质点和质点系动力学.ppt

合集下载

理论力学-质点动力学的基本方程 PPT课件

理论力学-质点动力学的基本方程 PPT课件
i
质点的质量与质点加速度的乘积 等于作用在质点上力系的合力。
11
§9-2 质点运动微分方程
设有质点 M ,其质量为 m ,作 用其上的力有 F1,F2,…, Fn, 合力为 FR ,根据牛顿第二定律, 质点在惯性系中的运动微分方程 有以下几种形式:
12
§9-2 质点运动微分方程
) m r Fi (t , r, r
1、牛顿第一定律 2、牛顿第二定律
(惯性定律)
d mv F dt
3、牛顿第三定律 (作用与反作用定律)
10
§9-2 质点运动微分方程
牛顿第二定律 —— 质点的动量对时间的一阶导数 等于作用在质点上力系的合力。 d (m v ) Fi dt i 当质点的质量为常量时
m a Fi
2 0 n
其通解为
A sin( n t )
20
其中常数A 和 由初始条件决定。
质点运动微分方程
——应用举例
解:3. 在运动已知的情形下求杆对球 的约束力 : 现在是已知运动,要求力,属于第 一类动力学问题。 根据已经得到的单摆运动微分方程
v2 FN mgcos m l g sin 0 l
7
当研究飞行器轨道动 力学问题时,可将飞行器 视为质点。
当研究飞行器姿态动力
学时,可将其视为刚体系或 质点系。
动力学主要研究两类问题:
若已知运动求作用力,则称为动力学第一类问题;
若已知作用力求运动,则称为动力学第二类问题。 实际工程问题多以两类问题交叉形式出现。
9
§9-1 质点动力学的基本定律
g g t 2 (1 e kt ) k k

大学物理课件第二章质点动力学

大学物理课件第二章质点动力学
N sin m(a 'cos a) N cos mg m(a 'sin )

m0g N
N
a’ B mg
联立解得
(m m0 )sin m cos sin a g, a ' g 2 2 m0 m sin m0 m sin
例题2 质量为m的快艇以速率v0行驶,关闭发动 机后,受到的摩擦阻力的大小与速度的大小成 正比,比例系数为k,求关闭发动机后 (1)快艇速率随时间的变化规律; (2)快艇位置随时间的变化规律
B

A
F
B

m0g
A
解:隔离两物体,分别受力分析, aA-地对楔块A N sin m0a
N
F ( N cos m0 g ) 0
N
对物体B(aB地 aB A aA地 )
B
a
B-A
a
N sin m(aB A cos a)
A-地
mg
N cos mg m(aB A sin 0)
m0 m sin
(m m0 )sin 联立解得 a m cos sin g , aB A g 2 2 m0 m sin
B

A
F A a
解:隔离两物体,分别受力分析, 对楔块A N sin m0a N cos m0 g F 物体B相对楔块A以a’加速下滑
二、牛顿第二定律 1.动量: p mv
2.力的定义: dp d (mv ) F dt dt --牛顿第二定律(质点运动微分方程)
v c 物体质量为常量时:
dv F m ma dt
惯性演示实验
当锤子敲击在一大铁块上时,铁块下的手 不会感到有强烈的冲击;而当用一块木头取代 铁块时,木块下的手会感到明显的撞击。

11第11章质点动力学的基本方程PPT课件

11第11章质点动力学的基本方程PPT课件

略摩擦及AB质量;λ=r/l 较小时,以O为坐标原点,滑块B的运动方
程近似为
x l( 1 24 ) r [ct o (s 4 )c,试2 o 求t]s
t0和 时2,AB所受的力。
解:以滑块B为研究对象
mxaFcos
yA
O
F
FN
x
由滑块B的运动方程得
a x x r 2 (c to c s2 o t)s
§11-2 动力学的基本定律
牛顿三定律
第一定律(惯性定律) 不受力作用的质点,将保持静止或作匀速直线运动。
包括受平衡力系作用的质点
不受力作用的质点处于静止状态,或保持其原有的 速度(包括大小和方向)不变的性质称为惯性。
第一定律阐述了物体作惯性运动的条件,故称为惯 性定律。
§11-2 动力学的基本定律
从这种意义上说,动力学是理论力学中最具普遍意义 的部分,静力学、运动学则是动力学的特殊情况。
动力学的研究对象:低速、宏观物体的机械运动的普 遍规律。
动力学的力学模型
质点:质点是具有一定质量而几何形状和尺寸大小可以 忽略不计的物体。 地球绕太阳的公转——质点 刚体的平动——质点
质点系:系统内包含有限或无限个质点,这些质点都具有惯性, 并占据一定的空间;质点之间以不同的方式连接或者 附加以不同的约束。 地球的自转——质点系
刚体:质点系的一种特殊情形——不变形的质点系 其中任意两个质点间的距离保持不变。
工程实际中的动力学问题
v1
F
v2
棒球在被球棒击 打后,其速度的大 小和方向发生了变 化。如果已知这种 变化即可确定球与 棒的相互作用力。
工程实际中的动力学问题 载人飞船的交会与对接
v2 v1
B A

质点运动定律及力学中守恒定律.pptx

质点运动定律及力学中守恒定律.pptx

一、质点系的动量定理
(theorem of mometum of a system of particles
)tt11tt22 ((FF21
F12 )dt F21 )dt
m1v1 m2v2
m1v10 m2 v 20
F1
因为内力 F F 0 ,故:
12
21
F2
F12
m1
F21
m2
牛顿是英国伟大的物理学家、数学家、天文 学家。
恩格斯说: “ 牛顿由于发现了万有引力定律而创立了天文学,由于进行 光的分解而创立了科学的光学,由于创立了二项式定理和无限理论而创立了科 学的数学,由于认识了力学的本性而创立了科学的力学。”
1
第2页/共58页
牛顿在自然科学领域里作了奠基的贡献,堪称科学巨匠。 牛顿出生于英国北部林肯郡的一个农民家庭。 1661年考上剑桥大学特里尼蒂学校, 1665年毕业。 这年正赶上鼠疫,牛顿回家避疫两年。在这期间他几乎考虑了一生中所研 究的各个方面,特别是他一生中的几个重要贡献: 万有引力定律、经典力学、微积分和光学。
(物体间相互作用规律)
明确: 力的作用是相互的 (同时存在,同时消失)
T' T
m P P'
m
第9页/共58页
地球
8
二、牛顿运动定律的应用
1、牛顿运动定律的适用范围
1)牛顿运动定律仅适用于惯性系;
2)牛顿运动定律仅适用于速度比光速低得 多的物体;
3)牛顿运动定律一般仅适用于宏观物体。
4)牛顿第二定律只适用于质点或可看作质 点的物体;
质点系总动量的增量等于作用于该 系统合外力的冲量
强调:只有外力才能引起质点系总动量的改变。
质点系内力的矢量合为0,对系统总动量的改

质点动量定理.pptx

质点动量定理.pptx

1
Yc m
1 yCdm m
R
0 y边 (2x边dy边)
1 R
m
0
y边 (2
R2
y边2 dy边 )
4R 3π
dy边
yC
y边
即质心位置为
0,
4R 3π

8
第9页/共47页
(4) 多个规则形状物体组成系统的质心 多个规则形状物体组成系统的质心,可先找到每
个物体的质心,再用分立质点系质心的求法,求出公 共质心。
它们置于一质量也为 m 的槽的底部。槽置于光滑的水
平面上。释放后,球最终静止于槽的底部,问此时槽移
动了多远?
解:水平方向动量守恒,质心位置不变
xC0 xC
xC 0
2m 0 3m
mR
3mx xC 3m
解得: x 1 R 0 向右移动
3 27 第28页/共47页
例4.1.2-2 一物体在光滑水平面上以 5m/s的速度沿 x
由牛顿第二定律原始表达式:
对上式积分得:
F d(mv) dt
定义:
t t
Fdt mv(t t) mv(t) t P mv 称为质点的动量
tt
I Fdt
称为力在 t 时间内的冲量
t
质点的动量定理: 外力冲量等于质点动量的改变量
16
第17页/共47页
例4.2.1-1 一质量为 0.15 千克的棒球以 v0 40m/s 的
(3)
1
yc
mA yA mB yB mD yD mA mB mD
4mD (2) 2mD (1) mD (8) 4mD 2mD mD
2
zc
mA zA mB zB mD mA mB mD

大学物理——第2章-质点和质点系动力学

大学物理——第2章-质点和质点系动力学
2 2 2 α + a1 cos2 α
a1 = cot α 方 向: tanθ = ax g
由式④得:
ay
θ 为 a 与 x 正向夹角
FN = m(g + a1) cosα
10
例2-2 阿特伍德机 (1)如图所示滑轮和绳子的质量均不计,滑 轮与绳间的摩擦力以及滑轮与轴间的摩擦力 均不计.且 m > m2 . 求重物释放后,物体 1 的加速度和绳的张力. 解: 以地面为参考系 画受力图,选取坐标如图
ar
ar
m1 m2
a
m g FT = m a1 1 1 m2g + FT = m2a2
a1 = ar a
FT 0
a2 = ar + a
m1 m2 ar = m + m (g + a) 1 2 a1 FT = 2m1m2 (g + a) P 1 m1 + m2
a2
y FT
y
P0 2
12
8
桥梁是加速度 a
例2-1 升降机以加速度a1上升,其中光滑斜面上有一物体m沿 斜面下滑. 求:物体对地的加速度 a ? y 斜面所受正压力的大小? 解: 由于升降机对地有加速度,为一非惯性 系,故选地面为参考系,设坐标如图.
FN
a1
a2
a = a2 + a1
在 x , y 方向上有:
G
α
x
ax = a2 a1 sin α a = a cosα 1 y
m1 m2
FT 0
m g FT = m a 1 1 m2 g + FT = m2a
m1 m2 a= g m1 + m2
2m m2 1 FT = g m + m2 1

质点动力学的基本方程课件名师优质课赛课一等奖市公开课获奖课件

质点动力学的基本方程课件名师优质课赛课一等奖市公开课获奖课件

st 0
k( st x)
st
st
O
x
mg
x
x
O
mg
x
第16页
质点系运动微分方程 内力 外力 质点系内力系主矢和对任一点主矩都等于零。
设质点系由 n 个质点所组成,将每一个质点 所受力分为外力协力 ,内Fi 力协力 。 Fi 对于每一个质点
矢量形式质点系运动微分方程。
第17页
d
( mi i ) Fi
A
A
B
C
O
b
c
FN
FT
x
M
o
G
h h
第15页
例9-5卷扬机钢丝绳绕过固定滑轮后悬吊着质量m=15t重物匀速下
降,速度0=20m/min。因为滑轮发生故障,钢丝绳上端突 然被卡住。这时,因为钢丝绳含有弹性,重物将发生上下
振动。设钢丝绳悬垂段弹簧刚度系数k=5.78MN/m, 试求因 为重物振动所引发刚丝绳最大拉力。
F ma
质量—— 质点惯性量度。
Ma
F
重力加速度g——物体仅受重力作用而自由降落。
表示了质点加速度、所受力以及质量之间关系。
第4页
第三定律(作用与反作用定律) ——两质点间相互作用力,总是大小相等,方向相反, 沿着两点连线分别作用在两质点上。
第5页
第四定律(力独立作用定律) ——若质点同时受到几个力作用,则其加速度等于各 力分别作用于该质点时所作用各加速度矢量和。
d
( mi i ) Fi
Fi
( i 1,2,,n )
dt
本章小结
第18页
提议
用MATLAB求解理论力学问题。
第19页
9-24 9-26 9-29

高一物理章节内容课件 第二章质点动力学

高一物理章节内容课件 第二章质点动力学

地面的加速度是多少?(以竖直向上为
正)
解:以绳为参照系,设绳对地 的加速度为 a绳对地
T '
T a绳对地
人 T mg (ma绳对地) ma0 物 Mg T (Ma绳对地) M 0
Mg ♕ mg
▲ 注意:ห้องสมุดไป่ตู้于滑轮这种左右两边的情形, 左右两边的正方向应相反
3 a绳对地 g a0 方向:右向上,左向下
★ 作用于桌面的压力
N1 N m已落下部分g , 3gm已落下的部分
4. 质点系的动量定理 任意一段时间间隔内质点系所受合外力 的冲量等于在同一时间间隔内质点系内 所有质点的动量矢量和的增量。
5.动量守恒定律(Law of Conservation of Momentum) (1)※
度,是Vx
N mg CyVx2

N
CxVx2

m
dVx dt
(mg CyVx2 ) CxVx2

m dVx dx
dx dt
dx dt
(mg CyVx ) CxVx m
2
2 dVx dx
条件:Vx V0 90km/ h时,
Vx
N

0
mg

C yV02
解:★ 注意 摩此擦M力分r布F在整个圆盘上,因
第一步:在距轴为 r 处取质量元 dm ,它受到
的摩擦力为 df
df kdm g
方向:
df

r
第二步:求 df 产生的摩擦力矩 dM 大小、方向
dM rdf sin rkdm g 方向:沿轴
dm

m
R2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1 牛顿运动定律 §2 动量定理 动量守恒定律 §3 质心 质心运动定理 §4 角动量定理 角动量守恒定律 §5 功 §6 动能定理 §7势能 §8 功能原理 机械能守恒定律
§ 1 牛顿运动定律
注意:
一、牛顿三定律(1687年)
1、任何物体如果没有力作用在它
上面,都将保持静止或作匀速直线
运2、动的F状 态 。ddPt
求a的取值范围
ma
解:以 m作研究对象
M
a太大, 运动 趋势向上
N sin f cos ma (x) N cos f sin mg 0 (y) M
Ny fx
mg
f N 0
a太小, 运动 趋势向下
sin cos g a sin cos g
cos sin
cos sin
例3质量为m的小球从液面静止下沉,小
0
非惯性系—牛顿定律不成立
0
a a AO
AO '
相对惯性系作匀速直线运动
的参考系均为惯性系
惯性系的选择:通过观察和实验
1、地面(球)参考系
(自转加速度a ~ 3.4 cm/s2)
条件:小的时间间隔,小的空间间隔
2、地心参考系
(公转加速度a ~ 0.6 cm/s2)
3、日心参考系 (绕银河系加速度 a ~ 3 10-8 cm/s2) 绝对惯性系?
o
解:选任意位置,受力分析
d
法向: T mg sin m v2l切向: mg源自cosmatm
dv dt
v ds l d dt l d
dt dt
v
T
v
mg
v 2gl sin
gl cos d vdv
v
glcosα d vdv
0
0
T 3mg sin
例2如图,已知:M,m,, 静摩擦系数,外力
摆长 l ,质量 m)。求平衡时的位置(角)及绳中张力T
解:在惯性系(地面)a0
T sin ma0
T cos mg 0
a0
arctg a0
g
T m
a2 0
g2
mg
在非惯性系(车厢)静止
T sin ma 0 0
T cos mg 0
ma0
mg
Ty 0x
Ty 0x
本节结束
作者 李雪春
四、惯性力
S
S’ Fi
ao
需要在非惯性系研究问
题,寻找 适用的定律。
F
ma
a
AO
aaA'O'
aa00
S:
F ma
成立
ma m ao
F
mao
ma
定义
mao Fi 惯性力
有 了惯性力,非惯性系中牛顿定律在形式上成立!
结论可推广到转动参考系。
例:一匀加速运动的车厢内,观察单摆, (加速度 a0 ,
em
)
v
k
t ,
(mg F ) / k
0
t
解题步骤: 1、找对象 2、受力分析 3、列方程
如何求小球下沉 过程中任意时刻 的位置?
三 惯性系
v
AO
v
AO
'
u
y S
y′ S′
Au
Δr
Δr′
x
aAO a AO' a0
o
Δr0 o′

x
F
ma
AO
惯性系—牛顿定律成立

F maAO'
u 为常量,则 a
球受液体的浮力为F、阻力为R= -kv,
o
求小球任意时刻的速度 。
解:(1)选任意位置分析受力
R F
y
(2)列方程 m g F k m d
mg
dt
分离变量
md dt mg F k
y
0
mg
md
F
k
t
0 dt
m k
0
d(k ) mg F k
t
mg
F
(1
kt
em
)
k
mg
F
(1
k t
ma
3、作用力与反作用力大小相等、 方向相反, 作用在不同物体上
T T´
mg
1、力 改变状态 力 外力
2、瞬时性 矢量性
F , a 是同一时刻的 F —外力的矢量和
Fx ma x
3、力的作用效果
区别平衡力 4、 适用范围
宏观、低速,惯性系
二 应用牛顿定律解题
例1:已知 m l,静止下落,求下落 角时的速率及绳中张力
推动M使其加速度为a,若使 m在M上保持静止,
求a的取值范围
ma
<分析>
M
M, m 相对静止,存在静摩擦
力,其方向与运动趋势有关
N
1.a太小时, m下滑,运动 趋势向下 2. a太大时, m上滑,运动 趋势向上
M
f
mg
例2如图,已知:M,m,, 静摩擦系数,外力
推动M使其加速度为a,若使 m在M上保持静止,
相关文档
最新文档