等比数列的性质及其应用
等比数列的性质及应用(课件)高二数学(人教A版2019选择性必修第二册)

息不少于按月结算的利息(精确到10−5 )?
分析:
复利是把前一期的利息与本金之和算作本金,再计算下一期的利息,所以若
原始本金为a元,每期的利率为r,则从第一期开始,各期的本利和.
解:(1)设这笔钱存n个月以后的本利和组成一个数列 { } ,则 { } 是等比数列,
首项 1 = 104 (1 + 0.400%),
价格为8 100元的计算机3年后的价格可降为(
A.300元
B.900元
C.2 400元
公比q=1+0.400% ,所以
12 = 104 (1 + 0.400%)12 ≈ 10 490.7
所以, 12个月后的利息为10 490.7 − 104 ≈ 491(元)
(2)设季度利率为r,这笔钱存n个季度以后的本金和组成一个数列{ },
则{ }也是一个等比数列,
首项 1 = 104 (1 + ),公比为1+r,于是
数列.
( 2 ) 若 数 列 { } , { } 均 为 等 比 数 列 , c 为 不 等 于 0 的 常 数 , 则 数 列
,
2
, ∙
, { }
也为等比数列.
【典例 3】在等差数列{an}中,公差 d≠0,a1,a2,a4 成等比数列,已知数列 a1,
a3,ak1,ak2,…,akn,…也成等比数列,求数列{kn}的通项公式.
2
【解析】由题意得a2
=a1a4,即(a1+d)2=a1(a1+3d),
得d(d-a1)=0,又d≠0,所以a1=d.
又a1,a3,ak1,ak2,…,akn,…成等比数列,
a3 3d
所以该数列的公比q=a = d =3,
等比数列的性质及其应用

等比数列的性质及其应用等比数列是指一个数列中每一项与前一项的比值相等。
具体地说,如果一个数列的首项为a1,公比为q,那么它的第n个项an应该为an=a1*q^(n-1)。
等比数列常常出现在各种数学问题中,尤其是有关增长和衰减的问题,同时也被广泛地应用在物理、工程、经济和环境等领域。
在本文中,我们将介绍等比数列的一些基本性质,以及它们在实际问题中的应用。
1. 比率在等比数列中,每一项和前一项的比值是相等的。
如果我们设第k 项和第k-1项的比值为r,那么有r=ak/ak-1=q,其中q为等比数列的公比。
这意味着,对于任意两项之间,你都可以用它们的比率r = ak / ak-1 来计算它们之间的关系。
2. 前n项和等比数列的前n项和可以用下面的公式来计算:sn = a1 * (1 - q^n) / (1 - q),其中a1是等比数列的首项,q是等比数列的公比。
3. 通项公式中的a1和q等比数列的通项公式是an=a1*q^(n-1)。
从这里可以发现,当我们知道首项和公比时,我们可以轻松地计算出数列中的任何一项。
另外,如果我们知道数列中的两项,我们也可以计算出公比和首项。
4. 应用等比数列在各种实际问题中都有广泛的应用。
以下是一些例子:成倍增长:如果一个流行病的感染者数量每天都成倍增长,那么这个增长就可以被建模为一个等比数列。
在这种情况下,第n天的感染者数量可以表示为P=Pa^(n-1),其中P是第n天的感染者人数,Pa是第一天的感染者人数,a是增长的倍数(公比)。
污染问题:如果我们知道一个环境污染物的衰减速率和初始浓度,那么等比数列就可以被用来建立这个污染物的浓度随时间变化的模型。
在这种情况下,等比数列的首项是污染物的初始浓度,公比是污染物每一次衰减的比率,数列的第n项则是随着时间推移被衰减后的污染物浓度。
财务问题:等比数列也被用来描述各种财务问题中的增长或衰减。
例如,如果一笔投资的每年增长率是10%(利率固定),那么等比数列就可以被用来计算出投资在未来数年中的总价值。
高中数学等比数列的性质及应用策略

高中数学等比数列的性质及应用策略数列是高中数学中的重要概念,而等比数列是数列中的一种特殊情况。
在学习数列时,我们经常会遇到等比数列的问题。
本文将重点讨论等比数列的性质以及应用策略,帮助高中学生更好地理解和运用等比数列。
一、等比数列的性质等比数列是指一个数列中的每一项与它的前一项的比值都相等的数列。
设等比数列的首项为a,公比为r,第n项为an,则等比数列的通项公式为an = ar^(n-1)。
1. 等比数列的通项公式等比数列的通项公式是关键,它可以帮助我们求解等比数列中的任意一项。
通过观察数列中的规律,我们可以发现每一项与前一项的关系,从而得到通项公式。
例如,考虑等比数列1,2,4,8,16,...。
我们可以发现每一项都是前一项乘以2,即an = 2 * an-1。
而首项为1,因此通项公式为an = 2^(n-1)。
2. 等比数列的前n项和等比数列的前n项和是指数列中前n项的和。
求解等比数列的前n项和可以帮助我们计算数列的总和,从而解决实际问题。
等比数列的前n项和公式为Sn = a * (1 - r^n) / (1 - r),其中a为首项,r为公比。
这个公式可以通过数学归纳法证明得出。
例如,对于等比数列1,2,4,8,16,...,我们可以计算出前3项的和为7,前4项的和为15,前5项的和为31,依次类推。
二、等比数列的应用策略等比数列在实际问题中有着广泛的应用。
在解决问题时,我们可以运用等比数列的性质和应用策略,快速解决问题。
1. 求解未知项通过等比数列的通项公式,我们可以根据已知的首项和公比求解数列中的任意一项。
这在实际问题中非常有用。
例如,某公司的年收入是等比数列,已知第1年的收入为100万元,公比为1.2。
我们可以利用通项公式an = 100 * (1.2)^(n-1)求解第5年的收入为多少。
2. 求解总和通过等比数列的前n项和公式,我们可以计算数列的总和。
这在求解累加问题时非常方便。
例如,某人每天存钱,第1天存1元,第2天存2元,第3天存4元,以此类推。
等比数列的性质与应用教学备课

等比数列的性质与应用教学备课一、引言在数学中,数列是一个非常重要的概念,而等比数列是其中一种特殊的数列。
等比数列具有独特的性质和广泛的应用,因此在教学中备课时,我们需要全面了解等比数列的性质,并掌握其应用方法。
本文将针对等比数列的性质和应用进行教学备课。
二、等比数列的定义与性质1. 等比数列的定义:等比数列是指数列中任意两项的比例都相等的数列。
如果一个数列的任意两项之间的比例都相等,那么这个数列就是等比数列。
2. 等比数列的通项公式:等比数列的通项公式可以表示为:an = a1 * q^(n-1),其中an表示等比数列的第n项,a1表示首项,q表示公比。
3. 等比数列的公比和首项的关系:公比q是等比数列中任意两项之间的比值,即q = an / a(n-1) =a(n+1) / an-1。
通过公式的转换,我们可以得到公比和首项之间的关系:q = (an)^(1/n)。
4. 等比数列的前n项和:等比数列的前n项和可以表示为Sn = a1 * (1 - q^n) / (1 - q),其中Sn表示前n项和。
三、等比数列的教学应用1. 等比数列在几何图形中的应用:等比数列可以用于描述几何图形中的一些特殊性质。
例如,在正多边形中,每条边的长度可以构成一个等比数列。
在绘制正多边形的过程中,学生可以通过等比数列的概念,计算出每一条边的长度,从而完成几何图形的绘制。
2. 等比数列在利润计算中的应用:在经济学中,等比数列可以用于计算利润的增长情况。
假设某公司的利润年增长率为10%,那么每年的利润可以构成一个等比数列。
通过利用等比数列的性质,我们可以根据首年的利润和公比,计算出未来多年的利润情况,为企业的发展提供参考依据。
3. 等比数列在科学实验中的应用:在科学实验中,等比数列可以用于描述某种物质的增长或变化规律。
例如,在细胞分裂的过程中,每次分裂细胞的数量可以构成一个等比数列。
通过等比数列的性质,我们可以计算出每一次分裂后细胞的数量,从而推断出整个分裂过程的变化趋势。
初中数学知识归纳等比数列的性质与应用

初中数学知识归纳等比数列的性质与应用初中数学知识归纳:等比数列的性质与应用在初中数学学习中,等比数列是一个重要的概念。
它的性质和应用广泛存在于各类数学题目中。
本文将对等比数列的性质与应用进行归纳和阐述。
一、等比数列的基本性质等比数列是指一个数列中,从第二个数开始,每个数与它的前一个数的比等于一个常数。
该公比常被表示为q。
1. 公比的概念公比q是等比数列中相邻两项的比值,可以通过以下公式计算:```q = 第n项 / 第(n-1)项```其中,n表示数列的项数。
在等比数列中,任意两项之间的比值都相等,即相邻两项的比值等于公比q。
2. 通项公式等比数列的通项公式可以根据已知条件得到。
设首项为a₁,公比为q,第n项为aₙ,则通项公式为:```aₙ = a₁ * q^(n-1)```这个公式可以帮助我们直接计算等比数列中任意一项的值。
3. 等差数列与等比数列的区别等比数列与等差数列是两个不同的数列概念。
在等差数列中,两个相邻项之间的差是常数,而在等比数列中,两个相邻项之间的比是常数。
因此,等比数列中的项之间的增长或减小呈倍数关系,而等差数列中的项之间的增长或减小是固定的。
二、等比数列的应用等比数列的性质使得它在各类数学题目中有广泛的应用。
下面介绍几个常见的应用场景。
1. 成绩评定某班级的同学们在一次数学测验中,考试分数符合等比数列的规律。
已知第1位同学得了80分,而第5位同学得了5分。
我们可以利用等比数列的通项公式来求得第n位同学的分数。
设第n位同学的分数为aₙ,则有:```a₁ = 80a₅ = 5q = a₅ / a₁ = 5 / 80```带入通项公式,我们可以得到:```aₙ = 80 * (5 / 80)^(n-1)```这样我们就可以根据题目给出的条件,计算任意一位同学的分数。
2. 几何图形等比数列的概念也与几何图形有关。
例如,在绘制分形图形时,我们经常使用等比数列来确定各个图形的大小比例。
等比数列的性质与应用

等比数列的性质与应用等比数列是数学中的一种特殊数列,它的性质和应用十分广泛。
在本文中,我将介绍等比数列的性质及其在实际问题中的应用。
1. 等比数列的定义与性质等比数列是指一个数列中的每一项与它的前一项的比相等的数列。
假设数列的首项为a,公比为r,那么它的第n项可表示为an = ar^(n-1)。
等比数列具有以下性质:a) 公比为零或正数时,数列递增;公比为负数时,数列递减;b) 数列中的任意项可以通过前一项与公比的乘积得到;c) 等比数列的前n项和可以用公式Sn = a(1-r^n)/(1-r)计算。
2. 等比数列的应用等比数列的性质在各个领域中都有着广泛的应用。
以下是其中几个重要的应用:2.1. 财务与投资在财务与投资领域,等比数列的应用尤为突出。
例如,计算利息、年金、股票投资等等,都可以基于等比数列的概念进行计算。
根据等比数列的定义以及性质,可以推导出各种金融公式,为理财人员提供便捷的计算方法。
2.2. 自然科学等比数列在自然科学领域中也有着广泛的应用。
例如,在生物学中,细胞的分裂、种群的增长等往往可以用等比数列来描述。
在物理学中,声音的强度、光的强度等都可以用等比数列来衡量。
2.3. 工程与建筑在工程与建筑领域,等比数列常被用于设计与构建过程中的各种问题。
例如,设计方密切关注物体的尺寸、比例是否满足等比关系;建筑师在设计建筑物的时候,也需要考虑材料的长宽比、高度比等等。
2.4. 统计学在统计学中,等比数列可用于描述人口增长、物品销售情况、市场份额等。
利用等比数列的性质,统计学家可以更准确地预测未来的趋势,做出科学的决策。
3. 等比数列问题的解决方法为了解决等比数列问题,通常可以采用以下几种方法:3.1. 直接计算法对于已知首项和公比的等比数列问题,可以直接使用等比数列的公式进行计算。
通过计算每一项的值或者前n项的和,可以得到问题的答案。
3.2. 求比方式有时候,问题给出的信息不够明确,无法直接使用等比数列的公式。
等比数列的性质与应用

等比数列的性质与应用等比数列(geometric progression)是指数列中任意两个相邻项的比等于同一个常数的数列。
在数学中,等比数列具有一些独特的性质和应用,本文将介绍这些性质以及如何应用等比数列解决一些实际问题。
一、等比数列的定义等比数列是指数列中的每一项与它前一项的比例都相等。
具体而言,如果一个数列满足对于任意的正整数 n,都有 an/an-1 = r (r ≠ 0),其中an 表示数列的第 n 项,an-1 表示数列的前一项,r 表示公比,则该数列可以被称为等比数列。
二、等比数列的性质1. 公比的性质等比数列的公比 r 是决定数列特征的重要因素。
当 r 大于 1 时,数列呈现递增的趋势;当 0 < r < 1 时,数列呈现递减的趋势;当 r 等于 1 时,数列的各项相等;当 r 小于 0 时,数列的各项交替变号。
2. 通项公式对于等比数列的通项公式,即 an = a1 * r^(n-1),其中 a1 表示数列的首项,an 表示数列的第 n 项。
3. 等比数列的和等比数列的前 n 项和 Sn 可以通过公式 Sn = a1 * (1 - r^n) / (1 - r) 求得。
三、等比数列的应用等比数列在实际中有广泛的应用,特别是在金融、工程、物理等领域中。
以下将介绍一些等比数列的典型应用。
1. 财务投资在财务投资中,利率往往以等比数列的形式递增或递减。
通过计算等比数列的前 n 项和,可以帮助投资者评估不同时间段内的资金增长情况,从而做出更明智的决策。
2. 网络传输等比数列在网络传输中的应用非常广泛。
例如,下载文件时,下载速度可能以等比数列递增或递减;发送数据包时,包的大小可能以等比数列的形式递增或递减。
3. 器械运动许多器械运动(如弹簧)的行为都可以通过等比数列来描述。
器械的某些性质随着使用次数的增加而发生变化,这种变化往往符合等比数列的规律。
4. 科学实验在科学实验中,等比数列被广泛用于模拟实验数据。
等比数列的性质与应用

等比数列的性质与应用等比数列是指一个数列中,从第二项开始,每一项都是前一项乘以同一个常数,这个常数被称为公比。
等比数列的性质与应用在数学中具有重要的地位和应用价值。
一、等比数列的性质1. 公比的性质:在等比数列中,公比不为0。
当公比大于1时,数列呈现递增趋势;当公比介于0和1之间时,数列呈现递减趋势。
2. 通项公式:对于等比数列 a₁, a₂, a₃, ... ,若 a₁是首项,r 是公比,n 是项数,则第 n 项 aₙ = a₁ * r^(n-1)。
3. 特殊性质:若等比数列的首项不等于0,则任意一项都不为0。
若等比数列的首项为a,公比为r,则数列中除了首项以外的其他项的和为 S = a * (r^n - 1) / (r - 1)。
二、等比数列的应用1. 高利贷问题:高利贷问题中的本金和利息往往呈现等比数列的关系。
通过计算等比数列的和,可以帮助我们理解高利贷背后的利息计算原则,并避免陷入高利贷的陷阱。
2. 折半查找算法:在计算机科学中,折半查找算法常常运用等比数列的性质。
该算法通过将查找范围不断折半,缩小查找范围,直到找到目标元素为止。
这种算法的时间复杂度为 O(log n),具有高效的特点。
3. 复利计算:在金融领域中,复利计算常常与等比数列紧密相关。
当存款、贷款或投资的利率按照一定的期限计算时,利息会按照等比数列的方式不断增长。
通过对等比数列的计算,可以帮助我们了解复利计算的规律,指导我们做出科学的理财决策。
总结:等比数列作为一种数学工具,具有重要的性质和广泛的应用。
通过了解等比数列的性质,我们可以在数学问题中灵活运用,提高解题能力;同时,等比数列的应用也渗透到各个领域,为我们解决实际问题提供了理论和方法支持。
因此,熟练掌握等比数列的性质和应用,对于我们的数学学习和实际生活都具有积极的意义和影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
例3: 三个数成等比数列,它们的和等于21, 倒数的和等于 7 ,求这三个数.
12
• 分析:若三个数成等差数列,则设这三个数为a-d,a,a+d.
• 由类比思想的应用可得:
若三个数成等比数列,则设这三个数
a 为,
a,
a q,再联立方程组.
q
.
三个正数成等比数列,他们的和等于21,
倒数的和等于 7 ,求这三个数.
若n+m=p+q
则bn bm=bp bq
.
-128
⒉在等比数列{an}中,且an>0, a2 a4+2a3a5+a4a6=36,那么a3+a5= _ 6 .
⒊在等比数列{an}中,若 a4a7a13 a1662, 5
则a10= 5 .
变 式 : ( 1 ) 在 等 比 数 列 a n 中 , a 1 1 ,a 5 9 ,
则 a 33
, q 3 . .
则2an=an+k+ an-k.
是{bn}中的三项, 则 bn2 bnk bnk .
性质3: 若n+m=p+q,
则am+anБайду номын сангаасap+aq.
猜想3:若n+m=p+q,
则bn ·bm=bp ·bq.
.
bn bmqnm .
证明:
bmb1qm 1,bnb1qn1,
b m qn mb 1qm 1qn m
中项 a,A,b成等差,则2A=a+b .
a,G,b成等比, 则G2=ab
由等差数列的性质,猜想等比数列的性质
{an}是公差为d的等差数列 {bn}是公比为q的等比数列
性质1:an=am+(n-m)d. 猜想1:bn bmqnm.
性质2:若an-k,an,an+k
猜想2:
是{an}中的三项,
若bn-k,bn,bn+k
符号 表示
首项a1, 公差d
首项a1, 公比q(q≠0)
d与{an} q与{an}
d>0 d<0 d=0
{an }递增 {an }递减 {an }为常数列
q>0 q<0 q=1
{an }中各项同号 {an }中的项正负相间 {an }为非零常数列
通项 公式
an= a1+(n-1)d
an= a1·qn-1
.
当堂巩固:
.
小结
等差数列与等比数列的性质
{an}是公差为d的等差数列
{bn}是公比为q的等比数列
性质1:an=am+(n-m)d
bn bmqnm
性质2:若an-k,an,an+k 是{an}中的三项, 则2an=an+k+ an-k.
性质3: 若n+m=p+q
则am+an=ap+aq
.
若bn-k,bn,bn+k 是{bn}中的三项 则 bn2 bnk • bnk .
12
解:设三个正数为
a , a, a q.
q
a aaq 21, a(1 1q) 21,
q
q
得
q1 1 7, a a aq 12
1(q11) 7 .
a
q 12
a2 36. a6,
.
q 2或1 . 2
变式:
已知数列an满足a1 1,an1 2an 1, (1)求证:数列an 1是等比数列;
(2 )求 数 列 a n 的 通 项 公 式 .
b1 qn1
.
b
n
.
若n+m=p+q, 则bn bm=bp bq.
证明: b nb m b 1q 1 n 1b 1q 1 m 1
b12 q1nm2, bpbqb1q1p 1b1q1q 1
nmp q b1, 2 qb1npbqm2, bpbq.
.
例1:
⒈在等比数列{an}中,a2=-2,a5=16,a8=
等比数列的性质及其应用(1)
.
等差数列
等比数列
如果一个数列从第2项起, 如果一个数列从第2项起,每
定义
每一项与它前一项的差等于 同一个常数,那么这个数列
一项与它的前一项的比等于同 一个常数,那么这个数列就叫
就叫做等差数列.
做等比数列.
数学 表达
an+1-an= d(常数)
an+1 an
=
q(常数)