中考数学第六章 实数(讲义及答案)及答案

合集下载

中考数学模拟题汇总《实数》练习题及答案

中考数学模拟题汇总《实数》练习题及答案

中考数学模拟题汇总《实数》练习题及答案一、选择题1.2021的倒数是()A.﹣2021 B.2021 C.D.﹣2.2021年5月19日,第三届阿里数学竞赛预选赛顺利结束,本届大赛在全球范围内吸引了约5万名数学爱好者参加.阿里数学竞赛旨在全球范围内引领开启关注数学、理解数学、欣赏数学、助力数学的科学风尚.5万用科学记数法表示为()A.0.5×105B.5×104C.50×104D.5×1053.化简(1)--的结果为()A.1-B.0 C.1 D.24.据《吉林日报》2022年5月14日报道,第一季度一汽集团销售整车70060辆,数据70060用科学记数法表示为()A.37.00610⨯B.47.00610⨯C.370.0610⨯D.40.700610⨯5. -5的相反数是( )A.15- B.15C. 5D. -56.﹣(﹣2)的值为()A.B.﹣C.2 D.﹣2 7.2021的相反数是()A.﹣2021 B.2021 C.D.﹣8.实数√2+1在数轴上的对应点可能是()A.A点B.B点C.C点D.D点9.16的平方根是()A.4 B.±4 C.8 D.±8 10.计算|﹣3|﹣(﹣2)的最后结果是()A.1 B.﹣1 C.5 D.﹣5 11.下表是几种液体在标准大气压下的沸点:液体名称 液态氧 液态氢 液态氮 液态氦 沸点/℃﹣183﹣253﹣196﹣268.9则沸点最高的液体是( ) A .液态氧 B .液态氢 C .液态氮D .液态氦12.已知a =﹣,b =,c =﹣,判断下列各式之值何者最大?( ) A .|a +b +c |B .|a +b ﹣c |C .|a ﹣b +c |D .|a ﹣b ﹣c |13.若a 、b 为正整数,且a ×b =25×32×5,则下列何者不可能为a 、b 的最大公因数?( ) A .1B .6C .8D .1214.下列实数是无理数的是( ) A .﹣2B .1C .D .215.设6a ,小数部分为b ,则(2a b 的值是( )A.6B .C .12D .二、填空题16.截至2020年末,达州市金融精准扶贫共计392.5亿元,居全省第2,惠及建档立卡贫困户8.96万人,将392.5亿元用科学记数法表示应为 元. 17.已知a ,b 满足等式a 2+6a +9+√b −13=0,则a 2021b 2020= .18.实数√16的算术平方根是 .19.中国杂交水稻之父、中国工程院院士、共和国勋章获得者袁隆平于2021年5月22日因病去世,享年91岁,袁隆平的去世是中国乃至全世界的重大损失.袁隆平一生致力于水稻杂交技术研究,为提高我国水稻亩产量做出了巨大贡献.截至2021年,“种三产四”丰产工程项目累计示范推广面积达2000多万亩,增产20多亿公斤.将20亿这个数据用科学记数法表示为 .20.如图,实数−√5,√15,m 在数轴上所对应的点分别为A ,B ,C ,点B 关于原点O 的对称点为D .若m 为整数,则m 的值为 .21.计算:= .22.要使二次根式在实数范围内有意义,x 的取值范围是 .23.写出一个无理数x ,使得14x <<,则x 可以是_________(只要写出一个满足条件的x 即可)24.若把第n个位置上的数记为x n,则称x1,x2,x3,…,x n有限个有序放置的数为一个数列A.定义数列A的“伴生数列”B是:y1,y2,y3,…,y n,其中y n是这个数列中第n个位置上的数,n=1,2,…,k且y n=并规定x0=x n,x n+1=x1.如果数列A只有四个数,且x1,x2,x3,x4依次为3,1,2,1,则其“伴生数列”B是.三、解答题25.(1)计算:(1)﹣2+(3.14﹣π)0+|3−√12|﹣4sin60°.226.计算:﹣12+(π﹣2021)0+2sin60°﹣|1−√3|.27.计算:√4+(1+π)0﹣2cos45°+|1−√2|.28.计算:(3.14﹣π)0−√27+|1−√3|+4sin60°.29.计算:0.30.计算:23×(﹣+1)÷(1﹣3).参考答案与解析一、选择题1.2021的倒数是()A.﹣2021 B.2021 C.D.﹣【分析】根据乘积是1的两个数互为倒数判断即可.【解答】解:2021的倒数是.故选:C.【点评】此题主要考查了倒数,正确掌握相关定义是解题关键.2.2021年5月19日,第三届阿里数学竞赛预选赛顺利结束,本届大赛在全球范围内吸引了约5万名数学爱好者参加.阿里数学竞赛旨在全球范围内引领开启关注数学、理解数学、欣赏数学、助力数学的科学风尚.5万用科学记数法表示为()A.0.5×105B.5×104C.50×104D.5×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:5万=50000=5×104,故选:B.【点评】此题考查科学记数法的表示方法,关键是确定a的值以及n的值.--的结果为()3.化简(1)A.1-B.0 C.1 D.2【分析】括号前面是减号时,去掉括号,括号内加号变减号,减号变加号.--=,【解答】解:(1)1故选:C.【点评】本题考查去括号,解题关键是掌握去括号法则.4.据《吉林日报》2022年5月14日报道,第一季度一汽集团销售整车70060辆,数据70060用科学记数法表示为()A.3⨯D.470.06100.700610⨯7.00610⨯C.37.00610⨯B.4a<,a不为分数形式,n为整数).【分析】把一个数表示成a与10的n次幂相乘的形式(1||10【解答】解:4=⨯,700607.006010故选:B.【点评】本题考查科学记数法,解题关键是熟练掌握用科学记数法表示较大的数.5. -5的相反数是( )A.15B.15C. 5D. -5【答案】C【解析】【分析】根据相反数的定义解答即可.【详解】-5的相反数是5故选C【点睛】本题考查了相反数,熟记相反数的定义:只有符号不同的两个数互为相反数是关键. 6.﹣(﹣2)的值为()A.B.﹣C.2 D.﹣2【分析】直接根据相反数的定义可得答案.【解答】解:﹣(﹣2)的值为2.故选:C.7.2021的相反数是()A.﹣2021 B.2021 C.D.﹣【分析】利用相反数的定义分析得出答案,只有符号不同的两个数叫做互为相反数.【解答】解:2021的相反数是:﹣2021.故选:A.8.实数√2+1在数轴上的对应点可能是()A.A点B.B点C.C点D.D点【考点】实数与数轴.【分析】先确定2<√2+1<3,再根据数轴上点的位置可得结论.【解答】解:∵1<2<4,∴1<√2<2,∴2<√2+1<3,则实数√2+1在数轴上的对应点可能是点D,故选:D.9.16的平方根是()A.4 B.±4 C.8 D.±8【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故选:B.10.计算|﹣3|﹣(﹣2)的最后结果是()A.1 B.﹣1 C.5 D.﹣5【考点】绝对值;有理数的减法.【分析】根据绝对值的性质以及有理数的减法法则计算即可;有理数减法法则:减去一个数,等于加上这个数的相反数.【解答】解:|﹣3|﹣(﹣2)=3+2=5.故选:C.11.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃﹣183 ﹣253 ﹣196 ﹣268.9 则沸点最高的液体是()A.液态氧B.液态氢C.液态氮D.液态氦【分析】根据有理数大小的比较方法解答即可.【解答】解:因为﹣268.9<﹣253<﹣196<﹣183,所以沸点最高的液体是液态氧.故选:A.12.已知a=﹣,b=,c=﹣,判断下列各式之值何者最大?()A.|a+b+c| B.|a+b﹣c| C.|a﹣b+c| D.|a﹣b﹣c|【分析】根据有理数加减混合运算及绝对值的意义解题即可.【解答】解:∵a=﹣,b=,c=﹣,a﹣b+c是最小的,∴相应的绝对值最大.故选:C.【点评】本题主要考查绝对值的定义,有理数加减混合运算的应用是解题关键.13.若a、b为正整数,且a×b=25×32×5,则下列何者不可能为a、b的最大公因数?()A.1 B.6 C.8 D.12【分析】根据a×b=25×32×5,取a、b的不同值解题即可.【解答】解:∵最大公因数为a、b都有的因数,而8=23,a×b=25×32×5,a、b不可能都含有23,∴8不可能为a、b的最大公因数.故选:C.【点评】本题考查实数中最大公因数的概念,掌握求两个数的最大公因数是解题的关键.14.下列实数是无理数的是()A.﹣2 B.1 C.D.2【分析】根据无理数的定义逐个判断即可.【解答】解:A.﹣2是有理数,不是无理数,故本选项不符合题意;B.1是有理数,不是无理数,故本选项不符合题意;C.是无理数,故本选项符合题意;D.2是有理数,不是无理数,故本选项不符合题意;故选:C.15.设6a,小数部分为b,则(2a b的值是()A.6B.C.12D.【答案】A四、填空题16.截至2020年末,达州市金融精准扶贫共计392.5亿元,居全省第2,惠及建档立卡贫困户8.96万人,将392.5亿元用科学记数法表示应为 3.925×1010元.【考点】科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可.【解答】解:392.5亿=39250000000=3.925×1010. 故答案为:3.925×1010.17.已知a ,b 满足等式a 2+6a +9+√b −13=0,则a 2021b 2020= ﹣3 .【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】利用非负数的性质以及二次根式的性质得出a ,b 的值,进而得出答案.【解答】解:∵a 2+6a +9+√b −13=0,∴(a +3)2+√b −13=0,∴a +3=0,b −13=0, 解得:a =﹣3,b =13,则a 2021b 2020=(﹣3)2021•(13)2020=﹣3×(﹣3×13)2020=﹣3. 故答案为:﹣3.18.实数√16的算术平方根是 2 . 【考点】算术平方根.【分析】一个正数的正的平方根叫它的算术平方根,由此即可求出结果. 【解答】解:√16=4, 4的算术平方根是2,所以实数√16的算术平方根是2. 故答案为:2.19.中国杂交水稻之父、中国工程院院士、共和国勋章获得者袁隆平于2021年5月22日因病去世,享年91岁,袁隆平的去世是中国乃至全世界的重大损失.袁隆平一生致力于水稻杂交技术研究,为提高我国水稻亩产量做出了巨大贡献.截至2021年,“种三产四”丰产工程项目累计示范推广面积达2000多万亩,增产20多亿公斤.将20亿这个数据用科学记数法表示为 2×109 .【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:20亿=2000000000=2×109.故答案为:2×109.20.如图,实数−√5,√15,m在数轴上所对应的点分别为A,B,C,点B关于原点O的对称点为D.若m为整数,则m的值为﹣3.【考点】实数与数轴.【分析】先求出点D表示的数,然后确定点C的取值范围,根据m为整数,即可得到m的值.【解答】解:∵点B表示的数是√15,点B关于原点O的对称点是点D,∴点D表示的数是−√15,∵点C在点A、D之间,∴−√15<m<−√5,∵﹣4<−√15<−3,﹣3<−√5<−2,∴−√15<−3<−√5,∵m为整数,∴m的值为﹣3.答案为:﹣3.21.计算:=.【分析】根据二次根式的基本性质进行解答即可.【解答】解:原式==5.故答案为:5.22.要使二次根式在实数范围内有意义,x的取值范围是x≥﹣1.【分析】根据二次根式的性质可求出x的取值范围.【解答】解:若二次根式在实数范围内有意义,则:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】主要考查了二次根式的意义和性质:概念:式子(a ≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.写出一个无理数x ,使得14x <<,则x 可以是_________(只要写出一个满足条件的x 即可)【答案】,1.010010001π⋅⋅⋅等) 【解析】【分析】从无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数, 【详解】根据无理数的定义写一个无理数,满足14x <<即可; 所以可以写:①开方开不尽的数:②无限不循环小数,1.010010001……, ③含有π的数,2π等.只要写出一个满足条件的x 即可.,1.010010001π……等)【点睛】本题考查了无理数的定义,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.24.若把第n 个位置上的数记为x n ,则称x 1,x 2,x 3,…,x n 有限个有序放置的数为一个数列A .定义数列A 的“伴生数列”B 是:y 1,y 2,y 3,…,y n ,其中y n 是这个数列中第n 个位置上的数,n =1,2,…,k 且y n =并规定x 0=x n ,x n +1=x 1.如果数列A 只有四个数,且x 1,x 2,x 3,x 4依次为3,1,2,1,则其“伴生数列”B 是 0,1,0,1 .【分析】根据“伴生数列”的定义依次取n =1,2,3,4,求出对应的y n 即可. 【解答】解:当n =1时,x 0=x 4=1=x 2, ∴y 1=0,当n =2时,x 1≠x 3, ∴y 2=1,当n =3时,x 2=x 4, ∴y 3=0,当n =4时,x 3≠x 5=x 1, ∴y 4=1,∴“伴生数列”B 是:0,1,0,1,故答案为0,1,0,1.五、解答题25.(1)计算:(1)﹣2+(3.14﹣π)0+|3−√12|﹣4sin60°.2【分析】(1)根据负整数指数幂的意义、零指数幂的意义,特殊角的锐角三角函数的值以及绝对值的性质即可求出答案;【解答】解:原式=4+1+√12−3﹣4×√32=5+2√3−3﹣2√3=2.26.计算:﹣12+(π﹣2021)0+2sin60°﹣|1−√3|.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.−(√3−1)【解答】解:原式=﹣1+1+2×√32=﹣1+1+√3−√3+1=1.27.(1)计算:√4+(1+π)0﹣2cos45°+|1−√2|.+√2−1【解答】解:(1)原式=2+1﹣2×√22=2+1−√2+√2−1=2;28.计算:(3.14﹣π)0−√27+|1−√3|+4sin60°.【考点】绝对值;算术平方根;实数的运算;零指数幂;特殊角的三角函数值.【分析】根据零指数幂,二次根式的运算法则,去绝对值,特殊角的三角函数值化简各项,再计算加减法.【解答】解:原式=1−3√3+√3−1+4×√32=1−3√3+√3−1+2√3=0.29.计算:0.【分析】根据乘法的定义、零指数幂以及sin60°=,然后进行乘法运算和去绝对值运算,再合并即可.【解答】解:原式=﹣1﹣2×+1=﹣1﹣+1=0.【点评】本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,最后进行加减运算.也考查了零指数幂、以及特殊角的三角函数值.30.计算:23×(﹣+1)÷(1﹣3).【分析】原式先计算乘方运算,再计算括号内的加减运算,最后算乘除运算即可求出值.【解答】解:原式=8×÷(﹣2)=4÷(﹣2)=﹣2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。

中考数学第六章 实数(讲义及答案)含答案

中考数学第六章 实数(讲义及答案)含答案

中考数学第六章 实数(讲义及答案)含答案一、选择题 1.如图将1、2、3、6按下列方式排列.若规定(,)m n 表示第m 排从左向右第n 个数,则(5,4)与(15,8)表示的两数之积是( ).A .1B .2C .3D .62.已知x 、y 为实数,且34x ++(y ﹣3)2=0.若axy ﹣3x =y ,则实数a 的值是( )A .14B .﹣14C .74D .﹣743.下列选项中的计算,不正确的是( )A .42=±B .382-=-C .93±=±D .164= 4.下列数中π、227,﹣3,3343,3.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数的个数是( ) A .1个B .2个C .3个D .4个 5.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±9 6.下列计算正确的是( ) A .21155⎛⎫-= ⎪⎝⎭ B .()239-= C .42=± D .()515-=- 7.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个8.如图,数轴上的点E ,F ,M ,N 表示的实数分别为﹣2,2,x ,y ,下列四个式子中结果一定为负数是( )A .x +yB .2+yC .x ﹣2D .2+x 9.在实数:3.14159364,1.010010001....,4.21••,π,227中,无理数有( )A .1个B .2个C .3个D .4个10.比较552、443、334的大小( ) A .554433234<< B .334455432<< C .553344243<<D .443355342<< 二、填空题11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示).12.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___13.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.14.已知:103<157464<1003;43=64;53<157<63,则 315746454=,请根据上面的材料可得359319=_________.15.实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.16.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+=_____. 17.3是______的立方根;81的平方根是________32=__________.18.将2π93-272这三个数按从小到大的顺序用“<”连接________. 19.34330035.12=30.3512x =-,则x =_____________.20.如果36a =b 7的整数部分,那么ab =_______.三、解答题21.我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:(1)线段OA 的长度是多少?(要求写出求解过程)(2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式体现了 的数学思想方法.(将下列符合的选项序号填在横线上)A .数形结合B .代入C .换元D .归纳22.已知32x y --的算术平方根是3,26x y +-的立方根是2,37的整数部分是z ,求42x y z ++的平方根.23.定义:若两个有理数a ,b 满足a +b =ab ,则称a ,b 互为特征数.(1)3与 互为特征数;(2)正整数n (n >1)的特征数为 ;(用含n 的式子表示)(3)若m ,n 互为特征数,且m +mn =-2,n +mn =3,求m +n 的值.24.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).25.已知A 、B 在数轴上对应的数分别用a 、b 表示,且2110|2|02ab a ⎛⎫++-= ⎪⎝⎭,点P 是数轴上的一个动点.(1)求出A 、B 之间的距离;(2)若P 到点A 和点B 的距离相等,求出此时点P 所对应的数;(3)数轴上一点C 距A 点36c 满足||ac ac =-.当P 点满足2PB PC =时,求P 点对应的数.26.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= .(2)计算:2320191333...3+++++(3)计算:101102103200555...5++++【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先从排列图中可知:第1排有1个数,第2排有2个数,第3排有3个数,然后抽象出第5排第4个数,第15排第8个数,然后可以得到答案.【详解】解:(5,4)表示第5排从左往右第4,(15,8) 表示第15排第8个数,从上面排列图中可以看出奇数行1排在最中间,所以第15行最中间是1,且为第8个,所以1和.故本题选B .【点睛】本题是规律题的呈现,考查学生的从具体情境中抽象出一般规律,考查学生观察与归纳能力.2.A解析:A【分析】()230y -=可得:34030x y +=⎧⎨-=⎩,据此求出x 、y 的值,然后把求出的x 、y 的值代入axy-3x=y ,求出实数a 的值即可.【详解】()230y -=,∴34030xy+=⎧⎨-=⎩,解得433xy⎧=-⎪⎨⎪=⎩,∵axy-3x=y,∴a(﹣43)·3-3×(﹣43)=3,∴﹣4a+4=3,解得a=14.故选:A.【点睛】本题考查了算数平方根平方数的非负性,利用非负数性质求x、y的值是解决问题的关键.3.A解析:A【分析】根据平方根与立方根的意义判断即可.【详解】解:2=2=±错误,本选项符合题意;2=-,本选项不符合题意;C. 3=±,本选项不符合题意;D. 4=,本选项不符合题意.故选:A.【点睛】本题考查了平方根与立方根,正确理解平方根与立方根的意义是解题的关键.4.C解析:C【解析】【分析】根据无理数的概念解答即可.【详解】解:在π、2273.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数是: π3.2121121112…(每两个2之间多一个1),共3个,故选C.【点睛】本题考查了无理数的定义.注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.是有理数中的整数.5.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C .【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键. 6.B解析:B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-= ⎪⎝⎭,所以,选项A 运算错误,不符合题意; B.()239-=,正确,符合题意;2=,所以,选项C 运算错误,不符合题意;D.()511-=-,所以,选项D 运算错误,不符合题意;故选:B .【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则. 7.A解析:A【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;0.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.8.C解析:C【分析】根据点E,F,M,N表示的实数的位置,计算个代数式即可得到结论.【详解】解:∵﹣2<0<x<2<y,∴x+y>0,2+y>0,x﹣2<0,2+x>0,故选:C.【点睛】本题考查了实数,以及实数与数轴,弄清题意是解本题的关键.9.B解析:B【分析】有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【详解】解:因为3.14159,227是有限小数,4.21是无限循环小数,所以它们都是有理数;=4,4是有理数;因为1.010010001…,π=3.14159265…,所以1.010010001…,π,都是无理数.综上,可得无理数有2个:1.010010001…,π.故选:B.【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.10.C解析:C【分析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C .【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.二、填空题11..【解析】【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.“ 解析:12++n n . 【解析】【详解】 根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =12++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.12.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,÷=……,即1中第三个数∵1994493故答案为.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.13.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=1000000,就能确定是2位数.由解析:39【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=10000002位数.由59319的个位上的数是99,如果划去59319后面的三位319得到数59,而33=27、43=64339.故答案为:39【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.15.【解析】由数轴得,a+b<0,b-a>0,|a+b|+=-a-b+b-a=-2a.故答案为-2a.点睛:根据,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小解析:2a-【解析】由数轴得,a+b<0,b-a>0,=-a-b+b-a=-2a.故答案为-2a.点睛:根据,0,0a aaa a≥⎧=⎨-<⎩,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简. 16.【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴=﹣1+0+1=0.解析:【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.17.±9 2-【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;解:∵ ,∴3是27的立方根;∵ ,∴81的平方根是 ;∵ ,∴;故答案为:2解析:【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵3327= ,∴3是27的立方根;∵2(9)81±= ,∴81的平方根是9± ;2< ,22=故答案为:27,9±,;【点睛】本题主要立方根、平方根的定义以及去绝对值法则,掌握一个数的平方根有两个,它们互为相反数是解题的关键.18.<<【分析】先根据数的开方法则计算出和的值,再比较各数大小即可.【详解】==,==,∵>3>2,∴<<,即<<,故答案为:<<【点睛】本题考查实数的大小比较,正确化简得出和的值是解解析:3<2π先根据数的开方法则计算出3的值,再比较各数大小即可. 【详解】33=22=32-=32, ∵π>3>2,∴22<32<2π<2π,<2π 【点睛】的值是解题关键. 19.-0.0433【分析】 三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x 的值.【详解】从35.12变为-0.3512,缩小了100倍,且添解析:-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x 的值.【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”故答案为:-0.0433【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.20.12【分析】先根据算术平方根的定义求出a 的值,再根据无理数的估算得出b 的值,然后计算有理数的乘法即可.,即的整数部分是2,即则故答案为:.【点睛】本题考查了算术平方根的解析:12【分析】先根据算术平方根的定义求出a的值,再根据无理数的估算得出b的值,然后计算有理数的乘法即可.【详解】a==6<<479<<<<23∴的整数部分是2,即2b=ab=⨯=则6212故答案为:12.【点睛】本题考查了算术平方根的定义、无理数的估算,根据无理数的估算方法得出b的值是解题关键.三、解答题21.;(2)数轴上的点和实数是一一对应关系;(3)A.【分析】(1)首先根据勾股定理求出线段OB的长度,然后结合数轴的知识即可求解;(2)根据数轴上的点与实数的对应关系即可求解;(3)本题利用实数与数轴的对应关系即可解答.【详解】解:(1)OB2=12+12=2,∴OB,∴OA=(2)数轴上的点和实数是一一对应关系(3) 这种研究和解决问题的方式,体现的数学思想方法是数形结合.故选A.【点睛】本题主要考查了实数与数轴之间的关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.22.6±【分析】根据算术平方根、立方根的定义列出二元一次方程组,之后对方程组进行求解,得到x 和y 的值,再根据题意得到z 的值,即可求解本题.【详解】解:由题意可得3x 29268y x y --=⎧⎨+-=⎩, 解得54x y =⎧⎨=⎩,36<<67∴<<, 6z ∴=,424542636∴++=⨯++⨯=x y z ,故42x y z ++的平方根是6±.【点睛】本题考查了平方根、立方根、算术平方根,解决本题的关键是熟记平方根、立方根、算术平方根的定义. 23.(1)32;(2)1n n -;(3)13 【分析】(1)设3的特征数为b ,根据特征数的定义列式求解即可;(2)设n 的特征数为m ,根据特征数的定义列式求解即可;(3)根据m ,n 互为特征数得出m +n =mn ,结合已知的两个等式进行求解即可.【详解】解:(1)设3的特征数为b ,由题意知,33b b +=,解得,32b =, ∴3与32互为特征数, 故答案为:32 (2)设n 的特征数为m ,由题意知,n +m =nm ,解得,1n m n =-, ∴正整数n (n >1)的特征数为1n n -, 故答案为:1n n - (3)∵ m ,n 互为特征数,∴ m +n =mn ,又m +mn =-2 ①,n +mn =3 ②,①+②得,m +n +2mn =1,∴ m +n +2(m +n )=1,∴ m +n =13. 【点睛】本题考查了新定义的运算,正确理解特征数的定义是解题的关键.24.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP 与△ODQ 的面积相等;(3)2∠GOA+∠ACE=∠OHC ,理由见解析.【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t ,OP=8-2t ,根据△ODP 与△ODQ 的面积相等列方程求解即可;(3)由∠AOC=90°,y 轴平分∠GOD 证得OG ∥AC ,过点H 作HF ∥OG 交x 轴于F ,得到∠FHC=∠ACE ,∠FHO=∠GOD ,从而∠GOD+∠ACE=∠FHO+∠FHC ,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b -=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A (0,6),C (8,0);故答案为:(0,6),(8,0);(2)由(1)知,A (0,6),C (8,0),∴OA=6,OB=8,由运动知,OQ=t ,PC=2t ,∴OP=8-2t ,∵D (4,3), ∴114222ODQ D S OQ x t t =⨯=⨯=△, 1182312322ODP D S OP y t t =⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.25.(1)12;(2)-4;(3)226--或1466-【分析】(1)根据平方与绝对值的和为0,可得平方与绝对值同时为0,可得a、b的值,根据两点间的距离,可得答案;(2)根据A和B所对应的数,可得AB中点所表示的数,即为点P所表示的数;(3)根据题意可以得到c的值,然后利用分类讨论的方法即可求得点P对应的数.【详解】解:(1)∵2110|2|0 2ab a⎛⎫++-=⎪⎝⎭,∴11002ab +=,20a -=, 解得:a=2,b=-10, ∴A 、B 之间的距离为:2-(-10)=12;(2)∵P 到A 和B 的距离相等,∴此时点P 所对应的数为:()21042+-=-;(3)∵|ac|=-ac ,a=2>0,∴c <0,又|AC|=∴c=2-BC=12-∵2PB PC =,①P 在BC 之间时,点P 表示(2101223-+⨯-=--②P 在C 点右边时,点P 表示(1021214-+⨯-=-∴点P 表示的数为:2--或14-【点睛】本题主要考查数轴上的点与绝对值的关系和平方与绝对值的非负性,另外此题有一个易错点,第(3)题中,要注意距离与数轴上的点的区别.26.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -=即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (5)4-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.。

初一数学实数的运算试题答案及解析

初一数学实数的运算试题答案及解析

初一数学实数的运算试题答案及解析1.计算:= .【答案】﹣14【解析】先把二次根式、三次根式化简,再作乘法运算.解:原式=10×(﹣2)×0.7=﹣14.故答案为:﹣14.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、三次根式的运算.2.不用计算器,计算:= .【答案】5【解析】根据立方运算法则,分别相乘,直接得出答案.解:()3=××=5.故答案为:5.点评:此题主要考查了实数的运算,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式乘法运算.3.有一个数值转换器,原理如下:当输入x为4时,输出的y的值是.【答案】y=【解析】本题有x=4很容易解出它的算术平方根,在判断它的算术平方根是什么数,最后即可求出y的值.解:∵x=4时,它的算术平方根是2又∵2是有理数∴取2的算术平方根是∴y=点评:本题主要考查了算术平方根的计算和有理数、无理数的概念,解题时要掌握数的转换方法.4.= ;= .【答案】5,2【解析】根据幂的乘方法则进行计算即可.解:()2==5;()2==2.故答案为:5,2.点评:本题考查的是实数的运算,熟知幂的乘方法则是解法此题的关键.5.在下面算式的两个方框内,分别填入两个绝对值不相等的无理数,使得它们的积恰好为有理数,并写出它们的积.【答案】()()=2【解析】只要满足两个绝对值不相等的无理数,使得它们的积恰好为有理数即可,可以任意列举出两个不相等的无理数,如:和,()(+1)=3﹣1=2满足题意.解:和+1是两个绝对值不相等无理数,那么,()()=3﹣1=2,即:这两个数满足是两个绝对值不相等的无理数,且它们的积恰好为有理数,所以空白处应填:()()=2,答案不唯一.点评:本题主要考查写出两个绝对值不相等的无理数,使得它们的积恰好为有理数的能力,可以任意取两个绝对值不相等的无理数,使它们相乘,如满足乘积是有理数则可取,如不满足舍去即可,本题属于开放性类型.6.长方形的长为厘米,面积为平方厘米,则长方形的宽约为厘米.(,结果保留三个有效数字)【答案】5.66【解析】根据长方形面积公式,代入即可得出答案.解:长方形的面积=长×宽,∴长方形的宽为=4≈5.66.故答案为5.66.点评:本题主要考查了长方形面积公式,比较简单.7.是20a+2b的平方根,是﹣2a﹣b的立方根,则+= .【答案】6【解析】根据平方根与立方根的定义得到,解得,则原式=+,然后进行开方运算,再进行减法运算.解:根据题意得,解得,则原式=+=8﹣2=6.故答案为6.点评:本题考查了实数的运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.也考查了平方根与立方根.8.计算:(1)(2).【答案】(1)﹣2(2)0【解析】(1)先算乘方、开方和除法化为乘法得到原式=﹣16﹣6+4×(﹣)×(﹣2),再进行乘法运算,然后进行加减运算;(2)利用乘法的分配律进行计算.解:(1)原式=﹣16﹣6+4×(﹣)×(﹣2)=﹣16﹣6+20=﹣22+20=﹣2;(2)原式=﹣×(﹣18)+×(﹣18)﹣×(﹣18)=14﹣15+1=0.点评:本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.9.计算:.【答案】2【解析】本题涉及立方根、乘方、二次根式及绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解:=1﹣4+3+2=2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、立方根、二次根式、绝对值等考点的运算.10.在算式□的□中填上运算符号,使结果最大,这个运算符号是()A.加号B.减号C.乘号D.除号【答案】D【解析】将加减乘除符号放入计算,比较即可得到结果.解:+=,﹣=0,×=,÷=1,则这个运算符号是除号.故选D.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.已知:≈5.196,计算:,保留3个有效数字,运算的结果是()A.1.73B.1.732C.1.74D.1.733【答案】A【解析】首先化简得3,再计算的值,可得,又由≈1.732,即可求得结果.解:=×3=≈1.732≈1.73.故选A.点评:此题考查了实数的计算.注意首先将二次根式化为最简二次根式,再进行计算.12.计算:的结果为()A.7B.﹣3C.±7D.3【答案】A【解析】先根据算术平方根的意义求出的值,再根据立方根的定义求出的值,然后再相减.解:原式=5﹣(﹣2)=5+2=7.故选A.点评:本题考查了实数的运算,熟悉算术平方根的意义和立方根的意义是解题的关键,解答此题时要注意要注意,负数的立方根是负数.13.若|a|=5,=3,且a和b均为正数,则a+b的值为()A.8B.﹣2C.2D.﹣8【答案】A【解析】利用绝对值以及二次根式的化简公式求出a与b的值,即可求出a+b的值.解:根据题意得:a=±5,b=±3,∵a和b都为正数,∴a=5,b=3,则a+b=5+3=8.故选A.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.的平方根与的差等于()A.6B.6或﹣12C.﹣6或12D.0或﹣6【答案】D【解析】首先利用二次根式的性质化简,然后利用实数的运算法则计算即可求解.解:∵=9,∴的平方根为±3,而=3,∴的平方根与的差等于0或﹣6.故选D.点评:此题主要考查了实数的运算,同时也利用了二次根式的性质及平方根的定义,是比较容易出错的计算题.15.若实数x,y,使得这四个数中的三个数相等,则|y|﹣|x|的值等于()A.B.0C.D.【答案】C【解析】此题可以先根据分母不为0确定x+y与x﹣y不相等,再分类讨论即可.解:因为有意义,所以y不为0,故x+y和x﹣y不等(1)x+y=xy=解得y=﹣1,x=,(2)x﹣y=xy=解得y=﹣1,x=﹣,所以|y|﹣|x|=1﹣=.故选C.点评:解答本题的关键是确定x+y与x﹣y不相等,再进行分类讨论.16. m,n为实数,且,则mn=()A.B.C.D.不能确定【答案】B【解析】先根据非负数的性质求出m、n的值,再计算出mn的值即可.解:由题意得,m+3=0,n﹣=0,解得m=﹣3,n=,故mn=﹣3.故选B.点评:本题考查的是非负数的性质,根据题意列出关于m、n的方程,求出m、n的值是解答此题的关键.17.对于正实数x和y,定义,那么()A.“*”符合交换律,但不符合结合律B.“*”符合结合律,但不符合交换律C.“*”既不符合交换律,也不符合结合律D.“*”符合交换律和结合律【答案】D【解析】根据实数混合运算的法则进行计算验证即可.解:∵x*y=,y*x==∴x*y=y*x,故*符合交换律;∵x*y*z=*z==,x*(y*z)=x*()==∴x*y*z=x*(y*z),*故满足结合律.∴“*”既符合交换律,也符合结合律.故选D.点评:本题考查的是实数的运算,熟知交换律与结合律是解答此题的关键.18.如果,则(xy)3等于()A.3B.﹣3C.1D.﹣1【答案】D【解析】首先根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解:由题意得:,解得,∴(xy)3=(﹣×)3=(﹣1)3=﹣1.故选D.点评:本题考查了实数的运算和非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.下列运算中,错误的是()A.B.C.D.=3.14﹣π【答案】D【解析】A、根据二次根式的乘法法则即可判定;B、根据二次根式的除法法则即可判定;C、根据二次根式的加减法则计算即可判定;D、根据二次根式的性质即可判定.解:A、×==,故选项正确;B、==,故选项正确;C、2+3=5,故选项正确;D、=π﹣3.14,故选项错误.故选D.点评:此题主要考查了实数的运算,解题时根据二次根式的加减乘除的运算法则计算,要注意,二次根式的结果为非负数.20.下列各数与相乘,结果为有理数的是()A.B.C.D.【答案】A【解析】分别计算(+2)(2﹣)、(2﹣)(2﹣)、(﹣2+)(2﹣)、(2﹣),然后由计算的结果进行判断.解:A、(+2)(2﹣)=4﹣3=1,结果为有理,所以A选项正确;B、(2﹣)(2﹣)=7﹣4,结果为无理数的,所以B选项不正确;C、(﹣2+)(2﹣)=﹣7+4,结果为无理数的,所以,C选项不正确;D、(2﹣)=2﹣3,结果为无理数的,所以,D选项不正确.故选A.点评:本题考查了实数的运算:先算乘方或开方,再进行乘除运算,最后进行实数的加减运算;有括号或绝对值的,先计算括号或去绝对值.。

中考数学专题训练:实数的运算、化简求值(含答案)

中考数学专题训练:实数的运算、化简求值(含答案)

中考数学专题训练:实数的运算、化简求值1. (2012黑龙江)计算:3202)1(2)330cos (-+--︒-π.【答案】解:原式=211111==0444--+-。

2. (2012内蒙古)20sin 30(2)-︒+--; 【答案】解:原式=1111=1424-+--。

3. (2012青海)计算:)2152cos60++2π-⎛⎫-- ⎪⎝⎭【答案】解:原式=2152+2+1=92-⨯。

4. (2012甘肃)计算:02112sin 30( 3.14)(2π---︒+-+ 【答案】解:原式=11214=52-⨯++。

5. (2012广西)计算:0201264sin 45(1)-++-. 【答案】解:原式64172=+⨯+=6. (2012广西)计算:|-3|+2-1+12(π-3)0-tan60°;【答案】解:原式=3+12+12×1-3=1。

7. (2012广西)计算:4cos45°+(π+3)0116-⎛⎫⎪⎝⎭。

【答案】解:原式=4×2+1-6 =-+1+6 =7。

8. (2012山东)计算:(1013tan 60+13-⎛⎫-- ⎪⎝⎭【答案】解:原式=32--- 9. (2012山东)计算:2012022(1)(3)(2)π--+-⨯---【答案】解:原式=11321144+⨯-=- 10. (2012贵州)计算:)()2201212sin 30+13π-⎛⎫---- ⎪⎝⎭【答案】解:原式=129+12+1=102-⨯---。

11. (2012贵州)计算:)20111+2sin 602-⎛⎫---⎪⎝⎭【答案】解:原式=4+11+2- 12. (2012贵州)计算:0222214sin 60+3π⎛⎫--- ⎪⎝⎭.【答案】解:原式=4143131=4---------。

13. (2012四川)计算:()()120121312π-⎛⎫-⨯- ⎪⎝⎭14. (2012四川)计算:161)1(130sin )2(2+-+-+--o o π. 【答案】解:原式=11111=2424+-++。

中考数学第1讲 实数(含答案)

中考数学第1讲 实数(含答案)

第1讲 实数【回顾与思考】(1)实数的有关概念{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数①实数: 和 统称实数, 和数轴上的点是一一对应....的。

(即:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

) ②有理数: 和 的统称.任何一个有绿树都可以写成分数pq的形式,其中p 和q 是整数且最大公约数是1。

③无理数:无限 叫无理数,常见的有三类:① ;② ;③ ;④对实数进行分类,应先 ,后 。

(2)数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可)。

和数轴上的点是一一对应....的。

(即:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

)(3)相反数: 实数的相反数是一对数(只有 的两个数,叫做互为相反数,零的相反数是 ). 从数轴上看,互为相反数的两个数所对应的点关于 对称.(4)绝对值①从数轴上看,一个数的绝对值就是 的距离。

⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a②一个正数的绝对值是 ,一个负数的绝对值是 ,零的绝对值是 。

(5)倒数: 实数a(a ≠0)的倒数是 (乘积为1的两个数,叫做互为倒数);零 倒数.(6)平方根:如果 ,即 ,那么这个数x 叫做做a 的平方根(也叫二次方根)。

一个正数有 平方根,且互为相反数;0的平方根是 ;负数 平方根。

(7)算术平方根:如果 ,即 ,那么这个正数x 叫做a 的算.术.平方根,即x a =;特别规定0的算术平方根是 。

即00=。

(8)立方根:如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 叫做a 的立方根(也叫三次方根),一个正数的立方根是 ;0的立方根是 ;负数的立方根是 。

中考数学第六章 实数知识点及练习题含答案

中考数学第六章 实数知识点及练习题含答案

中考数学第六章 实数知识点及练习题含答案一、选择题1.已知: 表示不超过的最大整数,例:,令关于的函数 (是正整数),例:=1,则下列结论错误..的是( ) A .B .C .D .或1 2.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( )A .1B .﹣1C .5D .﹣53.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A =|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m 、n ,再取这两个数的相反数,那么,所有A 的和为( )A .4mB .4m +4nC .4nD .4m ﹣4n4.已知无理数7-2,估计它的值( )A .小于1B .大于1C .等于1D .小于0 5.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2019次后,则数2019对应的点为( )A .点AB .点BC .点CD .这题我真的不会6.下列说法正确的是( )A .14是0.5的平方根 B .正数有两个平方根,且这两个平方根之和等于0 C .27的平方根是7D .负数有一个平方根 7.下列命题是假命题的是( )A .0的平方根是0B .无限小数都是无理数C .算术平方根最小的数是0D .最大的负整数是﹣1 8.在实数227-911π38中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个9.下列运算正确的是( ) A 42=± B 222()-=- C 382-=-D .|2|2--= 10.7和6- )A B C + D .-二、填空题11.若()2320m n ++-=,则m n 的值为 ____.12.观察下列各式:5=;11=;19=;a =,则a =_____.13.一个正数的平方根是21x -和2x -,则x 的值为_______.14.观察下列算式:16+4=20;40+4=44;…__________15.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.16.一个数的立方等于它本身,这个数是__.17.__________0.5.(填“>”“<”或“=”)18________.19.下列说法: -10=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________20.如果a =b 的整数部分,那么ab =_______.三、解答题21.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f =根据以上定义,完成下列问题:(1)填空:①下列两位数:10,21,33中,“奇异数”有 .②计算:()15f = .()10f m n += .(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b(3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值.22.对于实数a ,我们规定:用符号为a 的根整数,例如:3=,=3.(1)仿照以上方法计算:=______;=_____.(2)若1=,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____.23.对于有理数a ,b ,定义运算:a ⊕b =ab -2a -2b +1.(1)计算5⊕4的值;(2)计算[(-2)⊕6]⊕3的值;(3)定义的新运算“⊕”交换律是否还成立?请写出你的探究过程.24.定义☆运算:观察下列运算:两数进行☆运算时,同号 ,异号 .特别地,0和任何数进行☆运算,或任何数和0进行☆运算, .(2)计算:(﹣11)☆ [0☆(﹣12)]= .(3)若2×(﹣2☆a )﹣1=8,求a 的值.25.已知32x y --的算术平方根是3,26x y +-的立方根是的整数部分是z ,求42x y z ++的平方根.26.是无理数,而无理数是无限不循环小数,﹣1的小数部的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为2<3的整数部分为2﹣2) 请解答:(1)10的整数部分是,小数部分是;(2)如果5的小数部分为a,13的整数部分为b,求a+b﹣5的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据新定义的运算逐项进行计算即可做出判断.【详解】A. ==0-0=0,故A选项正确,不符合题意;B. ===,=,所以,故B选项正确,不符合题意;C. =,= ,当k=3时,==0,= =1,此时,故C选项错误,符合题意;D.设n为正整数,当k=4n时,==n-n=0,当k=4n+1时,==n-n=0,当k=4n+2时,==n-n=0,当k=4n+3时,==n+1-n=1,所以或1,故D选项正确,不符合题意,故选C.【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.2.B【分析】根据a ★b=a 2-ab 可得(x+2)★(x -3)=(x+2)2-(x+2)(x -3),进而可得方程:(x+2)2-(x+2)(x -3)=5,再解方程即可.【详解】解:由题意得:(x+2)2-(x+2)(x -3)=5,x 2+4x+4-(x 2-x -6)=5,x 2+4x+4-x 2+x+6=5,5x=-5,解得:x=-1,故选:B .【点睛】此题主要考查了实数运算,以及解方程,关键是正确理解所给条件a ★b=a 2-ab 所表示的意义.3.C解析:C【分析】根据题意得到m ,n 的相反数,分成三种情况⑴m ,n ;-m ,-n ⑵m ,-m ;n ,-n ⑶m ,-n ;n ,-m 分别计算,最后相加即可.【详解】解:依题意,m ,n (m <n )的相反数为﹣m ,﹣n ,则有如下情况:m ,n 为一组,﹣m ,﹣n 为一组,有A =|m +n |+|(﹣m )+(﹣n )|=2m +2nm ,﹣m 为一组,n ,﹣n 为一组,有A =|m +(﹣m )|+|n +(﹣n )|=0m ,﹣n 为一组,n ,﹣m 为一组,有A =|m +(﹣n )|+|n +(﹣m )|=2n ﹣2m所以,所有A 的和为2m +2n +0+2n ﹣2m =4n故选:C .【点睛】本题主要考查了新定义的理解,注意分类讨论是解题的关键.4.A解析:A【分析】首先根据479<<可以得出23<<2的范围即可. 【详解】∵23<<,∴22232-<<-,∴021<<,2-的值大于0,小于1.所以答案为A 选项.本题主要考查了无理数的估算,熟练找出无理数的整数范围是解题关键.5.A解析:A【分析】根据题意得出每3次翻转为一个循环,2019能被3整除说明跟翻转3次对应的点是一样的.【详解】翻转1次后,点B所对应的数为1,翻转2次后,点C所对应的数为2翻转3次后,点A所对应的数为3翻转4次后,点B所对应的数为4经过观察得出:每3次翻转为一个循环÷=∵20193673∴数2019对应的点跟3一样,为点A.故选:A.【点睛】本题是一道找规律的题目,关键是通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.6.B解析:B【分析】根据0.5是0.25的一个平方根可对A进行判断;根据一个正数的平方根互为相反数可对B 进行判断;根据平方根的定义对C、D进行判断.【详解】A、0.5是0.25的一个平方根,所以A选项错误;B、正数有两个平方根,且这两个平方根之和等于0,所以B选项正确;C、72的平方根为±7,所以C选项错误;D、负数没有平方根.故选B.【点睛】本题考查了平方根:若一个数的平方定义a,则这个数叫a的平方根,记作a≥0);0的平方根为0.7.B解析:B【分析】分别根据平方根的定义、无理数的定义、算术平方根的定义、负整数逐一判断即可.【详解】解:A、0的平方根为0,所以A选项为真命题;B、无限不循环小数是无理数,所以B选项为假命题;C 、算术平方根最小的数是0,所以C 选项为真命题;D 、最大的负整数是﹣1,所以D 选项为真命题.故选:B .【点睛】本题考查平方根的定义、无理数的定义、算术平方根和负整数,掌握无理数指的是无限不循环小数是解题的关键.8.B解析:B【解析】分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.详解:无理数有:11、π共2个. 故选B .点睛:本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有特定规律的数. 9.C解析:C【分析】 分别计算四个选项,找到正确选项即可.【详解】A. 42=,故选项A 错误;B. 2(2)42-==,故选项B 错误;C. 3338(2)=2-=--,故选项C 正确;D. |2|2--=-,故选项D 错误;故选C .【点睛】本题主要考查了开平方、开立方和绝对值的相关知识,熟练掌握各知识点是解题的关键.10.C解析:C【分析】在数轴上表示7和-6,7在右边,-6在左边,即可确定两个点之间的距离.【详解】如图,7和67在右边,6在左边,和-().故选:C.【点睛】本题考查了数轴,可以发现借助数轴有直观、简捷,举重若轻的优势.二、填空题11.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,mn=(-3)2=9.故答案为9.【解析:【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,m n=(-3)2=9.故答案为9.【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.12.181【分析】观察各式得出其中的规律,再代入求解即可.【详解】由题意得将代入原式中故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181n=求解即可.观察各式得出其中的规律,再代入12【详解】由题意得()31=⨯++n nn=代入原式中将12a==⨯+=12151181故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.13.-1【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可.【详解】解:∵一个正数的平方根是2x-1和2-x,∴2x-1+2-x=0,解得:x=-1.故答案为:-解析:-1【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可.【详解】解:∵一个正数的平方根是2x-1和2-x,∴2x-1+2-x=0,解得:x=-1.故答案为:-1.【点睛】本题主要考查的是平方根的性质以及解一元一次方程,熟练掌握平方根的性质是解题的关键.14.【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】解:==1084.故答案为:1084.【点睛】解析:【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】==1080+4=1084.故答案为:1084.【点睛】本题考查了算术平方根,读懂题目信息,观察出计算结果等于首尾两个偶数的乘积加上4是解题的关键.15.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的解析:0或±1.【分析】根据立方的定义计算即可.解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的定义,熟练掌握立方的定义是解题关键,注意本题要分类讨论,不要漏数.17.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】12>0,>0.>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.18.6【分析】求出在哪两个整数之间,从而判断的整数部分.∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.19.2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】①10=,故①错误; ②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误; ④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.【点睛】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数.20.12【分析】先根据算术平方根的定义求出a的值,再根据无理数的估算得出b的值,然后计算有理数的乘法即可.【详解】,即的整数部分是2,即则故答案为:.【点睛】本题考查了算术平方根的解析:12【分析】先根据算术平方根的定义求出a的值,再根据无理数的估算得出b的值,然后计算有理数的乘法即可.【详解】6a==<<479<<<<23∴b=的整数部分是2,即2ab=⨯=则6212故答案为:12.【点睛】本题考查了算术平方根的定义、无理数的估算,根据无理数的估算方法得出b的值是解题关键.三、解答题21.(1)①21,②6,m n +;(2)35b =;(3)65a =【分析】(1)①由“奇异数”的定义可得;②根据定义计算可得;(2)由f (10m+n )=m+n ,可求k 的值,即可求b ;(3)根据题意可列出等式,可求出x 、y 的值,即可求a 的值.【详解】解:(1)①∵对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.∴“奇异数”为21;②f (15)=(15+51)÷11=6,f (10m+n )=(10m+n+10n+m )÷11=m+n ;(2)∵f (10m+n )=m+n ,且f (b )=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根据题意有()f a x y =+∵()510a f a -=∴()10510x y x y +-+=∴5410x y -=∵x 、y 为正数,且x≠y∴x=6,y=5∴a=6×10+5=65故答案为:(1)①21,②6,m n +;(2)35b =;(3)65a =【点睛】本题考查了新定义下的实数运算,能理解“奇异数”定义是本题的关键.22.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x <4,可得满足题意的x 的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴5<6,∴]=[2]=2,]=5,故答案为2,5;(2)∵12=1,22=4,且]=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:,第三次:,故答案为3;(4)最大的正整数是255,理由是:∵,,]=1,∴对255只需进行3次操作后变为1,∵,,]=2,]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.23.(1)3;(2)-24;(3)成立.【解析】【分析】(1)按照给定的运算程序,一步一步计算即可;(2)先按新定义运算,先计算(-2)⊕6、再将所得结果-19与3计算规定运算可得;(3)成立,按新定义分别运算即可说明理由.【详解】(1)5⊕4=5×4-2×5-2×4+1=20-10-8+1=2+1=3.(2)原式=[-2×6-2×(-2)-2×6+1]⊕3=(-12+4-12+1)⊕3=-19⊕3=-19×3-2×(-19)-2×3+1=-24.(3)成立.∵a⊕b=ab-2a-2b+1,b⊕a=ab-2b-2a+1,∴a⊕b=b⊕a,∴定义的新运算“⊕”交换律还成立.【点睛】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.24.(1)得正,再把绝对值相加;得负,再把绝对值相加;等于这个数的绝对值;(2)-23;(3)a=-52 【分析】(1)通过观察表中各算式,然后从两数的符号关系或是否有0出发归纳出☆运算的法则; (2)根据(1)归纳的☆运算的法则进行计算,注意先算括号内的,再与括号外的计算; (3)根据(1)归纳出的运算法则对a 的取值进行分类讨论即可得到答案.【详解】(1)由表中各算式,可以得到:同号得正,再把绝对值相加; 异号得负,再把绝对值相加;特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于这个数的绝对值; (2)由(1)归纳的☆运算的法则可得:原式=(﹣11)☆|-12|=(﹣11)☆12= -(|(﹣11)|+|12|)= -23;(3)①当a=0时,左边=()22012213⨯--=⨯-=☆,右边=8,两边不相等,∴a≠0; ②当a>0时,2×(﹣2☆a)﹣1=2×[-(2+a )]﹣1=8,可解得132a =-(舍去), ③当a<0时,2×(﹣2☆a)﹣1=2×(|﹣2|+|a|)﹣1=8,可解得a=52-, 综上所述:a=-52. 【点睛】本题考查新定义的实数运算,通过观察实例归纳出运算规律是解题关键. 25.6±【分析】根据算术平方根、立方根的定义列出二元一次方程组,之后对方程组进行求解,得到x 和y 的值,再根据题意得到z 的值,即可求解本题.【详解】解:由题意可得3x 29268y x y --=⎧⎨+-=⎩, 解得54x y =⎧⎨=⎩,36<<67∴<<,6z ∴=,424542636∴++=⨯++⨯=x y z ,故42x y z ++的平方根是6±.【点睛】本题考查了平方根、立方根、算术平方根,解决本题的关键是熟记平方根、立方根、算术平方根的定义.26.(1)3,﹣3;(2)1.【分析】<解答即可;(1)根据34(2)根据23得出a,根据34得出b,再把a,b的值代入计算即可.【详解】<<,(1)∵343﹣3,故答案为:3﹣3;(2)∵23,a2,∵34,∴b=3,a+b2+31.【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.。

2023中考数学----实数的运算知识回顾及专项练习题(含答案解析)

2023中考数学----实数的运算知识回顾及专项练习题(含答案解析)

知识回顾2023中考数学----实数的运算知识回顾及专项练习题(含答案解析)1. 实数的运算法则:先乘方,再乘除,最后加减。

有括号的先算括号,先算小括号,再算中括号,最后算大括号。

2. 绝对值的运算:()()⎩⎨⎧≤−≥=00a a a a a ,常考形式:()小大−=−b a 。

3. 根式的化简运算:①利用二次根式的乘除法逆运算化简。

乘除法:ab b a =⋅;b aba =; ②a a =2;③a a =33。

③分母有理化。

即()()b a ba ba b a b a ba −=±=± 1。

④二次根式的加减法:()m b a m b m ±=±。

4. 0次幂、负整数指数幂以及﹣1的奇偶次幂的运算:①()010≠=a a ;②n n a a 1=−;③11−=−n ;④()()()⎩⎨⎧−=−是奇数是偶数n n n111。

5. 特殊角的锐角三角函数值计算:专题练习1.(2022•内蒙古)计算:(﹣21)﹣1+2cos30°+(3﹣π)0﹣38−. 【分析】直接利用负整数指数幂的性质、特殊角的三角函数值、零指数幂的性质、立方根的性质分别化简,再计算得出答案. 【解答】解:原式=﹣2+2×+1+2=﹣2++1+2=+1.2.(2022•菏泽)计算:(21)﹣1+4cos45°﹣8+(2022﹣π)0. 【分析】直接利用负整数指数幂的性质以及特殊角的三角函数值、零指数幂的性质、二次根式的性质分特殊角30°45°60°a sin2122 23 a cos23 22 21a tan33 13别化简,进而合并得出答案. 【解答】解:原式=2+4×﹣2+1=2+2﹣2+1=3.3.(2022•郴州)计算:(﹣1)2022﹣2cos30°+|1﹣3|+(31)﹣1. 【分析】先化简各式,然后再进行计算即可解答. 【解答】解:(﹣1)2022﹣2cos30°+|1﹣|+()﹣1=1﹣2×+﹣1+3=1﹣+﹣1+3=3.4.(2022•深圳)(π﹣1)0﹣9+2cos45°+(51)﹣1. 【分析】利用零指数幂,特殊三角函数及负整数指数幂计算即可. 【解答】解:原式=1﹣3+×+5=3+1=4.5.(2022•沈阳)计算:12﹣3tan30°+(21)﹣2+|3﹣2|. 【分析】先计算开方运算、特殊三角函数值、负整数指数幂的运算及绝对值的运算,再合并即可. 【解答】解:原式=2﹣3×+4+2﹣=2﹣+4+2﹣=6.6.(2022•广安)计算:(36﹣1)0+|3﹣2|+2cos30°﹣(31)﹣1. 【分析】先计算零指数幂和负整数指数幂、去绝对值符号、代入三角函数值,再计算乘法,继而计算加减即可.【解答】解:原式=1+2﹣+2×﹣3=1+2﹣+﹣3=0.7.(2022•贺州)计算:()23−+|﹣2|+(5﹣1)0﹣tan45°.【分析】利用零指数幂和特殊角的三角函数值进行化简,可求解. 【解答】解:+|﹣2|+(﹣1)0﹣tan45°=3+2+1﹣1 =5.8.(2022•广元)计算:2sin60°﹣|3﹣2|+(π﹣10)0﹣12+(﹣21)﹣2. 【分析】根据特殊角的三角函数值,绝对值,零指数幂,二次根式的化简,负整数指数幂计算即可. 【解答】解:原式=2×+﹣2+1﹣2+=+﹣2+1﹣2+4=3.9.(2022•娄底)计算:(2022﹣π)0+(21)﹣1+|1﹣3|﹣2sin60°. 【分析】先计算零次幂、负整数指数幂,再化简绝对值、代入特殊角的三角函数值算乘法,最后算加减. 【解答】解:原式=1+2+﹣1﹣2×=1+2+﹣1﹣=2.10.(2022•新疆)计算:(﹣2)2+|﹣3|﹣25+(3﹣3)0.【分析】直接利用零指数幂的性质以及绝对值的性质、二次根式的性质分别化简,进而得出答案. 【解答】解:原式=4+﹣5+1=.11.(2022•怀化)计算:(3.14﹣π)0+|2﹣1|+(21)﹣1﹣8. 【分析】根据零指数幂,绝对值,负整数指数幂,二次根式的化简计算即可. 【解答】解:原式=1+﹣1+2﹣2=2﹣.12.(2022•北京)计算:(π﹣1)0+4sin45°﹣8+|﹣3|.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、二次根式的性质、绝对值的性质分别化简,进而合并得出答案. 【解答】解:原式=1+4×﹣2+3=1+2﹣2+3=4.13.(2022•泸州)计算:(3)0+2﹣1+2cos45°﹣|﹣21|. 【分析】根据实数的运算法则,绝对值,零指数幂,负整数指数幂,特殊角的三角函数值直接计算即可. 【解答】解:原式=1++×﹣=1++1﹣ =1+1 =2.14.(2022•德阳)计算:12+(3.14﹣π)0﹣3tan60°+|1﹣3|+(﹣2)﹣2. 【分析】利用零指数幂,负整数指数幂,特殊角的三角函数值,即可解决问题. 【解答】解:原式=2+1﹣3×+﹣1+=2+1﹣3+﹣1+=.15.(2022•遂宁)计算:tan30°+|1﹣33|+(π﹣33)0﹣(31)﹣1+16.【分析】根据特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根可以解答本题.【解答】解:tan30°+|1﹣|+(π﹣)0﹣()﹣1+=+1﹣+1﹣3+47。

实数(知识总结,试题和答案)

实数(知识总结,试题和答案)
4、(10分)观察
,即 ;
即 ;猜想: 等于什么,并通过计算验证你的猜想。
5、章节测试
实数章节测试题
学生姓名_________考试分数__________
特别说明:1、本试卷完成时间为90分钟;2、本试卷满分为100分;3、考试中考
生必须遵守考试规则,独立完成;4、考生草稿纸要求规范使用,考试结束上交。
三、解答题:(共38分)
1、(6分)求下列各式的值:
(1) ;(2) ;(3)-
2、(6分)化简:(1) (2)
3、(6分)已知 =x-1,求x的值。
4、(6分)一个长方体的长为5 cm,宽为2 cm,高为3 cm,而另一个正方体的体积是它的3倍,求这个正方体的棱长(结果精确到0.01 cm).
图3
一、仔细选一选:(每题3分,共30分)
1.下列实数: , , , , , , ,0.020020002……中,无理数有( )个.
A.2 B.3 C.4 D.5
2. 表示的意义是( )
A.25的立方根B.25的平方根C.25的算术平方根D.5的算术平方根
3.下列语句正确的是( )
A.-2是-4的平方根; B. 2是(-2)2的算术平方根;
初中精品数学精选精讲
学科:数学任课教师:授课时间:年月日
姓名
年级
课时
教学课题
实数
教学目标
(知识点、考点、能力、方法)
知识点:无理数和实数的概念
考点:实数的概念、分类、倒数、相反数、绝对值、运算和平方根、算数平方根、立方根、科学计数法、近似数
能力:了解实数范围内相反数和绝对值的意义,会对实数进行分类、运算,能估算无理数的大小
其中正确的说法的个数是()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学第六章 实数(讲义及答案)及答案一、选择题1.若24a =,29b =,且0ab <,则-a b 的值为( )A .5±B .2-C .5D .5- 2.16的算术平方根是( )A .2B .2±C .4D .4±3.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,……,根据这个规律,则21+22+23+24+…+22019的末位数字是( ) A .0B .2C .4D .64.下列各组数中,互为相反数的是( ) A .2-与12-B .|2|-与2C .2(2)-与38-D .38-与38-5.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n 6.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( )A .1或﹣1B .-5或5C .11或7D .-11或﹣77.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( ) A .7个 B .6个 C .5个 D .4个 8.估计27的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间9.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12B 21C .22D 2210.已知m 是整数,当|m 40取最小值时,m 的值为( ) A .5B .6C .7D .8二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=.例如:(-3)☆2=32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 13.若已知()21230a b c -+++-=,则a b c -+=_____. 14.64的立方根是___________.15.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…; (2)f (12)=2,f (13)=3,f (14)=4,f (15)=5,… 利用以上规律计算:1(2019)()2019f f ____. 16.如果一个有理数a 的平方等于9,那么a 的立方等于_____. 17.估计51-与0.5的大小关系是:51-_____0.5.(填“>”、“=”、“<”) 18.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 19.规定运算:()a b a b *=-,其中b a 、为实数,则(154)15*+=____ 20.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.三、解答题21.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形. (1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm ?22.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯ , 将以上三个等式两边分别相加得:11111111112233422334++=-+-+-⨯⨯⨯=13144-= (1)猜想并写出:1n(n 1)+ = .(2)直接写出下列各式的计算结果:①1111...12233420152016++++⨯⨯⨯⨯= ; ②1111...122334(1)n n ++++⨯⨯⨯⨯+= ; (3)探究并计算:1111 (24466820142016)++++⨯⨯⨯⨯. 23.化简求值:()1已知a 是13的整数部分,3b =,求54ab +的平方根.()2已知:实数a ,b 在数轴上的位置如图所示,化简:22(1)2(1)a b a b ++---.24.对于结论:当a+b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”(1)举一个具体的例子来判断上述结论是否成立;(2)若38y -和325y -互为相反数,且x+5的平方根是它本身,求x+y 的立方根. 25.阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,而12<<2于是可用21-来表示2的小数部分.请解答下列问题:(1)21的整数部分是_______,小数部分是_________;(2)如果7的小数部分为15a ,的整数部分为b ,求7a b +-的值;(3)已知:100110x y +=+,其中x 是整数,且01y <<,求11024x y ++-的平方根。

26.已知a 是最大的负整数,b 是多项式2m 2n ﹣m 3n 2﹣m ﹣2的次数,c 是单项式﹣2xy 2的系数,且a 、b 、c 分别是点A 、B 、C 在数轴上对应的数.(1)求a 、b 、c 的值,并在数轴上标出点A 、B 、C .(2)若M点在此数轴上运动,请求出M点到AB两点距离之和的最小值;(3)若动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒1个单位长2度,点Q的速度是每秒2个单位长度,求运动几秒后,点Q能追上点P?(4)在数轴上找一点N,使点M到A、B、C三点的距离之和等于10,请直接写出所有的N对应的数.(不必说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先根据平方根的定义求出a、b的值,再由ab<0,可知a、b异号,由此即可求出a-b 的值.【详解】解:∵a2=4,b2=9,∴a=±2,b=±3,而ab<0,∴①当a>0时,b<0,即当a=2时,b=-3,a-b=5;②a<0时,b>0,即a=-2时,b=3,a-b=-5.故选:A.【点睛】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.C解析:C【分析】本题是求16的算术平方根,应看哪个正数的平方等于16,由此即可解决问题.【详解】∵(±4)2=16,∴16的算术平方根是4.故选:C.【点睛】此题主要考查了算术平方根的运算.一个数的算术平方根应该是非负数.3.C解析:C观察已知等式,发现末位数字以2,4,8,6进行循环,每4个数一个循环的和位数为0,只要把原式的数的个数除以4得出余数即可求解.【详解】∵21=2,22=4,23=8,24=16,25=32,26=64,……∴末位数字以2,4,8,6循环∵2019÷4=504…3,∴21+22+23+24+…+22019的末位数字与(2+4+8+6)×504+2+4+8的末位数字相同为4故选:C.【点睛】本题考查了尾数特征,弄清题中的数字循环规律是解本题的关键.4.C解析:C【分析】先化简,然后根据相反数的意义进行判断即可得出答案.【详解】解:A. 2-与12-不是一组相反数,故本选项错误;B. |,所以|不是一组相反数,故本选项错误;,故选:C【点睛】本题考查了相反数,能将各数化简并正确掌握相反数的概念是解题关键.5.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.6.A【分析】根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x 与y 的值即可. 【详解】解:∵|x |=2,y 2=9,且xy <0, ∴x=2或-2,y=3或-3, 当x=2,y=-3时,x+y=2-3=-1; 当x=-2,y=3时,原式=-2+3=1, 故选:A . 【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.7.B解析:B 【分析】根据有理数的分类依此作出判断,即可得出答案. 【详解】解:①没有最小的整数,所以原说法错误; ②有理数包括正数、0和负数,所以原说法错误;③﹣2π是无理数,所以原说法错误; ④237是无限循环小数,是分数,所以是有理数,所以原说法错误; ⑤无限小数不都是有理数,所以原说法正确;⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确; ⑦非负数就是正数和0,所以原说法错误;⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误; 故其中错误的说法的个数为6个. 故选:B . 【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.8.D解析:D 【分析】用平方法进行比较,看27在哪两个整数平方之间即可. 【详解】∵252527=<,263627=>∴5<6 故选:D 【点睛】本题考查比较二次根式的大小,常见方法有2种: (1)将数字平方,转化为不含二次根号的数字比较; (2)将数字都转化到二次根式中,然后进行比较.9.D解析:D 【分析】设点C 的坐标是x ,根据题意列得12x=-,求解即可. 【详解】解:∵点A 是B ,C 的中点. ∴设点C 的坐标是x ,则12x=-,则2x =-+∴点C 表示的数是2-+ 故选:D . 【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.10.B解析:B 【分析】根据绝对值是非负数,所以不考虑m 为整数,则m 取最小值是0,又0的绝对值为0,令0m =,得出m =m 的整数可得:m=6. 【详解】解:因为m 取最小值,0m ∴=,0m ∴=,解得:m =240m =,67m ∴<<,且m 更接近6,∴当6m =时,m 有最小值.故选:B . 【点睛】本题考查绝对值的非负性,以及估算二次根式的大小,理解并熟练掌握绝对值的非负性是本题解题关键;在估算二次根式大小的时候,先算出二次根式的平方,再看这个平方在哪两个平方数之间,就相应的得出二次根式在哪两个整数之间,即可估算出二次根式的大小.二、填空题 11.-4 【解析】解:该圆的周长为2π×2=4π,所以A′与A 的距离为4π,由于圆形是逆时针滚动,所以A′在A 的左侧,所以A′表示的数为-4π,故答案为-4π. 解析:-4π【解析】解:该圆的周长为2π×2=4π,所以A ′与A 的距离为4π,由于圆形是逆时针滚动,所以A ′在A 的左侧,所以A ′表示的数为-4π,故答案为-4π.12.8 【解析】解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:8 【解析】解:当a >b 时,a ☆b =2a b a b++- =a ,a 最大为8;当a <b 时,a ☆b =2a b a b++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.6 【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可. 【详解】 解:因为, 所以, 解得, 故,故答案为:6. 【点睛】本题考查非负数的性质,主要考查绝对值、平方解析:6 【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可. 【详解】解:因为()2120a b -+++=, 所以10,20,30a b c -=+=-=, 解得1,2,3a b c ==-=, 故1(2)36a b c -+=--+=, 故答案为:6. 【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键.14.2 【分析】的值为8,根据立方根的定义即可求解. 【详解】解:,8的立方根是2, 故答案为:2. 【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.解析:2 【分析】8,根据立方根的定义即可求解.【详解】8=,8的立方根是2, 故答案为:2. 【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.15.-1 【分析】根据新定义中的运算方法求解即可. 【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f()=2,f()=3,f()=4,f()解析:-1【分析】根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f(12)=2,f(13)=3,f(14)=4,f(15)=5,…,∴1()2019f2019,∴1(2019)()2019f f2018-2019=-1.故答案为:-1.【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键.16.±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了解析:±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则.17.>【解析】∵ . , ∴ , ∴ ,故答案为>.解析:>【解析】∵10.52-=-=20-> , ∴0> , ∴0.5> ,故答案为>.18.①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式解析:①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式相等,若 a≠b ,则两式不相等,所以②错误; 方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a ※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c 右边=a ※(b ※c )=a ※(b×c+c)=a (b×c+c) +(b×c+c)=abc+ac+bc+c 2 两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.19.4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】===4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键解析:4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】4)+4=4=4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键.20.【分析】点对应的数为该半圆的周长.【详解】解:半圆周长为直径半圆弧周长即故答案为:.【点睛】本题考查数轴上的点与实数的关系.明确的长即为半圆周长是解答的关键. 解析:12π+【分析】点O '对应的数为该半圆的周长.【详解】解:半圆周长为直径+半圆弧周长 即12π+ 故答案为:12π+.【点睛】 本题考查数轴上的点与实数的关系.明确OO '的长即为半圆周长是解答的关键.三、解答题21.(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长; (2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm ,20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x =520x =>,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.22.(1)111n n -+;(2)①20152016;②1n n +;(3)10074032. 【分析】(1)观察所给的算式可得:分子为1,分母为两个相邻整数的分数可化为这两个整数的倒数之差,由此即可解答;(2)根据所得的规律把各分数进行转化,再进行分数的加减运算即可解答;(3)先提取14,类比(2)的运算方法解答即可. 【详解】 (1)()11n n + =111n n -+; (2)①1111...12233420152016++++⨯⨯⨯⨯=11111122334-+-+-+…+1120152016-=112016-=20152016; ②()1111...1223341n n ++++⨯⨯⨯⨯+=11111122334-+-+-+…+111n n -+=111n -+=1n n +; (3)1111 (24466820142016)++++⨯⨯⨯⨯ =14(1111 (12233410071008)++++⨯⨯⨯⨯), =14(11111122334-+-+-+…+1110071008-), =14(111008-), =14×10071008 =10074032. 【点睛】本题考查了有理数的运算,根据题意找出规律是解决问题的关键.23.(1)±3;(2)2a +b ﹣1.【解析】分析:(1)由于34a =3,根据算术平方根的定义可求b(2)利用数轴得出各项符号,进而利用二次根式和绝对值的性质化简求出即可.详解:(1)∵34,∴a =3.=3,∴b =993; (2)由数轴可得:﹣1<a <0<1<b ,则a +1>0,b ﹣1>0,a ﹣b <0,则+|a ﹣b | =a +1+2(b ﹣1)+(a ﹣b )=a +1+2b ﹣2+a ﹣b=2a +b ﹣1.点睛:本题考查了算术平方根与平方根的定义和估算无理数的大小,熟记概念,先判断所给的无理数的近似值是解题的关键.24.(1)成立,例子见解析;(2)﹣2【分析】(1(2)根据互为相反数的和为0,列等式可得y 的值,根据平方根的定义得:x+5=0,计算x+y 并计算它的立方根即可.【详解】解:(10,则2+(﹣2)=0,即2与﹣2互为相反数;所以“如果两数的立方根互为相反数,那么这两个数也互为相反数”成立;(2=0,∴8﹣y+2y﹣5=0,解得:y=﹣3,∵x+5的平方根是它本身,∵x+5=0,∴x=﹣5,∴x+y=﹣3﹣5=﹣8,∴x+y的立方根是﹣2.【点评】本题考查立方根和平方根的知识,难度一般,注意互为相反数的和为0,知道这一知识是本题的关键.25.(1) 4;(2)1;(2) ±12.【解析】【分析】(1(2a、b的值,再代入求出即可;(3的范围,求出x、y的值,再代入求出即可.【详解】解:(1)∵45,4,故答案为:4;(2)∵23,∴,∵34,∴b=3,∴=1;(3)∵100<110<121,∴10<11,∴110<<111,∵=x+y,其中x是整数,且0<y<1,∴x=110,,∴+10=144,的平方根是±12.【点睛】本题考查了估算无理数的大小,能估算出21、7、15、110的范围是解此题的关键.26.(1)a=﹣1,b=5,c=﹣2,数轴详见解析;(2)6;(3)运动4秒后,点Q可以追上点P;(4)M对应的数为2或﹣223.【解析】【分析】(1)根据题意易得a,b,c的值,然后在数轴上表示出来即可;(2)当M点在线段AB上时,M点到AB两点距离之和的最小值为AB的长;(3)用AB的长度除以点Q与点P的速度差即可得解;(4)分析M点在不同的位置时,所得到的M的值即可.【详解】(1)∵a是最大的负整数,∴a=﹣1,∵b是多项式2m2n﹣m3n2﹣m﹣2的次数,∴b=3+2=5,∵c是单项式﹣2xy2的系数,∴c=﹣2,如图所示:(2)当M点在线段AB上时,M点到AB两点距离之和的最小值为5﹣(﹣1)=6;(3)∵动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒12个单位长度,点Q的速度是每秒2个单位长度,∴AB=6,两点速度差为:2﹣12,∴6÷(2﹣12)=4,答:运动4秒后,点Q可以追上点P;(4)存在点M,使P到A、B、C的距离和等于10,当M在AB之间,则M对应的数是2,当M在C点左侧,则M对应的数是:﹣22 3 .综上所述,M对应的数为2或﹣223.【点睛】本题主要考查实数与数轴,数轴上两点之间的距离.解此题的关键在于根据题意准确画出数轴上各点所表示的数.。

相关文档
最新文档