax=b,如果A中的系数或b中元素依赖于一个或多个x, 那么此方程组成为非线性的
牛顿法 (雅可比)
x A1 x b x
用迭代求解非线性系统
x A1b
令 得到:
f 0 或
迭代过程:
step 1
f 0
比如:
直接利用求根公式在计算机进行计算,得到:
x1 54.30, x2 -0.0016
产生了误差,误差是多少?
x2 54.32 x 0.1 0
精确解:
x1 54.318158995 x2 0.0018410049576
b b 2 4ac 对x 进行分子有理化,得到 2a
高斯消元法 数值求解线性方程组的局限性
算法 向后代入法或向前代入法
高斯消去法 局部选主元的高斯消去法 全选主元的高斯消去法 局部选主元的LU分解 Cholesky 分解
计算量 n^2 浮点操作
2n^3/3 浮点操作 2n^3 /3 浮点操作 和 n^2比较 2n^3 /3 浮点操作 和 n^3比较 2n^3 /3 浮点操作 和 n^2比较 n^3 /3 浮点操作
(1+1/n)^n 的n次幂又放大了这种误差。
x.xxx xxxx xxxx xxxx + 0.000 0000 yyyy yyyy yyyy yyyy = x.xxx xxxx zzzz zzzz yyyy yyyy
Байду номын сангаас
方程求根
不动点迭代
x 1, 则迭代收敛
二分法
解线性方程组的直接法
b 4ac
2
x
2c b b 2 4ac
2951 0.4000 54.32
b
1 lim 1 e n n
n
n越大,数列越接近无理数e
当n是10的次幂时,不能使用1/2的次幂来精确表示1/n 当n很大时,由于1和1/n的有效数数位位置不匹配, 因而计算1+1/n产生的误差相对于1/n的值来说是很大
x y
y F x c1 f1 x c2 f 2 x cn f n x
y F x c1 f1 x c2 f 2 x
c1 c c2
X y
0.955 1.380 1.854 2.093 2.674 3.006 3.255 3.940 4.060 5.722 4.812 4.727 4.850 5.011 5.253 5.617 6.282 6.255
x x e 1 x 2! 3!
x
2
3
f x0 lim
f x0 x f x0
x 0
x f x0 x f x0 x
ax2 bx c 0
b b 2 4ac 求根公式:x 2a
y= -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1
二维一般分布数据的插值问题
griddata
z=griddata (x0,y0,z0,x1,y1,‘方法’)
x0,y0,z0 :已知数据点 x1,y1: 插值 方法:‘linear’(线性插值) ‘cubic’ 三次Hermite插值 ‘nearest’ 三次样条插值 ‘v4’
二维网络数据插值函数
interp2
z=interp2(x0,y0,z0,x1,y1,‘方法’) 什么叫“网格形式”?
[x,y]=meshgrid(-2:2,-1:1)
x= -2 -1 0 1 -2 -1 0 1 -2 -1 0 1 2 2 2
x0,y0,z0 :已知数据点 (网格形式) x1,y1: 插值(网络形式) 方法:默认为‘linear’(线性插值) ‘cubic’ 三次Hermite插值 ‘spline’ 三次样条插值
系数返回后存放在向量p中 S: S.R 是简略QR分解中的矩阵R S.df 拟合系数的自由度数 normr 是(y-Ac)的2 范数
输入参数 c 为ployfit函数返回的多项式的系数 xf :用于多项式求值的x值 S: ployfit 中的S 输出参数: yf :由p组成的多项式所得到的函数值 dy:估计yf不确定性的向量
3 分段多项式插值
分段线性 三阶样条插值
4 MATLAB的内置插值函数
linterp函数 linterp2函数
拟合:
拟合函数与数据点不一致
插值:
插值函数要精确地经过每个已经数据点
线性多项式插值
插值(内插)
二次多项式插值
一维插值函数
interp1
y=interp1(x,y,x1,方法)
x,y :已知数据点 x1 : 插值横坐标 方法:默认为‘linear’(线性插值) ‘nearest’ 最近点等值方式 ‘cubic’ 三次Hermite插值 ‘spline’ 三次样条插值
c ( AT A)1 A y
y F x c1 f1 x c2 f 2 x cn f n x
y c0 c1 x1 c2 x2 c p x p
x1 1 ln y1 x2 1 ln y2 xm 1 ln ym
4 8 6 8 6 8 8 9 9 8 8 4 9 9];
x=high(:,1);y=high(:,2);z=high(:,3); plot(x,y,'o') % 已经数据点xoy 面分布 figure,plot3(x,y,z,'*') % 已经数据点空间
分布
x=high(:,1);y=high(:,2);z=-high(:,3); [x1,y1]=meshgrid(75:5:200,-50:5:150); z1=griddata(x,y,z,x1,y1,'v4'); figure,surfc(z1); ii=find(z1>-5); xh=x1(ii);yh=y1(ii); figure,plot(xh,yh,'o'),axis([75 200 -50 150])
1 f1 x x
f2 x x
>> >> >> >>
x=xinvpx(:,1); y=xinvpx(:,2); A=[1./x x]; c=(A'*A)\(A'*y)
>> xf=linspace(min(x),max(x)); >> yf=c(1)./xf+c(2)*xf; >> plot(x,y,'o',xf,yf,'-')
1. 2. 3. 4. 5. 6. 7. 8. 9.
误差 方程求根 解线性方程组的直接法 解非线性方程组的迭代法 插值 拟合 数值积分与数值微分 概率论与数理统计问题的计算机求解 非传统解法
舍入误差:计算机只能存储有效数字而引起的。
数值计算的若干原则 1.避免两相近数相减去 2.避免绝对值太小的数做除数 3.要防止大数“吃掉”小数 4.简化计算步骤,提高计算效率 截断误差:由于用离散、代数的公式近似代替连续的数学 表达式时产生的。
施肥 量 kg/ha
产量 t/ha
0
34
67
101
135
202
259
336
404
471
15.18
21.36
25.72
32.79
34.03
39.45
43.15
43.46
40.83
30.75
下表给出在以码为单位的直角坐标为 X ,Y 的水面一点处以英尺计的水深Z
X 129.0
140.0 108.5 88.0 185.5 195.0 105.5
Y 7.5
141.5 28.0 147.0 22.5 137.5 85.5
Z 4
8 6 8 6 8 8
X 157.5
107.5 77.0 81.0 162.5 117.5 162.0
step 2
step 3 step 4
A A x b b x
k k k
k
k
f A x b
k k
k
step 5
判断f的范数是否足够小 k 1
x
go to
step 1
1 基本思想 2 任意阶的插值多项式