千题百炼高中数学100个热点问题第75炼几何问题的转换
2021高考数学热点问题千题百炼《第75炼 几何问题的转换》

(5)平行(共线)线段的比例问题:可转化为向量的数乘关系
(6)平行(共线)线段的乘积问题:可将线段变为向量,从而转化为向量数量积问题(注
意向量的方向是同向还是反向)
第九章
第 75 炼 几何问题的转换
解析几何
3、常见几何图形问题的转化
(1)三角形的“重心”:设不共线的三点 A x1, y1 , B x2, y2 ,C x3, y3 ,则 ABC 的重
第九章
第 75 炼 几何问题的转换
解析几何
第 75 炼 几何问题的转换
一、基础知识:
在圆锥曲线问题中,经常会遇到几何条件与代数条件的相互转化,合理的进行几何条件
的转化往往可以起到“四两拨千斤”的作用,极大的简化运算的复杂程度,在本节中,将列
举常见的一些几何条件的转化。
1、在几何问题的转化中,向量是一个重要的桥梁:一方面,几何图形中的线段变为有向线
B 2,0
kBQ
0 3 k
2 2
3 4k
kBQ kBP
kBP
0 2
12k
4k 2 3 6 8k 2
4k 2 3
12k 16k 2
3 4k
B,Q, P 三点共线
x2
例 2:已知椭圆
a2
y2 b2
1(a b 0) 的右焦点为 F , M
为上顶点, O 为坐标原点,若
△ OMF 的面积为 1 ,且椭圆的离心率为 2 .
心
G
x1
x2 3
x3
,
y1
y2 3
y3
(2)三角形的“垂心”:伴随着垂直关系,即顶点与垂心的连线与底边垂直,从而可转化为
向量数量积为零
(3)三角形的“内心”:伴随着角平分线,由角平分线性质可知(如
千题百炼——高中数学100个热点问题(三):第90炼 取球问题

第90炼 取球问题一、基础知识:在很多随机变量的题目中,常以“取球”作为故事背景,通过对“取球”提出不同的要求,来考察不同的模型,常见的模型及处理方式如下:1、独立重复试验模型:关键词“可放回的抽取”,即下一次的取球试验与上一次的相同。
2、超几何分布模型:关键词“不放回的抽取”3、与条件概率相关:此类问题通常包含一个抽球的规则,并一次次的抽取,要注意前一次的结果对后一步抽球的影响4、古典概型:要注意虽然题目中会说明“相同的”小球,但是为了能使用古典概型(保证基本事件为等可能事件),通常要将“相同的”小球视为“不同的”元素,在利用排列组合知识进行分子分母的计数。
5、数字问题:在小球上标注数字,所涉及的问题与数字相关(奇,偶,最大,最小等),在解决此类问题时,要将数字模型转化为“怎样取球”的问题,从而转化为前几个类型进行求解。
二、典型例题:例1:一袋中有6个黑球,4个白球(1)不放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (2)有放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (3)有放回的依次取出3个球,求取到白球个数X 的分布列,期望和方差(1)思路:因为是不放回的取球,所以后面取球的情况受到前面的影响,要使用条件概率相关公式进行计算。
第一次已经取到白球,所以剩下6个黑球,3个白球;若第二次取到黑球,则第三次取到黑球的概率为6598⋅,若第二次取到白球,则第三次取到黑球的概率为3698⋅,从而能够得到第三次取到黑球的概率 解:设事件A 为“不放回取球,第一次取出白球时,第三次取到黑球”()65364829898723P A ∴=⋅+⋅== (2)思路:因为是有放回的取球,所以每次取球的结果互不影响,属于独立重复试验模型,所以第三次取球时依然是6个黑球,3个白球,取得黑球的概率为69解:设事件B 为“有放回取球,第一次取出白球时,第三次取到黑球”()23P B ∴=(3)思路:本问依然属于独立重复试验模型,X 的取值为0,1,2,3,则X 符合二项分布,即23,5XB ⎛⎫⎪⎝⎭,所以可通过二项分布的概率计算公式求得概率,得到分布列 解:X 的取值为0,1,2,3,依题意可得:23,5XB ⎛⎫ ⎪⎝⎭()30332705125P X C ⎛⎫∴=== ⎪⎝⎭ ()2133254155125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()12233236255125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()3332835125P X C ⎛⎫=== ⎪⎝⎭23,5XB ⎛⎫⎪⎝⎭26355EX ∴=⋅= 231835525DX =⋅⋅=例2:已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各任取2个球 (1)求取出的4个球中没有红球的概率 (2)求取出的4个球中恰有1个红球的概率(3)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望思路:本题这三问的关键在于所取球中红球的个数,考虑红球个数来自于两个盒内拿出红球个数的总和,所以可将红球总数进行分配,从而得到每个盒中出红球的情况,进而计算出概率(1)设事件i A 为“甲盒中取出i 个红球”,事件j B 为“乙盒中取出j 个红球”则()()2213332246,i i j ji j C C C C P A P B C C --== 设事件A 为“4个球中没有红球”则()()()0202133300224633161510C C C C P A P A P B C C =⋅=⋅=⋅= (2)设事件B 为“4个球中恰有1个红球”()()()0211110213331333011022224646393326156155C C C C C C C C P B P A B P A B C C C C ∴=+=⋅+⋅=⋅+⋅= (3)ξ可取的值为0,1,2,3()()1010P P A ξ∴===()()215P P B ξ===()()()0220111113331333021122224646225C C C C C C C C P P A B P A B C C C C ξ==+=⋅+⋅= ()()11021333122246331361510C C C C P P A B C C ξ===⋅=⋅=ξ∴的分布列为:01231055102E ξ∴=⨯+⨯+⨯+⨯=例3:甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记成功取法次数为随机变量X ,求X 的分布列和数学期望.解:(1)设事件A 为“两只手中所取的球颜色不同”,则A 为“两只手中所取的球颜色相同”()()2333432119999993P A P A ⎛⎫=-=-⋅+⋅+⋅= ⎪⎝⎭(2)X 可取的值为0,1,2左手取球成功的概率222234129518C C C P C ++==右手取球成功的概率22233322914C C C P C ++== ()511301118424P X ⎛⎫⎛⎫∴==-⋅-= ⎪ ⎪⎝⎭⎝⎭()5151711118418418P X ⎛⎫⎛⎫==-⋅+⋅-= ⎪ ⎪⎝⎭⎝⎭ ()515218472P X ==⋅=X ∴的分布列为01224187236EX ∴=⨯+⨯+⨯= 例4:袋中装有若干个质地均匀大小相同的红球和白球,白球数量是红球数量的两倍,每次从袋中摸出一个球,然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直到第5次摸球后结束(1)求摸球四次就停止的事件发生的概率(2)记摸到红球的次数为ξ,求随机变量ξ的分布列及其期望(1)思路:本题为有放回摸球,可理解为独立重复试验,如果摸球四次就停止,说明在这四次中一共摸到3次红球,且前三次有两次摸到红球,第四次又摸到红球。
千题百炼- 立体几何空间距离与截面100题(原卷版)

专题18 立体几何空间距离与截面100题任务一:空间中的距离问题1-60题一、单选题1.《九章算术·商功》:“斜解立方,得两塹堵,斜解塹堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以基,其形露矣.”文中“阳马”是底面为长方形且有一条侧棱与底面垂直的四棱锥.在阳马P ABCD -中,侧棱PA ⊥底面ABCD ,且1PA =,2AB AD ==,则点A 到平面PBD 的距离为( )A .3 B C D2.已知直线l 过定点()2,3,1A ,且方向向量为0,1,1s,则点4,3,2P 到l 的距离为( )A B C D3.在ABC 中,5AB AC ==,8BC =,若PA ⊥平面ABC ,4PA =,则点P 到BC 的距离是( )A B .5 C .D .4.在四面体P ABC -中,P A ,PB ,PC 两两垂直,设PA PB PC a ===,则点P 到平面ABC 的距离为( )A B C .3a D5.已知直线l 的方向向量为()=1,0,1a ,点()1,2,1A -在l 上,则点()3,1,1P 到l 的距离为( )A .B .1C .3D .26.已知棱长为2的正方体1111ABCD A B C D -,E ,F 分别为1A B 和11B D 的中点,则点B 到EF 的距离为( )A B C .2 D7.若平面α的一个法向量为()1,2,2n →=,点()3,0,2A ,()5,1,3B ,A α,B α∈,A 到平面α的距离为( )A .1B .2C .3D .48.已知(2,1,0),(1,0,1),(3,2,3)A B C ,则点A 到直线BC 的距离为( )A B C D9.如图,在棱长为2的正方体ABCD A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为( )A BC D 10.如图所示的三棱锥P ABC -,PA ⊥平面ABC ,π2ABC ∠=,若PA a =,AB c =,10PB =,BC =ac 取最大值时,点A 到平面PBC 的距离为( )A B C .D .511.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,E 为A 1B 1的中点,下列说法中正确的是()A .ED 1与B 1C 所成的角大于60°B .点E 到平面ABC 1D 1的距离为1C .三棱锥E ﹣ABC 1D .直线CE 与平面ADB 1所成的角为4π12.如图,正方体1111ABCD A B C D -的棱长为2,M 为棱11D C 的中点,N 为棱1CC 上的点,且(02)CN a a =<<,现有下列结论: ①当23a =时,//AM 平面BDN ;②存在(0,2)a ∈,使得MN ⊥平面BDN ;③当1a =时,点C 到平面BDN ;④对任意(0,2)a ∈,直线AM 与BN 都是异面直线.其中所有正确结论的编号为( )A .①②B .①③C .②④D .③④13.重心是几何体的一个重要性质,我国的国宝级文物东汉铜奔马(又名:马踏飞燕)就是巧妙利用了重心位于支点正上方这一性质而闻名于世.已知正三棱锥的重心是其每个顶点与其所对的面的三角形重心连线的交点.若正三棱锥H ABC -的底面边长为2,侧棱长为G 到底面的距离为( )A B C D14.三棱锥S ABC -中,SA ⊥底面ABC ,4SA =,3AB =,D 为AB 的中点,90ABC ∠=︒,则点D 到面SBC 的距离等于( ) A .125 B .95 C .65 D .3515.在棱长为a 的正方体1111ABCD A B C D -中,E ,F ,G 分别是AD ,1AA ,11A B 的中点,则点B 到平面EFG 的距离为( ).A .12a B C .a D16.已知正方形ABCD 的边长为4,CG ⊥平面ABCD ,CG =2,E 、F 分别是AB 、AD 的中点,则点B 到平面GEF 的距离为( )A B C D17.如图,在长方体1111ABCD A B C D -中,4AB =,2BC =,12CC =,E 是CD 的中点,求D 到面1D EB 的距离为( )A BC D18.如图,在长方体1111ABCD A B C D -中,2AB BC ==,1AA E ,F 分别是平面1111D C B A 与平面11BCC B 的对角线交点,则点E 到直线AF 距离为( )A B C D 19.已知AB ⊥平面α,垂足为点B ,且AO 与α相交于点O ,60AOB ∠=︒,射线OC 在α内,且30BOC ∠=︒,6OA =,则点A 到直线OC 的距离是( )A .6BC D .20.定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在棱长为1的正方体1111ABCD A B C D -中,直线AC 与1BC 之间的距离是( )A .2 B C .12 D .1321.如图,在正方体1111ABCD A B C D -中,M 、N 、P 、Q 分别是所在棱的中点,则下列结论不正确的是( )A .点1C 、1D 到平面PMN 的距离相等B .PN 与QM 为异面直线C .90PNM ∠=D .平面PMN 截该正方体的截面为正六边形22.正方体1111ABCD A B C D -的棱长为2,G 为1AA 的中点,则直线BD 与平面11GB D 的距离为( )A B C D23.如图,在棱长为1的正方体1111ABCD A B C D -中,P 为11A D 的中点,Q 为11A B 上任意一点,E ,F 为CD 上两个动点,且EF 的长为定值,则点Q 到平面PEF 的距离( )A B .和EF 的长度有关C D .和点Q 的位置有关24.如图所示,在棱长为2的正方体1111ABCD A B C D -中,M ,N 分别为11C D ,1C C 的中点,其中正确的结论是( )A .直线MN 与AC 所成的角为45°B .直线AM 与BN 是平行直线C .二面角N BD C --D .点C 与平面MAB25.在三棱锥P ABC -中,AB BC ⊥,AB BC ==PA =O 是AC 的中点,OP ⊥底面ABC ,则点O 到平面PAB 的距离为( )A B C D26.如图,已知在长方体1111ABCD A B C D -中,14,8AB BC AA ===,点H 在棱1AA 上,且12HA =,在侧面11BCC B 内作边长为2的正方形1,EFGC P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 的距离等于线段PF 的长,则当点P 在侧面11BCC B 上运动时,2HP 的最小值是( )A .12B .24C .48D .6427.如图所示,ABCD —EFGH 为边长等于1的正方体,若P 点在正方体的内部且满足321432AP AB AD AE =++,则P 点到直线BC 的距离为( )A .34BC .45 D28.若正四棱柱1111ABCD A B C D -的底边长为2,13B AB π∠=,E 是1D D 的中点,则11A C 到平面EAC 的距离为( )A B .C D 29.已知正方体1111ABCD A B C D -的棱长为1,点P 为线段1AC 上一点,1PA =,则点P 到平面ABCD 的距离为( )A .BC .3D .430.已知△ABC 在平面β内,不重合的两点P ,Q 在平面β同侧,在点M 从P 运动到Q 的过程中,记四面体M -ABC 的体积为V ,点A 到平面MBC 的距离为d ,则可能的情况是( )A .V 保持不变,d 先变大后变小B .V 保持不变,d 先变小后变大C .V 先变大后变小,d 不断变大D .V 先变小后变大,d 不断变小二、多选题31.已知四面体ABCD 的每个顶点都在球O (O 为球心)的球面上,ABC 为等边三角形,M 为AC 的中点,2AB BD ==,AD AC BD ⊥,则( )A .BM ⊥平面ACDB .O ∉平面ABCC .O 到ACD .二面角A CD O --32.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,//AB CD ,4AB =,12BC CD D C ===,1D C ⊥底面ABCD ,则( )A .BC ⊥平面1ACDB .直线1DD 与底面ABCD 所成的角为4πC .平面11ABCD 与平面ABCD 夹角的余弦值为7D .点C 到平面11ABC D 33.如图,在正方体1111ABCD A B C D -中,点O 在线段AC 上移动,点M 为棱1BB 的中点,则下列结论中正确的有( )A .1//D O 平面11A BCB .1D OM ∠的大小可以为90°C .异面直线1D O 与11A C D .存在实数[]0,1λ∈,使得()111312D M C B D C AB λλ---=成立34.在直三棱柱中,13AA AB BC ===,2AC =,D 是AC 的中点,下列判断正确的是()A .1BC ∥平面1A BD B .面1A BD ⊥面11AAC CC .直线1B C 到平面1A BDD .点1A 到直线BC35.关于棱长为()0a a >的正方体1111ABCD A B C D -,下列结论正确的是( )A .11AB AD ⊥ B .点C 到平面1A BDC .异面直线1BD 与1C D 所成的角是60︒D .二面角11A BD C --的余弦值为1336.如图,四棱柱1111ABCD A B C D -的底面ABCD 是正方形,O 为底面中心,1A O ⊥平面ABCD ,1AB AA = )A .1B 坐标是()1,1,1B .平面1OBB 的法向量()1,1,1n =-C .1A C ⊥平面1OBBD .点A 到平面1OBB 37.正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别为11,,BC CC BB 的中点,则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为92D .点C 到平面AEF 的距离为2338.如图所示,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,侧面P AD 是边长为面ABCD 为矩形,且CD =Q 是PD 的中点,则下列结论描述正确的是( )A .CQ ⊥平面P ADB .B ,Q 两点间的距离等于C .DC 与平面AQC 所成的角为60°D .三棱锥B AQC -的体积为1239.如图,在菱形ABCD 中,AB =60BAD ∠=︒,沿对角线BD 将ABD △折起,使点A ,C 之间的距离为P ,Q 分别为直线BD ,CA 上的动点,则下列说法正确的是( )A .当AQ QC =,4PD DB =时,点D 到直线PQB .线段PQC .平面ABD ⊥平面BCDD .当P ,Q 分别为线段BD ,CA 的中点时,PQ 与AD40.已知四面体ABCD 的所有棱长均为2,则下列结论正确的是( )A .异面直线AC 与BD 所成角为60︒B .点A 到平面BCDC .AB CD ⊥D .四面体ABCD第II 卷(非选择题)三、填空题41.已知正方体1111ABCD A B C D -的棱长为1,异面直线1BB 与AC 的距离为____________.42.已知直线l 过点(0,0,0)A ,点(1,1,0)B ,则点(0,1,1)C 到直线l 的距离是_________.43.如图,正三角形ABC 的边长为2,P 是三角形ABC 所在平面外一点,PA ⊥平面ABC ,且1PA =,则P 到BC 的距离为___________.44.平面α的法向量是()2,2,1n =--,点()1,3,0A -在平面α内,则点()2,1,4P -到平面α的距离为______.45.在直三棱柱111ABC A B C -中,1AC BC ==,AB =,12AA =,则点C 到平面1ABC 的距离为____________.46.如图,已知,,60,1AP BP AP PC ABP ACP BAC PA ⊥⊥∠=∠=∠=︒=,D 是BC 中点,则点B 到平面APD 的距离是___________.47.在正方体1111ABCD A B C D -中,4AB =,则异面直线AB 和1A C 的距离为___________.48.如图所示,正方形ABCD 和正方形ABEF 的边长都是1,且它们所在平面互相垂直,若点M 在线段BF 上运动,记BM a =,则当=a ___________时,点M 到直线AC 的距离有最小值.49.如图,已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点,点1C 到平面1AB D 的距离为_____________.50.已知正方体1111ABCD A B C D -的棱长为2,点E 为11A D 中点,点P 、M 在四边形ABCD 内(包括边界),点P 到平面11ABB A 的距离等于它到点D 的距离,直线1//MB 平面1EC D ,则PM 的最小值为___________.四、解答题51.如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=,30BAC ∠=,1A AC 是边长为2的等边三角形.(1)求二面角1A BC A --的大小的正切值;(2)求直线11B C 到平面1A BC 的距离.52.如图,在四棱锥E ABCD -中,底面为菱形,已知60DAB BAE ∠=∠=︒,2AD AE ==,DE =(1)求证:平面ABE ⊥平面ABCD ;(2)求点B 到平面AED 的距离.53.在长方体1111ABCD A B C D -中,12,1AB BB BC ===,E 是面对角线1CD 上一点,且145CE CD =.(1)求证:1AE CD ⊥;(2)设异面直线1AB 与1BD 所成角的大小为α,求cos α的值. (3)求点A 到平面1BCD 的距离.54.如图,在三棱锥D ABC -中,AB BD ⊥,BC CD ⊥,M 、N 分别是线段AD 、BD 的中点,1MC =,AB BD ==(1)证明:平面MNC ⊥平面BCD ;(2)若60CBD ∠=︒,求点B 到平面MNC 的距离.55.如图,三棱柱111ABC A B C -的所有棱长都是2,1AA ⊥平面ABC ,M 为AB 的中点,点N 为1CC 的中点.(1)求证:直线//MN 平面11A BC ;(2)求直线MN 到平面11A BC 的距离.56.如图,四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//AF DE ,3DE AF =,BE 与平面ABCD 所成角为60︒.(1)求证://BF 平面CDE ;(2)求点D 到平面BEF 的距离.57.如图所示的四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,//AD BC ,90BAD ∠=︒,2PA AB BC AD ===,点E 为PB 的中点.(1)求证://AE 平面PCD ;(2)若四棱锥P ABCD -的体积为2,求点A 到平面PCD 的距离.58.如图所示,边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平面互相垂直且DE =//ED AF 且90DAF ∠=︒.(1)求BD 和面BEF 所成的角的正弦; (2)求点C 到直线BD 的距离;(3)线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,若存在,求EP 与PF 的比值:若不存在,说明理由.59.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为菱形,2AP AD ==,60ABC ∠=︒.点E ,F 分别在棱P A ,PB ,且//EF AB .(1)求证://EF CD ;(2)若直线PD 与平面CEF (i )求点P 与到平面CEF 的距离;(ii )试确定点E 的位置.60.如图,已知在四棱锥P ABCD -中,PA ⊥平面ABCD ,点Q 在棱PA 上,且44PA PQ ==,底面为直角梯形,90CDA BAD ∠=∠=︒,2AB =,1CD =,AD =M ,N 分别是PD ,PB 的中点.(1)求证://MQ 平面PCB ;(2)求点A 到平面MCN 的距离.任务二:几何体截面问题1-40题一、单选题1.已知正方体1111ABCD A B C D -的棱长为1,P 是空间中任意一点,有下列结论:△若P 为棱1CC 中点,则异面直线AP 与CD ;△若P 在线段1A B 上运动,则1AP PD + △若P 在以CD 为直径的球面上运动,当三棱锥P ABC -体积最大时,三棱锥P ABC -外接球的表面积为2π;△若过点P 的平面α与正方体每条棱所成角相等,则α 其中正确结论的个数为( ) A .4 B .3 C .2 D .12.已知正方体1111ABCD A B C D -,平面π和线段1AA ,1BB ,1CC ,1DD 分别交于点E ,F ,G ,H ,则截面EFGH 的形状不可能是( ) A .梯形 B .正方形 C .长方形 D .菱形3.如图正方体1111ABCD A B C D -,棱长为1,P 为BC 中点,Q 为线段1CC 上的动点,过A 、P 、Q 的平面截该正方体所得的截面记为Ω.若1CQ CC λ→→=,则下列结论错误的是( )A .当102λ∈⎛⎫⎪⎝⎭,时,Ω为四边形B .当12λ=时,Ω为等腰梯形C .当3,14λ⎛⎫∈ ⎪⎝⎭时,Ω为六边形D .当1λ=时,Ω4.如图,在正方体1111ABCD A B C D -中,M 、N 、P 分别是棱11C D 、1AA 、BC 的中点,则经过M 、N 、P 的平面与正方体1111ABCD A B C D -相交形成的截面是一个( )A .三角形B .平面四边形C .平面五边形D .平面六边形5.如图,在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,则过三点A 、D 1、E 的截面过( )A .AB 中点 B .BC 中点 C .CD 中点 D .BB 1中点6.正方体1111ABCD A B C D -的棱长为2,E 是棱1DD 的中点,则平面1AC E 截该正方体所得的截面面积为( )A .5B .C .D .7.正三棱柱ABC ﹣A 1B 1C 1中,所有棱长均为2,点E ,F 分别为棱BB 1,A 1C 1的中点,若过点A ,E ,F 作一截面,则截面的周长为( )A .B .C .D .8.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面.平面α以任意角度截正方体,所截得的截面图形不可能为( ) A .等腰梯形 B .非矩形的平行四边形 C .正五边形 D .正六边形9.如图,正方体111ABCD A B C D -的棱长为1△P 为BC 的中点,Q 为线段1CC 上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S . ①当102CQ时,S 为四边形; ②当34CQ 时,S 与11C D 的交点R 满足113C R ; ③当314CQ时,S 为六边形;④当1CQ =时,S 则下列选项正确的是( )A .①②③B .①②④C .①③④D .②③④10.如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S .则下列命题中正确命题的个数为( )①当102CQ时,S 为四边形; ②当12CQ 时,S 为等腰梯形; ③当34CQ 时,S 与11C D 的交点1R 满足1113C R =;④当314CQ时,S 为六边形;A .1B .2C .3D .411.正方体1111ABCD A B C D -的棱长为1,E 、F ,G 分别为BC ,1CC ,1BB 的中点,有下述四个结论,其中正确的结论是( )①直线1GA 与平面AEF 平行;②平面AEF 截正方体所得的截面面积为98;③直线1A G 与直线EF 所成的角的余弦值为; ④点C 与点B 到平面AEF 的距离相等. A .①④ B .①②C .①②④D .①②③④12.如图,正方体1111ABCD A B C D -中,点E ,F ,分别是AB ,BC 的中点,过点1D ,E ,F 的截面将正方体分割成两个部分,记这两个部分的体积分别为()1212,V V V V <,则12:V V =( )A .13B .35C .2547 D .7913.如图,在正方体1111ABCD A B C D -中,点P 为线段11A C 上的动点(点P 与1A ,1C 不重合),则下列说法不正确的是( )A .BD CP ⊥B .三棱锥C BPD -的体积为定值C .过P ,C ,1D 三点作正方体的截面,截面图形为三角形或梯形 D .DP 与平面1111D C B A 所成角的正弦值最大为1314.正方体1111ABCD A B C D -的棱长为4,12B P PC =,113D Q QC =,用经过B ,P ,Q 三点的平面截该正方体,则所截得的截面面积为( )A.B .C D .15.如图,ABCD A B C D ''''-为正方体,任作平面α与对角线AC '垂直,使得α与正方体的每个面都有公共点,记这样得到的截面多边形的面积为S ,周长为l ,则( )A .S 为定值,l 不为定值B .S 不为定值,l 为定值C .S 与l 均为定值D .S 与l 均不为定值16.如图,在正方体1111ABCD A B C D -中,AB =2,E 为棱BC 的中点,F 为棱11A D 上的一动点,过点A ,E ,F 作该正方体的截面,则该截面不可能是( )A .平行四边形B .等腰梯形C .五边形D .六边形17.如图,在棱长为2的正方休1111ABCD A B C D -中,E ,F ,G 分别为11A D ,11A B ,1BB ,的中点,过E ,F ,G 三点的平而截正方休1111ABCD A B C D -所得的截面面积为( )A .4B .CD .18.正方体1111ABCD A B C D -的棱长为2,,,E F G 分别为11,,BC CC BB 的中点.则下列说法错误的是( )A .直线A 1G 与平面AEF 平行B .直线DD 1与直线AF 垂直C .异面直线A 1G 与EFD .平面AEF 截正方体所得的截面面积为9219.如图所示,在正方体1111ABCD A B C D -中,4AB =,M 、N 分别为棱11A D 、11A B 的中点,令过点B 且平行于平面AMN 的平面α被正方体的截面图形为Ω,若在Ω内随机选择一点P ,则点P 在正方体1111ABCD A B C D -内切球内的概率为( )A .427π B .1681πC .827π D .3281π20.已知正方体1111ABCD A B C D -内切球的表面积为π,P 是空间中任意一点: △若点P 在线段1AD 上运动,则始终有11C P CB ⊥; △若M 是棱11C D 中点,则直线AM 与1CC 是相交直线; △若点P 在线段1AD 上运动,三棱锥1D BPC -体积为定值;△E 为AD 中点,过点1B ,且与平面1A BE 以上命题为真命题的个数为( ) A .2 B .3 C .4 D .5二、多选题21.已知正方体1111ABCD A B C D -的棱长为1,下列结论正确的有( ) A .异面直线1CA 与11B D 所成角的大小为π3B .若E 是直线AC 上的动点,则1DE ∥平面11A BCCD .若此正方体的每条棱所在直线与平面α所成的角都相等,则α22.如图,棱长为1的正方体111ABCD A BC D -中P 为线段1A B 上的动点(不含端点)则下列结论正确的是( )A .直线1D P 与AC 所成的角可能是6π B .平面11D A P ⊥平面1A AP C .三棱雉1D CDP -的体积为定值D .平面1APD 截正方体所得的截面可能是直角三角形23.如图,在正方体1111ABCD A B C D -中,点E ,F 分别为11A B ,BC 的中点,设过点E ,F ,1D 的平面为α,则下列说法正确的是( )A .1EFD △为等边三角形;B .平面α交正方体1111ABCD A BCD -的截面为五边形;C .在正方体1111ABCD A B C D -中,存在棱与平面α平行; D .在正方体1111ABCD A B C D -中,不存在棱与平面α垂直;24.(多选)已知正方体1111ABCD A B C D -,若1AC ⊥平面α,则关于平面α截此正方体所得截面的判断正确的是( )A .截面形状可能为正三角形B .截面形状可能为正方形C .截面形状可能为正六边形D .截面形状可能为五边形25.如图,在棱长为1的正方体1111ABCD A B C D -中,P ,M ,N 分别为棱1CC ,CB ,CD 上的动点(点P 不与点C ,1C 重合),若CP CM CN ==,则下列说法正确的是( )A .存在点P ,使得点1A 到平面PMN 的距离为43B .用过P ,M ,1D 三点的平面去截正方体,得到的截面一定是梯形C .1//BD 平面PMND .用平行于平面PMN 的平面α去截正方体,得到的截面为六边形时,该六边形周长一定为26.如图所示,在棱长为2的正方体1111ABCD A B C D -中,M ,N 分别为棱11C D ,1C C 的中点,则下列结论正确的是( )A .直线AM 与BN 是平行直线B .直线MN 与AC 所成的角为60°C .直线MN 与平面ABCD 所成的角为45°D .平面BMN 截正方体所得的截面面积为3227.如图,在正方体1111ABCD A B C D -中,点P 为线段11A C 上的动点(点P 与1A ,1C 不重合),则下列说法正确的是( )A .BD CP ⊥B .三棱锥C BPD -的体积为定值C .过P ,C ,1D 三点作正方体的截面,截面图形为三角形或梯形D .DP 与平面1111D C B A 所成角的正弦值最大为1328.如图所示,在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为棱11A D ,1DD 的中点,则以下四个结论正确的是( )A .1//BC MNB .若P 为直线1CC 上的动点,则111B P BC ⋅为定值C .点A 到平面1C MN 的距离为13D .过MN 作该正方体外接球的截面,所得截面的面积的最小值为38π29.如图,正方体1111ABCD A B C D -的棱长为2,E ,F 分别为AD ,1AA 的中点,则以下说法正确的是( )A .平面EFC 截正方体所得截面周长为B .1BB 上存在点P ,使得1C P ⊥平面EFCC .三棱锥B EFC -和1D FB C -体积相等D .1BB 上存在点P ,使得//AP 平面EFC30.如图,正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为BC ,1CC ,1BB 的中点,则( )A .直线1A D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为98D .点B 到平面AEF 的距离为13第II 卷(非选择题)三、填空题31.已知正四棱柱1111ABCD A B C D -中,1124BE BB ==,143AB AA =,则该四棱柱被过点1A ,C ,E 的平面截得的截面面积为______.32.正三棱锥P ABC -AB ==E 在棱PA 上,且3PE EA =,已知点P A B C 、、、都在球O 的表面上,过点E 作球O 的截面α,则α截球O 所得截面面积的最小值为___________.33.已知在棱长为6的正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是棱C 1D 1,B 1C 1的中点,过A ,E ,F 三点作该正方体的截面,则截面的周长为________.34.正方体1111ABCD A B C D -的棱长为1,,,E F G 分别为11,,BC CC BB 的中点,下列四个选项①直线1D D 与直线AF 垂直②直线1A G 与平面AEF 平行③平面AEF 截正方体所得的截面面积为98④点C 和点G 到平面AEF 的距离相等;其中正确的是____________35.如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A ,P ,Q的平面截该正方体所得的截面记为S ,则下列命题正确的是______ (写出所有正确命题的编号).①当102CQ 时,S 为四边形; ②当12CQ时,S 为等腰梯形; ③当34CQ时,S 与11C D 的交点R 满足113C R ; ④当314CQ 时,S 为六边形 四、解答题36.如图,在正方体1111ABCD A B C D -中,E F ,分别为11A D 和1CC 的中点.(1)画出由A ,E ,F 确定的平面β截正方体所得的截面,(保留作图痕迹,使用铅笔作图);(2)求异面直线EF 和AC 所成角的大小.37.已知正三棱柱的所有棱长都是1(1)画经过ABC 三点的截面(2)过棱BC 作和底面成60二面角的截面,求此截面面积.38.如图,在正方体1111ABCD A B C D 中,S 是11B D 的中点,E ,F ,G 分别是BC ,DC ,SC 的中点.求证:(1)直线//EG 平面11BDD B ;(2)平面//EFG 平面11BDD B ;(3)若正方体棱长为1,过A ,E ,1C 三点作正方体的截面,画出截面与正方体的交线,并求出截面的面积.39.(1)如图,棱长为2的正方体1111ABCD A B C D -中,M ,N 是棱11A B ,11A D 的中点,在图中画出过底面ABCD 中的心O 且与平面AMN 平行的平面在正方体中的截面,并求出截面多边形的周长为:______;(2)作出平面PQR 与四棱锥ABCDE 的截面,截面多边形的边数为______.40.如图①,正方体1111ABCD A B C D -的棱长为2,P 为线段BC 的中点,Q 为线段1CC 上的动点,过点A 、P 、Q 的平面截该正方体所得的截面记为S .(1)若12CQ <<,请在图①中作出截面S (保留尺规作图痕迹);(2)若1CQ =(如图②),试求截面S 将正方体分割所成的上半部分的体积1V 与下半部分的体积2V 之比.。
千题百炼——高中数学100个热点问题(三):第79炼 利用点的坐标解决圆锥曲线问题

解 设 P ( x0 , y0 )
Q PQ
x 轴平行,
∴ 设 Q ( x1 , y0 ) ,由 P, Q 所在椭圆和圆方程可得
2 2 x0 y0 2 2 =1 + x0 = 4 − 2 y0 ⇒ 2 2 4 2 x1 = 2 − y0 x2 + y 2 = 2 0 1
由椭圆可知
A ( −2,0 ) , B ( 2,0 )
2 y0 M 0, x0 + 2
∴ k AP =
第九章
第 79 炼 利用点的坐标处理解析几何问题
解析几何
第 79 炼 利用点的坐标处理解析几何问题
有些解析几何的题目,问题的求解 依赖于传统的 设点,联立,消元,韦达定理整体 入 骤,而是能够计算出交点的坐标,且点的坐标并 复杂,然后 点的坐标作为 心
去处理问题 一 令 将 基础知识 韦达定理的实质 在处理解析几何的问题时,韦达定理的运用最频繁的,甚 视为 必备结构 ,无论 有的学生
∴ QM ⊥ QN ,即 ∠MQN =
π
2
为定值 入手点 例如 AP ,以斜率 k 作 核心变 用k 表
思路二:本题还可以以 AP, BP 其中一条直线 量,直线 AP
椭圆交于 A, P 两点,已知 A 点坐标利用韦达定理可解出 P 点坐标
示 ,从而可进一 将 及的点的坐标都用 k 来进行表示,再计算 QM ⋅ QN = 0 也可以,计 算 解 所 骤如 : 设 P ( x0 , y0 ) ,由椭圆方程可得
千题百炼——高中数学100个热点问题(三):第85炼 几何概型

ADF − BCE 内自由飞翔,由它飞入几何体 F − AMCD 内的概率为
第十一章
第 85 炼 几何概型
概率
随机
A.
3 4
B.
2 3
C.
1 3
D.
1 2
视图可得 可 得
思路:所求概率为棱锥 F − AMCD 的体积 棱柱 ADF − BCE 体积的比值。由
AD = DF = CD = a VADF − BCE = S ADF ⋅ DC = S ADCM =
答案:D
,
且
AD, DF , CD
两
两
垂
直
,
1 1 1 AD ⋅ DF ⋅ DC = a 3 ,棱锥体积 VF − AMCD = DF ⋅ S ADMC ,而 2 2 3
1 3 1 V 1 AD ⋅ ( AM + CD ) = a 2 ,所以 VF − AMCD = a 2 。从而 P = F − AMCD = 2 4 4 VADF − BCE 2
第十一章
第 85 炼 几何概型
概率
随机
第 85 炼 几何概型
一 1 基础知识: 几何概型: 个 件发生的概率只 构成该 件区域的长度 面 为几何概型 或体 成比例, 这样的概
率模型为几何概率模型,简 2
对于一项试验,如果符合以 原 : 1 基本 件的个数为无限多个 2 基本 件发生的概率相同 通过建立几何模型,利用几何概型计算 件的概率
在题目 述中,判断是否运用几何概型处理,并确定题目中所用 个数确定几何模型:通常 →平面直角坐标系, 个 的个数 几何模型的 度相等:一个 →空间直角坐标系
→数轴,两个 2 类问题
从而将问题转化成为第
千题百炼——高中数学100个热点问题(三):第65炼 直线的方程与性质

第65炼 直线的方程与性质一、基础知识:(一)直线的要素与方程:1、倾斜角:若直线l 与x 轴相交,则以x 轴正方向为始边,绕交点逆时针旋转直至与l 重合所成的角称为直线l 的倾斜角,通常用,,,αβγ 表示 (1)若直线与x 轴平行(或重合),则倾斜角为0 (2)倾斜角的取值范围[)0,απ∈2、斜率:设直线的倾斜角为α,则α的正切值称为直线的斜率,记为tan k α= (1)当2πα=时,斜率不存在;所以竖直线是不存在斜率的(2)所有的直线均有倾斜角,但是不是所有的直线均有斜率(3)斜率与倾斜角都是刻画直线的倾斜程度,但就其应用范围,斜率适用的范围更广(与直线方程相联系) (4)k 越大,直线越陡峭(5)斜率k 的求法:已知直线上任意两点()()1122,,,A x y B x y ,则2121y y k x x -=-,即直线的斜率是确定的,与所取的点无关。
3、截距:若直线l 与坐标轴分别交于()(),0,0,a b ,则称,a b 分别为直线l 的横截距,纵截距(1)截距:可视为直线与坐标轴交点的简记形式,其取值可正,可负,可0(不要顾名思义误认为与“距离”相关)(2)横纵截距均为0的直线为过原点的非水平非竖直直线4、直线方程的五种形式:首先在直角坐标系中确定一条直线有两种方法:一种是已知直线上一点与直线的方向(即斜率),另一种是已知两点(两点确定一条直线),直线方程的形式与这两种方法有关 (1)一点一方向:① 点斜式:已知直线l 的斜率k ,直线上一点()00,P x y ,则直线l 的方程为:()00y y k x x -=-证明:设直线l 上任意一点(),Q x y ,根据斜率计算公式可得:0y y k x x -=-,所以直线上的每一点都应满足:()00y y k x x -=-,即为直线方程② 斜截式:已知直线l 的斜率k ,纵截距b ,则直线l 的方程为:y kx b =+证明:由纵截距为b 可得直线与y 轴交点为()0,b ,从而利用点斜式得:()0y b k x -=- 化简可得:y kx b =+ (2)两点确定一条直线:③ 两点式:已知直线l 上的两点()()1122,,,A x y B x y ,则直线l 的方程为:221212y y x x y y x x --=-- ④ 截距式:若直线l 的横纵截距分别为(),0a b ab ≠,则直线l 的方程为:1x y a b+= 证明:从已知截距可得:直线上两点()(),0,0,a b ,所以00b bk a a-==-- ():01b x yl y b x bx ay ab a a b∴-=--⇒+=⇒+= ⑤ 一般式:由前几类直线方程可知:直线方程通常由,x y 的一次项与常数项构成,所以可将直线的通式写为:0Ax By C ++=(,A B 不同时为0),此形式称为直线的一般式 一般式方程的作用:可作为直线方程的最终结果 可用于判定直线的平行垂直关系点到直线距离公式与平行线间距离公式需要用直线的一般式 5、五种直线形式所不能表示的直线:(1)点斜式,斜截式:与斜率相关,所以无法表示斜率不存在的直线(即竖直线) (2)截距式:① 截距不全的直线:水平线,竖直线 ② 截距为0的直线:过原点的直线6、求曲线(或直线)方程的方法:在已知曲线类型的前提下,求曲线(或直线)方程的思路通常有两种:(1)直接法:寻找决定曲线方程的要素,然后直接写出方程,例如在直线中,若用直接法则需找到两个点,或者一点一斜率(2)间接法:若题目条件与所求要素联系不紧密,则考虑先利用待定系数法设出曲线方程,然后再利用条件解出参数的值(通常条件的个数与所求参数的个数一致) (二)直线位置关系:1、在解析几何中直线的位置关系有三种:平行,相交(包含垂直),重合如果题目中提到“两条直线”,则不存在重合的情况,如果只是12,l l ,则要考虑重合的情况。
千题百炼- 立体几何综合小题必刷100题(原卷版)

专题19 立体几何综合小题必刷100题任务一:善良模式(基础)1-30题一、单选题1.已知正四棱锥的底面边长和侧棱长均为2,则该正四棱锥的体积为( )A B .C D .2.已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列说法正确的是( ) A .若//m n ,n ⊂α,则//m αB .若//m α,n ⊂α,则//m nC .若m α⊂,n β⊂,//m n ,则//αβD .若//αβ,m α⊂,则//m β3.如图,空间四边形OABC 中,点M 在线段OA 上,且2OM MA =,N 为BC 的中点,MN xOA yOB zOC =++,则x ,y ,z 的值分别为( )A .12,23-,12B .23-,12,12C .12,12,23-D .23,23,12-4.已知α,β,γ是三个不同的平面,m ,n 是两条不同的直线,下列命题为真命题的是( ) A .若//m α,//m β,则//αβB .若//m α,//n α,则//m nC .若m α⊥,n α⊥,则//m nD .若αγ⊥,βγ⊥,则//αβ5.已知四棱锥P ABCD -的正视图和侧视图均为边长为2(单位:cm )的正三角形,俯视图为正方形,则该四棱锥的体积(单位:3cm )是( )A .83BCD .436.在正方体1111ABCD A B C D -中,则直线1A D 与直线AC 所成角大小为( )A .30B .45C .60D .907.正方体1111ABCD A B C D -的棱长为2,P 为侧面11ABB A 内动点,且满足1PD △PBC 面积的最小值为( )A .1B C .2 D .2 8.在直三棱柱111ABC A B C -中,90ACB ∠=︒.1D 、1E 分别是11A B 、11A C 的中点,1CA CB CC ==,则1AE 与1BD 所成角的余弦值为( )A B C D9.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,则以下结论错误的是( )A .BD ∥平面CB 1D 1 B .AD ⊥平面CB 1D 1C .AC 1⊥BDD .异面直线AD 与CB 1所成的角为45°10.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且//a b ,则实数m 的值等于( )A .32B .-2C .0D .32或-2 11.正方体ABCD A 1B 1C 1D 1中,E ,F 分别是线段BC ,CD 1的中点,则直线A 1B 与直线EF 的位置关系是( )A .相交B .异面C .平行D .垂直12.已知直三棱柱111ABC A B C -中,60ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A B .0 C D13.把一个皮球放入如图所示的由8根长均为20 cm 的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点(皮球不变形),则皮球的半径为( )A .cmB .10 cmC .cmD .30 cm14.一种特殊的四面体叫做“鳖臑”,它的四个面均为直角三角形.如图,在四面体P -ABC 中,设E ,F 分别是PB ,PC 上的点,连接AE ,AF ,EF (此外不再增加任何连线),则图中直角三角形最多有( )A .6个B .8个C .10个D .12个15.在四棱锥P ABCD -中,底面是边长为4的正方形,且2,PA PB PD ===,则四棱锥外接球的表面积为( )A .4πB .8πC .36πD .144π二、多选题16.给出下列命题,其中正确的有( )A .空间任意三个向量都可以作为一组基底B .已知向量//a b ,则a 、b 与任何向量都不能构成空间的一组基底C .已知空间向量(1,0,1)a =,(2,1,2)b =-,则//a bD .已知空间向量(1,0,1)a =,(2,1,2)b =-,则向量a 在向量b 上的投影向量的坐标是848,,999⎛⎫- ⎪⎝⎭17.如图,正方体1111ABCD A B C D -的棱长为4,以下结论正确的是( )A .直线1B D 与1BC 是异面直线B .直线1A D 与1BC 平行C .直线1BD 与1BD 垂直D .三棱锥11A BC D -的体积为64318.如图,正方体1111ABCD A B C D -的棱长为1,点P 是棱1CC 上的一个动点(包含端点),则下列说法正确的是( )A .存在点P ,使//DP 面11AB DB .二面角1P BB D --的平面角大小为60︒C .1PB PD +D .P 到平面11AB D19.已知m 、n 是两条不同的直线,α、β、γ是三个不同的平面.下列说法中正确的是( ) A .若//m α,m β⊂,a n β⋂=,则//m n B .若//m n ,//m α,则//n α C .若a n β⋂=,αβ⊥,βγ⊥,则n γ⊥ D .若m α⊥,m β⊥,//αγ,则//βγ20.在下列条件中,不能使M 与A ,B ,C 一定共面的是( )A .OM =2OA -OB -OC ;B .111532OM OA OB OC =++; C .0MA MB MC ++=;D .OM +OA +OB +OC =0;21.如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是( )A .B .C .D .22.设一空心球是在一个大球(称为外球)的内部挖去一个有相同球心的小球(称为内球),已知内球面上的点与外球面上的点的最短距离为1,若某正方体的所有顶点均在外球面上、所有面均与内球相切,则( )A .该正方体的核长为2B .该正方体的体对角线长为3C 1D .空心球的外球表面积为(12π+23.在正三棱柱111ABC A B C -中,1AB =,12AA =,1BC 与1B C 交于点F ,点E 是线段11A B 上的动点,则下列结论正确的是( )A .1111222AF AB AC AA =++ B .存在点E ,使得AF BE ⊥C .三棱锥B AEF -D .直线AF 与平面11BCC B第II 卷(非选择题)三、填空题24.已知正方体ABCD A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、BC 的中点,则三棱锥N DMC 1的体积为___________.25.已知正三棱锥的底面边长是6,侧棱与底面所成角为60︒,则此三棱锥的体积为__.26.如图,在直三棱柱111ABC A B C -中,∠ACB =90°,11AA AC BC ===,则异面直线1A B 与AC 所成角的余弦值是__________________.27.已知圆台上底半径为1,下底半径为3,高为2,则此圆台的外接球的表面积为______.28.如图,已知平行六面体1111ABCD A B C D -中,底面ABCD 是边长为2的正方形,侧棱1AA 长为3,且11120A AB A AD ∠=∠=︒,则1AC =__.29.如图,在空间四边形OABC 中,,,OA a OB b OC c ===,点M 在OA 上,且2OM MA =,N 为BC 的中点,则用向量,,a b c 表示向量MN =________.30.已知四棱锥P﹣ABCD的顶点都在球O的球面上,底面ABCD是边长为2的正方形,且P A⊥平面ABCD.若四棱锥P﹣ABCD的体积为163,则球O的表面积为___________.任务二:中立模式(中档)1-40题一、单选题1.在三棱锥P -ABC 中,3APB BPC CPA π∠∠∠===,△P AB ,△P AC ,△PBC 的面积分别记为123,,S S S ,且123322S S S === )A BC D 2.在立体几何探究课上,老师给每个小组分发了一个正四面体的实物模型,同学们在探究的过程中得到了一些有趣的结论.已知直线//AD 平面α,直线//BC 平面α,F 是棱BC 上一动点,现有下列三个结论:⊥若,M N 分别为棱,AC BD 的中点,则直线//MN 平面α;⊥在棱BC 上存在点F ,使AF ⊥平面α;⊥当F 为棱BC 的中点时,平面ADF ⊥平面α.其中所有正确结论的编号是( )A .⊥B .⊥⊥C .⊥⊥D .⊥⊥3.已知圆台上底面半径为3,下底面半径为4,高为7,若点A 、B 、C 在下底面圆的圆周上,且AB BC ⊥,点Р在上底面圆的圆周上,则222PA PB PC ++的最小值为( )A .246B .226C .208D .1984.北京大兴国际机场的显著特点之一是各种弯曲空间的运用.刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和,例如:正四面体在每个顶点有3个面角,每个面角是π3,所以正四面体在各顶点的曲率为π2π3π3-⨯=,故其总曲率为4π,则四棱锥的总曲率为( )A .2πB .4πC .5πD .6π5.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且EF A BEF -的体积为( )A .112B .14 C D .不确定6.如图已知正方体1111ABCD A B C D -,点M 是对角线1AC 上的一点且1AM AC λ=,()0,1λ∈,则()A .当12λ=时,1AC ⊥平面1A DMB .当12λ=时,//DM 平面11CB DC .当1A DM 为直角三角形时,13λ=D .当1A DM 的面积最小时,13λ=7.如图所示,已知空间四边形的每条边和对角线长都等于a ,点E 、F 、G 分别为AB 、AD 、DC 的中点,则a 2等于( )A .2BA •ACB .2AD •BDC .2FG •CAD .2EF •BC8.如图一,矩形ABCD 中,2BC AB =,AM BD ⊥交对角线BD 于点O ,交BC 于点M .现将ABD △沿BD 翻折至A BD '的位置,如图二,点N 为棱A D '的中点,则下列判断一定成立的是( )A .BD CN ⊥B .AO '⊥平面BCDC .//CN 平面A OM 'D .平面A OM '⊥平面BCD9.点M 是棱长为3的正方体1111ABCD A B C D -中棱AB 的中点,12CN NC =,动点P 在正方形11AA D D (包括边界)内运动,且1//PB 平面DMN ,则PC 的长度范围为( )A .B .⎣C .D .⎣10.如图,在正方体1111ABCD A B C D -中,点M 在线段1BC (不包含端点)上运动,则下列判断中正确的是( )①1//A M 平面1ACD ; ②异面直线1A M 与1AD 所成角的取值范围是,32ππ⎛⎤⎥⎝⎦;③AC ⊥平面11MB D 恒成立; ④三棱锥1D AMC -的体积不是定值. A .①③ B .①② C .①②③ D .②④11.在四面体S ABC -中,SA ⊥平面ABC ,6BAC π∠=,SB =4,2SC SA ==,则该四面体的外接球的表面积是( )A .253πB .100πCD .20π12.已知圆锥SO 的母线长为 )A .B .24C .36πD .4813.如图,四棱锥P ABCD -的底面为矩形,PD ⊥底面ABCD ,1AD =,2PD AB ==,点E 是PB 的中点,过A ,D ,E 三点的平面α与平面PBC 的交线为l ,则下列结论中正确的有( )(1)//l 平面PAD ;(2)//AE 平面PCD ;(3)直线PA 与l (4)平面α截四棱锥P ABCD -所得的上、下两部分几何体的体积之比为35.A .1个B .2个C .3个D .4个14.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且PAD △是边长为2的正三角形,ABCD 是正方形,则四棱锥P ABCD -外接球的表面积为( )A .293π B .643π C .263π D .283π15.已知在正四面体ABCD 中,E 是AD 的中点,P 是棱AC 上的一动点,BP +PE 四面体内切球的体积为( )A B .13πC . D16.在棱长为2的正方体1111ABCD A B C D -中,点E ,F ,G ,H 分别为棱AB ,BC ,11C D ,11A D 的中点,若平面//α平面EFGH ,且平面α与棱11A B ,11B C ,1B B 分别交于点P ,Q ,S ,其中点Q 是棱11B C 的中点,则三棱锥1B PQS -的体积为( ) A .1B .12C .13D .1617.已知球O ,过其球面上A ,B ,C 三点作截面,若点O 到该截面的距离是球半径的一半,且2AB BC ==,120B ∠=︒,则球O 的表面积为( )(注:球的表面积公式24)S r π=A .643π B .83πC .323π D .169π18.如图,在正三棱柱ABC A 1B 1C 1中,AC =CC 1,P 是A 1C 1的中点,则异面直线BC 与AP 所成角的余弦值为( )A .0B .13C D19.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为1h 、2h 、3h ,则123::h h h =( )A.2B . C 2:2 D 6:620.如图,二面角l αβ--的大小是60︒,线段AB α⊂.B l ∈,AB 与l 所成的角为30.直线AB 与平面β所成的角的正弦值是( )A B C D二、多选题21.如图,已知正方体1111ABCD A B C D -,则四个推断正确的是( )A .111AC AD ⊥B .11AC BD ⊥C .平面11//A C B 平面1ACD D .平面11A C B ⊥平面11BB D D22.正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别为11,,BC CC BB 的中点,则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为92D .点C 到平面AEF 的距离为2323.正四棱锥P ABCD -的所有棱长为2,用垂直于侧棱PC 的平面α截该四棱锥,则( ) A .截面可以是三角形B .PA 与底面ABCD 所成的角为60︒C .PA 与底面ABCD 所成的角为45︒D .当平面α经过侧棱PC 中点时,截面分四棱锥得到的上下两部分几何体体积之比为3:124.如图,等腰直角三角形ABE 的斜边AB 为正四面体A BCD -的侧棱,2AB =,直角边AE 绕斜边AB 旋转一周,在旋转的过程中,下列说法正确的是( )A .三棱锥E BCD -B .三棱锥E BCD -C .存在某个位置,使得AE BD ⊥D .设二面角D ABE --的平面角为θ,且0θπ<<,则DAE θ<∠25.如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°,下列说法中不正确的是( )A .1AC =B .BD ⊥平面1ACCC .向量1B C 与1AA 的夹角是60°D .直线1BD 与AC26.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题正确的有( )A .侧面11CDD C 上存在点F ,使得11B F CD ⊥ B .直线1B F 与直线BC 所成角可能为60C .平面1A BE 与平面11CDD C 所成锐二面角的正切值为D .设正方体棱长为1,则过点E ,F ,A27.如图,边长为1的正方形ABCD 所在平面与正方形ABEF 所在平面互相垂直,动点M ,N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<.则下列结论中正确的有( )A .当12a =时,ME 与CN 相交 B .MN 始终与平面BCE 平行 C .异面直线AC 与BF 所成的角为45︒D .当a =MN28.(多选)如图,ABCD A 1B 1C 1D 1为正方体,下面结论正确的是( )A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1所成的角为60°29.已知四边形ABCD 为正方形,GD ⊥平面ABCD ,四边形DGEA 与四边形DGFC 也都为正方形,连接EF ,FB ,BE ,H 为BF 的中点,则下列结论正确的是( ) A .DE ⊥BFB .EF 与CH 所成角为3π C .EC ⊥平面DBFD .BF 与平面ACFE 所成角为4π30.下图中正方体1111ABCD A B C D -边长为2,则下列说法正确的是( )A .平面1C BD ⊥平面1A BDB .正方体1111ABCD A BCD -外接球与正四面体11A DBCC .正四面体11A DBCD .四面体1A ADB第II 卷(非选择题)三、填空题31.空间四面体ABCD 中,2AB CD ==,3AD BC ==,BD =BD 和AC 所成的角为3π,则该四面体的外接球的表面积为 __.32.如图,A 、B 、C 、D 、P 是球O 上5个点,ABCD 为正方形,球心O 在平面ABCD 内,PB PD =,2PA PC =,则P A 与CD 所成角的余弦值为______.33.已知圆锥、圆柱的底面半径和体积都相等,则它们的轴截面的面积之比的比值是___________34.中国有悠久的金石文化,印信是金石文化的代表之一.下左图是南北朝官员独孤信的印信,它是由正方形和正三角形围成.右图是根据这只印信作出的直观图,直观图的所有顶点都在一正方体的表面上(如果一个正八边形的八个顶点都在这个正方体同一个侧面的四条棱上,那么这个八边形的边长就等于这个直观图的棱长).__________.35.如图,在直三棱柱111ABC A B C -中,2BAC π∠=,11AB AC AA ===,已知G 与E 分别为11A B 和1CC 的中点,D 和F 分别为线段AC 和AB 上的动点(不包括端点),若GD EF ⊥,则线段DF 的长度的平方取值范围为__________.36.如图,在长方体1111ABCD A B C D -中,已知1AA =M ,N 分别在棱DA ,DC 上.二面角1D MN D --的大小为30°.若三棱锥1D DMN -,则三棱锥1D DMN -的外接球的表面积为___________.37.异面直线a 、b 所成角为3π,直线c 与a 、b 垂直且分别交于A 、B ,点C 、D 分别在直线a 、b 上,若1AC =,2AB =,3BD =,则CD =________.38.已知四棱锥S ﹣ABCD 的底面是边长为4的正方形,SD ⊥面ABCD ,点M 、N 分别是AD 、CD 的中点,P 为SD 上一点,且SD =3PD =3,H 为正方形ABCD 内一点,若SH ∥面PMN ,则SH 的最小值为__.39.如图,在ABC 中,AB AC ==1cos 3BAC ∠=-,D 是棱BC 的中点,以AD 为折痕把ACD △折叠,使点C 到达点C '的位置,则当三棱锥C ABD '-体积最大时,其外接球的表面积为___________.40.在如图所示的实验装置中,正方形框架的边长都是1,且平面ABCD ⊥平面ABEF ,活动弹子,M N 分别在正方形对角线,AC BF 上移动,若CM BN =,则MN 长度的最小值为__________.任务三:邪恶模式(困难)1-30题一、单选题1.已知四面体ABCD M ,N 分别为棱AD ,BC 的中点,F 为棱AB 上异于A ,B 的动点.有下列结论: ①线段MN 的长度为1;②若点G 为线段MN 上的动点,则无论点F 与G 如何运动,直线FG 与直线CD 都是异面直线;③MFN ∠的余弦值的取值范围为;④FMN 1. 其中正确结论的为( ) A .①② B .②③C .③④D .①④2.已知三棱锥P ABC -,其中PA ⊥平面ABC ,2PA =,2AB AC ==,2BAC π∠=.已知点Q 为棱PA(不含端点)上的动点,若光线从点Q 出发,依次经过平面PBC 与平面ABC 反射后重新回到点Q ,则光线经过路径长度的取值范围为( )A .(1B .)4C .4⎫⎪⎭D .(3.如图,已知锐二面角l αβ--的大小为1θ,A α∈,B β∈,M l ∈,N l ∈,AM l ⊥,BN l ⊥,C ,D 为AB ,MN 的中点,若AM MN BN >>,记AN ,CD 与半平面β所成角分别为2θ,3θ,则( )A .122θθ<,132θθ<B .122θθ<,132θθ>C .122θθ>,132θθ<D .122θθ>,132θθ>4.在棱长为2的正方体1111ABCD A B C D -中,点M 是对角线1AC 上的点(点M 与1A C 、不重合),有以下四个结论:⊥存在点M ,使得平面1A DM ⊥平面1BC D ; ⊥存在点M ,使得//DM 平面11B D C ;⊥若1A DM 的周长为L ,则L⊥若1A DM 的面积为S ,则S ∈⎝. 则正确的结论为( ) A .⊥⊥ B .⊥⊥⊥C .⊥⊥⊥D .⊥⊥5.在棱长为1的正方体1111ABCD A B C D -中,点P 是正方体棱上一点,若满足1PB PC d +=的点P 的个数为4,则d 的取值范围为( )A .)2B .C .2,1⎡⎣D .(16.在三棱锥D ABC -中,222AD AB AC BC ===,点A 在面BCD 上的投影G 是BCD △的垂心,二面角G AB C --的平面角记为α,二面角G BC A --的平面角记为β,二面角G CD A --的平面角记为γ,则( )A .αβγ>>B .αγβ>>C .βγα>>D .γβα>>7.已知正方体1111ABCD A B C D -的棱长为1,E 是1AA 的中点,F 是棱BC 上一点(不包括端点),则下列结论错误的是( )A .三棱锥11CB EF -的体积为定值16B .存在点F ,使得直线EF 与直线1CD 相交C .当F 是棱BC 的中点时,直线EF 与直线1CD 所成的角为π6D .平面1D EF 截正方体所得的截面是五边形8.如图,在等边三角形ABC 中,,D E 分别是线段,AB AC 上异于端点的动点,且BD CE =,现将三角形ADE 沿直线DE 折起,使平面ADE ⊥平面BCED ,当D 从B 滑动到A 的过程中,则下列选项中错误的是( )A .ADB ∠的大小不会发生变化 B .二面角A BDC --的平面角的大小不会发生变化 C .BD 与平面ABC 所成的角变大 D .AB 与DE 所成的角先变小后变大9.蹴鞠,又名“蹴球”“蹴圆”等,“蹴”有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的踢足球活动.如图所示,已知某“鞠”的表面上有四个点A ,B ,C ,D 满足10cm AB BC CD DA DB =====,15cm AC =,则该“鞠”的表面积为( )A .2350cm 3πB .2700cm 3πC .2350cm πD 210.已知在Rt ABC △中,斜边2AB =,1BC =,若将Rt ABC △沿斜边AB 上的中线CD 折起,使平面ACD ⊥平面BCD ,则三棱锥A BCD -的外接球的表面积为( )A .13π3B .20π3C .10π3 D .7π311.如图,在长方体1111ABCD A B C D -中,3AB =,5AD =,14AA =,点F 是1AA 的中点,点E 为棱BC 上的动点,则平面1C EF 与平面11ABB A 所成的锐二面角正切的最小值是( )A .513BC D .13512.已知正方体1111ABCD A B C D -的棱长为M ,N 为体对角线1BD 的三等分点,动点P 在三角形1ACB内,且三角形PMN 的面积PMN S =△P 的轨迹长度为( )A B C D13.已知半球O 与圆台OO '有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为( )A B C D14.如图,等腰直角ABC 中,2AC BC ==,点P 为平面ABC 外一动点,满足PB AB =,2PBA π∠=,给出下列四个结论:①存在点P ,使得平面PAC ⊥平面PBC ; ②存在点P ,使得平面PAC ⊥平面PAB ; ③设PAC △的面积为S ,则S 的取值范围是(]0,4;④设二面角A PB C --的大小为α,则α的取值范围是π0,4⎛⎤⎥⎝⎦.其中正确结论是( ) A .①③ B .①④C .②③D .②④15.已知AB 、CD 是圆O 的两条直径,且60AOC ∠=︒,如图1,沿AB 折起,使两个半圆面所在的平面垂直,折到点D 位置,如图2.设直线BD '与直线OC 所成的角为θ,则( )A .90BD C '∠=︒且60θ>︒B .90BDC '∠=︒且60θ≤︒ C .90BD C '∠≠︒且60θ>︒ D .90BD C '∠≠︒且60θ≤︒二、多选题16.如图,底面ABCD 为边长是4的正方形,半圆面APD ⊥底面ABCD .点P 为半圆弧AD (不含A ,D 点)一动点.下列说法正确的是( )A .三梭锥P —ABD 的每个侧面三角形都是直角三角形B .三棱锥P —ABD 体积的最大值为83C .三棱锥P —ABD 外接球的表面积为定值32πD .直线PB 与平面ABCD17.已知正方体1111ABCD A B C D -的棱长为2,动点F 在正方形11CDD C 内,则( ) A .若112BF BC BD →→→⎛⎫=+ ⎪⎝⎭,则三棱锥的11-F B CC 的外接球表面积为4π B .若1//B F 平面1A BD ,则1B F 不可能垂直1CD C .若1C F ⊥平面1A CF ,则点F 的位置唯一D .若点E 为BC 中点,则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半18.为弘扬中华民族优秀传统文化,某学校组织了《诵经典,获新知》的演讲比赛,本次比赛的冠军奖杯由一个铜球和一个托盘组成,如图⊥,已知球的体积为43π,托盘由边长为4的正三角形铜片沿各边中点的连线垂直向上折叠而成,如图⊥.则下列结论正确( )A .经过三个顶点,,ABC 的球的截面圆的面积为4π B .异面直线AD 与CF 所成的角的余弦值为58C .多面体ABCDEF 的体积为94D .球离球托底面DEF 119.已知边长为a 的菱形ABCD 中,3ADC π∠=,将ADC 沿AC 翻折,下列说法正确的是( )A .在翻折的过程中,直线AD ,BC 始终不可能垂直B .在翻折的过程中,三棱锥D ABC -体积最大值为38aC .在翻折过程中,三棱锥D ABC -表面积最大时,其内切球表面积为2(14a π-D .在翻折的过程中,点D 在面ABC 上的投影为D ,E 为棱CD 上的一个动点,ED '20.如图,ABC 是由具有公共直角边的两块直角三角板组成的三角形,4CAD π∠=,3BCD π∠=.现将Rt ACD △沿斜边AC 翻折成△11(D AC D 不在平面ABC 内).若M ,N 分别为BC 和1BD 的中点,则在ACD △翻折过程中,下列结论正确的是( )A .//MN 平面1ACDB .1AD 与BC 不可能垂直C .二面角1D AB C -- D .直线1AD 与DM 所成角的取值范围为(,)63ππ21.已知边长为a 的菱形ABCD 中,π3ADC ∠=,将ADC 沿AC 翻折,下列说法正确的是( ) A .在翻折的过程中,直线AD ,BC 可能相互垂直B .在翻折的过程中,三棱锥D ABC -体积最大值为38aC .在翻折的过程中,三棱锥D ABC -表面积最大时,其内切球表面积为2(14a π-D .在翻折的过程中,点D 在面ABC 上的投影为D ,E 为棱CD 上的一个动点,ED '22.已知正方体1111ABCD A B C D -的棱长为2,O 是底面ABCD 的中心,P 是棱11B C 上一点(不与端点重合),则( )A .平面OCP 截正方体1111ABCD ABCD -所得截面一定是梯形 B .存在点P ,使得三棱锥1P ABD -的体积为23C .存在点P ,使得AP 与11CD 相交D .当P 是棱11B C 的中点时,平面OCP 截正方体1111ABCD A B C D -外接球所得截面圆的面积269π23.在四面体ABCD 中,AB AC ⊥,AC CD ⊥,直线AB ,CD 所成的角为60°,AB CD ==,4AC =,则四面体ABCD 的外接球表面积为( )A B .52π C .80π D .208π第II 卷(非选择题)三、填空题24θ,则当tan θ等于______时,侧面积最小.25.球面几何学是几何学的一个重要分支,在航海、航空、卫星定位等面都有广泛的应用,如图,A ,B ,C 是球面上不同的大圆(大圆是过球心的平面与球面的交线)上的三点,经过这三个点中任意两点的大圆的劣弧分别为,,AB BC CA ,由这三条劣弧围成的图形称为球面ABC .已知地球半径为R ,北极为点N ,P ,Q 是地球表面上的两点若P ,Q 在赤道上,且PQ =,则球面NPQ △的面积为________;若NP PQ QN R ===,则球面NPQ △的面积为________.26.如图,在矩形ABCD 中,2,4,AB BC E ==是边AD 的中点,将ABE △沿直线BE 折成A BE ∠',使得二面角A BE C '--的平面角为锐角,点F 在线段A B '上运动(包括端点),当直线CF 与平面A BE '所成角最大时,FBE 在底面ABCD 内的射影面积为___________.27.已知三棱锥A BCD -的三条侧棱两两垂直,AB 与底面BCD 成30角,P 是平面BCD 内任意一点,则AP BP的最小值是________.28.已知正方体1111ABCD A B C D -的棱长为2,点E 是棱AD 的中点,点,F G 在平面1111D C B A 内,若EF =CE BG ⊥,则FG 的最小值为_________.29.在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,得四边形1BFD E ,给出下列结论:①四边形1BFD E 有可能为梯形; ②四边形1BFD E 有可能为菱形; ③四边形1BFD E 在底面ABCD 内的投影一定是正方形; ④四边形1BFD E 有可能垂直于平面11BB D D ;⑤四边形1BFD E 其中正确结论的序号是_____________30.在棱长为4的正方体1111ABCD A B C D -中,E ,F 分别是BC 和11C D 的中点,经过点A ,E ,F 的平面把正方体1111ABCD A B C D -截成两部分,则截面的周长为________.。
最新千题百炼——高考数学100个热点问题(二):第33炼-向量的模长问题代数法(含模长习题)

第33炼 向量的模长问题——代数法一、基础知识:利用代数方法处理向量的模长问题,主要采取模长平方——数量积和坐标两种方式1、模长平方:通过22cos0a a a a =⋅=r r r r 可得:22a a =r r ,将模长问题转化为数量积问题,从而能够与条件中的已知向量(已知模长,夹角的基向量)找到联系。
要注意计算完向量数量积后别忘记开方2、坐标运算:若(),a x y =r ,则a =r 某些题目如果能把几何图形放入坐标系中,则只要确定所求向量的坐标,即可求出(或表示)出模长3、有关模长的不等问题:通常考虑利用“模长平方”或“坐标化”得到模长与某个变量间的函数关系,从而将问题转化为求函数最值问题 二、典型例题例1:在ABC V 中,O 为BC 中点,若1,3,60AB AC A ==∠=o,则OA =u u u r_____思路:题目条件有1,3,60AB AC A ==∠=o,进而AB AC ⋅u u u r u u u r可求,且OA u u u r可用,AB AC u u u r u u u r 表示,所以考虑模长平方转化为数量积问题解:O Q 为BC 中点 ∴可得:()12AO AB AC =+u u u r u u u r u u u r()()2222211224AO AO AB AC AB AB AC AC ⎡⎤∴==+=+⋅+⎢⎥⎣⎦u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r3cos 2AB AC AB AC A ⋅=⋅=u u u r u u u r u u u r u u u r代入可求出:213=4AO u u u rAO ∴=u u u r例2:若,,a b c r r r 均为单位向量,且()()0,0a b a c b c ⋅=-⋅-≤r r r r r r ,则a b c +-r r r的最大值为( ) A.1- B. 1 C.D. 2思路:题目中所给条件与模和数量积相关,几何特征较少,所以考虑将a b c +-r r r平方,转化为数量积问题,再求最值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第75炼 几何问题的转换一、基础知识:在圆锥曲线问题中,经常会遇到几何条件及代数条件的相互转化,合理的进行几何条件的转化往往可以起到“四两拨千斤”的作用,极大的简化运算的复杂程度,在本节中,将列举常见的一些几何条件的转化。
1、在几何问题的转化中,向量是一个重要的桥梁:一方面,几何图形中的线段变为有向线段后可以承载向量;另一方面,向量在坐标系中能够坐标化,从而将几何图形的要素转化为坐标的运算,及方程和变量找到联系2、常见几何问题的转化: (1)角度问题:① 若及直线倾斜角有关,则可以考虑转化为斜率k② 若需要判断角是锐角还是钝角,则可将此角作为向量的夹角,从而利用向量数量积的符号进行判定 (2)点及圆的位置关系① 可以利用圆的定义,转化为点到圆心距离及半径的联系,但需要解出圆的方程,在有些题目中计算量较大② 若给出圆的一条直径,则可根据该点及直径端点连线的夹角进行判定:若点在圆内,ACB ∠为钝角(再转为向量:0CA CB ⋅<;若点在圆上,则ACB ∠为直角(0CA CB ⋅=);若点在圆外,则ACB ∠为锐角(0CA CB ⋅>)(3)三点共线问题① 通过斜率:任取两点求出斜率,若斜率相等,则三点共线 ② 通过向量:任取两点确定向量,若向量共线,则三点共线 (4)直线的平行垂直关系:可转化为对应向量的平行及垂直问题,从而转为坐标运算:()()1122,,,a x y b x y ==,则,a b 共线1221x y x y ⇔=;a b ⊥12120x x y y ⇔+=(5)平行(共线)线段的比例问题:可转化为向量的数乘关系 (6)平行(共线)线段的乘积问题:可将线段变为向量,从而转化为向量数量积问题(注意向量的方向是同向还是反向)3、常见几何图形问题的转化(1)三角形的“重心”:设不共线的三点()()()112233,,,,,A x y B x y C x y ,则ABC 的重心123123,33x x x y y y G ++++⎛⎫⎪⎝⎭(2)三角形的“垂心”:伴随着垂直关系,即顶点及垂心的连线及底边垂直,从而可转化为向量数量积为零(3)三角形的“内心”:伴随着角平分线,由角平分线性质可知(如图):,IP AC IQ AQ ⊥⊥I 在BAC ∠的角平分线上AI AC AI AB AP AQ ACAB⋅⋅⇒=⇒=(4)P 是以,DA DB 为邻边的平行四边形的顶点DP DA DB ⇒=+C(5)P 是以,DA DB 为邻边的菱形的顶点:P 在AB 垂直平分线上(6)共线线段长度的乘积:若,,A B C 共线,则线段的乘积可转化为向量的数量积,从而简化运算,(要注意向量的夹角)例如:AC AB AC AB ⋅=⋅,AC BC AC BC ⋅=-⋅二、典型例题:例1:如图:,A B 分别是椭圆()2222:10x y C a b a b+=>>的左右顶点,F 为其右焦点,2是,AF FB 的等差中项,3是,AF FB 的等比中项(1)求椭圆C 的方程(2)已知P 是椭圆C 上异于,A B 的动点,直线l 过点A 且垂直于x 轴,若过F 作直线FQ AP ⊥,并交直线l 于点Q 。
证明:ABA,,Q P B 三点共线解:(1)依题意可得:()()(),0,,0,,0A a B a F c -,AF c a BF a c ∴=+=-2是,AF FB 的等差中项 42AF FB a c a c a ∴=+=++-= 2a ∴=3是,AF FB的等比中项()()2222AF FB a c a c a c b ∴=⋅=+-=-=23b ∴=椭圆方程为:22143x y +=(2)由(1)可得:()()()2,0,2,0,1,0A B F -设():2AP y k x =+,设()11,P x y ,联立直线及椭圆方程可得:()()22222234124316161202x y k x k x k y k x ⎧+=⎪⇒+++-=⎨=+⎪⎩ 2211221612684343A k k x x x k k --∴=⇒=++ ()11212243ky k x k ∴=+=+ 2226812,4343k k P k k ⎛⎫-∴ ⎪++⎝⎭另一方面,因为FQ AP ⊥ 1FQ k k∴=-()1:1FQ y x k ∴=--,联立方程:()1132,2y x Q k k x ⎧=--⎪⎛⎫⇒-⎨ ⎪⎝⎭⎪=-⎩ ()2,0B()303224BQk k k -∴==--- 22221201234368164243BPkk k k k k k k --+===---+BQ BP k k ∴=,,B Q P ∴三点共线例2:已知椭圆)0(12222>>=+b a by a x 的右焦点为F ,M 为上顶点,O 为坐标原点,若△OMF 的面积为21,且椭圆的离心率为22. (1)求椭圆的方程;(2)是否存在直线l 交椭圆于P ,Q 两点, 且使点F 为△PQM 的垂心?若存在,求出直线l 的方程;若不存在,请说明理由. 解:(1)111222OMF S OM OF bc =⋅⋅==::2c e a b c a ==⇒= 1b c ∴== 2222a b c ∴=+=∴椭圆方程为:2212x y +=(2)设),(11y x P ,),,(22y x Q 由(1)可得:()()0,1,1,0M F1MF k ∴=-F 为△PQM 的垂心MF PQ ∴⊥ 11PQ MFk k ∴=-=设:PQ y x m =+由F 为△PQM 的垂心可得:MP FQ ⊥()()1122,1,1,MP x y FQ x y =-=-()()1212110MP FQ x x y y ∴⋅=-+-= ①因为,P Q 在直线y x m =+上1122y x my x m=+⎧∴⎨=+⎩,代入①可得: ()()()1212110x x x m x m -++-+=即0)1)((222121=-+-++m m m x x x x ② 考虑联立方程:2222y x m x y =+⎧⎨+=⎩ 得0224322=-++m mx x . ()22216122203m m m ∆=-->⇒<1243mx x ∴+=-,322221-=m x x .代入②可得: ()2222421033m m m m m -⎛⎫⋅+-⋅-+-= ⎪⎝⎭解得:43m =-或1m =当1=m 时,△PQM 不存在,故舍去当34-=m 时,所求直线l 存在,直线l 的方程为34-=x y 小炼有话说:在高中阶段涉及到三角形垂心的性质,为垂心及三角形顶点的连线垂直底边,所以对垂心的利用通常伴随着垂直条件,在解析几何中即可转化为向量的坐标运算(或是斜率关系)例3:如图,椭圆)0(12222>>=+b a by a x 的一个焦点是()1,0F ,O 为坐标原点.(1)若椭圆短轴的两个三等分点及一个焦点构成正三角形,求椭圆的方程;(2)设过点F 且不垂直x 轴的直线l 交椭圆于,A B 两点,若直线l 绕点F 任意转动,恒有222OA OB AB +<, 求a 的取值范围.解:(1)由图可得:10,3M b ⎛⎫ ⎪⎝⎭ 由正三角形性质可得:,63MF MFO k π∠==-13013MFb k -∴==--b ∴= 2224a bc ∴=+=∴椭圆方程为:22143x y += (2)设():1l y k x =-,()()1122,,,A x y B x y222OA OB AB +<222cos 02OA OB ABAOB OA OB+-∴∠=<AOB ∴∠为钝角12120OA OB x x y y ∴⋅=+<联立直线及椭圆方程:()()222222222222211y k x b x a k x a b b x a y a b=-⎧⎪⇒+-=⎨+=⎪⎩,整理可得:()222222222220a kb x a k x a k a b +-+-=22222212122222222,a k a k a b x x x x a k b a k b-∴+==++ ()()()22221212121211y y k x x k x x k x x k ∴=--=-++2222222222222222222222a k a b a k k b a b k k k k a k b a k b a--=⋅-⋅+=++= 22222222212122220a k a b k b a b k x x y y a k b -+-∴+=<+2222222220a k a b k b a b k -+-<恒成立即()2222222k a b a b a b +-<恒成立22220a b a b ∴+-< 221b a =-()2222110a a a ∴---<解得:12a +>a ∴的取值范围是⎫+∞⎪⎝⎭例4:设,A B 分别为椭圆()222210x y a b a b+=>>的左、右顶点,椭圆长半轴的长等于焦距,且椭圆上的点到右焦点距离的最小值为1 (1)求椭圆的方程;(2)设P 为直线4x =上不同于点()4,0的任意一点, 若直线,AP BP 分别及椭圆相交于异于,A B 的点,M N ,证明:点B 在以MN 为直径的圆内解:(1)依题意可得2a c =,且到 右焦点距离的最小值为1a c -= 可解得:2,1a c ==b ∴=∴椭圆方程为22143x y += (2)思路:若要证B 在以MN 为直径的圆内,只需证明MBN ∠为钝角,即MBP ∠为锐角,从而只需证明0BM BP ⋅>,因为,A B 坐标可求,所以只要设出AM 直线(斜率为k ) ,联立方程利用韦达定理即可用k 表示出M 的坐标,从而BM BP ⋅可用1k 表示。
即可判断BM BP ⋅的符号,进而完成证明解:由(1)可得()()2,0,2,0A B -,设直线,AM BN 的斜率分别为k ,()11,M x y ,则():2AM y k x =+ 联立AM 及椭圆方程可得:()2223412y k x x y =+⎧⎪⎨+=⎪⎩,消去y 可得:()2222431616120k x k x k +++-= 2211221612684343A k k x x x k k --∴=⇒=++ 11212243ky kx k k ∴=+=+,即2226812,4343k k M k k ⎛⎫- ⎪++⎝⎭设()04,P y ,因为P 在直线AM 上,所以()0426y k k =+=,即()4,6P k()22216122,6,,4343k k BP k BM k k ⎛⎫-∴== ⎪++⎝⎭2222232124060434343k k k BP BM k k k k -∴⋅=+⋅=>+++MBP ∴∠为锐角, MBN ∴∠为钝角 M ∴在以MN 为直径的圆内例5:如图所示,已知过抛物线24x y =的焦点F 的直线l 及抛物线相交于,A B 两点,及椭圆2233142y x +=的交点为,C D ,是否存在直线l 使得AF CF BF DF ⋅=⋅?若存在,求出直线l 的方程,若不存在,请说明理由解:依题意可知抛物线焦点()0,1F ,设:1l y kx =+AF CF BF DF ⋅=⋅ AF DF BFCF∴=,不妨设AF DF BFCFλ==则,AF FB DF FC λλ==设()()()()11223344,,,,,,,A x y B x y C x y D x y()()1122,1,,1AF x y FB x y ∴=--=- ()()3344,1,,1CF x y FD x y =--=-1234x x x x λλ-=⎧∴⎨-=⎩ 考虑联立直线及抛物线方程:2214404y kx x kx x y=+⎧⇒--=⎨=⎩()1222122144x x x k x x x λλ+=-=-⎧⎪∴⎨=-=-⎪⎩ ,消去2x 可得:()2214k λλ-=-- ① 联立直线及椭圆方程:()222216314634y kx x kx x y =+⎧⇒-+=⎨+=⎩,整理可得: ()2236610kx kx ++-=()3442234426136136k x x x k x x x k λλ⎧+=-=-⎪⎪+∴⎨⎪=-=-⎪+⎩()22213636k k λλ-∴=--+ ② 由①②可得:22236436k k k -=-+,解得:211k k =⇒=±所以存在满足条件的直线,其方程为:1y x =±+例6:在平面直角坐标系xOy 中,已知抛物线()220x py p =>的准线方程为12y =-,过点()4,0M 作抛物线的切线MA ,切点为A (异于点O ),直线l 过点M 及抛物线交于两点,P Q ,及直线OA 交于点N (1)求抛物线的方程 (2)试问MN MN MPMQ+的值是否为定值?若是,求出定值;若不是,请说明理由解:(1)由准线方程可得:1122pp -=-⇒=∴抛物线方程:22x y =(2)设切点()00,A x y ,抛物线为212y x ='y x ∴= ∴ 切线斜率为0k x =∴ 切线方程为:()000y y x x x -=-,代入()4,0M 及20012y x =可得:()2000142x x x -=-,解得:00x =(舍)或08x =()8,32A ∴ :4OA y x =设:4PQ x my =+,,,M P N Q 共线且M 在x 轴上11P Q N N N NP Q P Q P Q y y MN MN y y y y MPMQy y y y y y ⎛⎫+∴+=+=+=⋅ ⎪ ⎪⎝⎭联立PQ 和抛物线方程:()222424x y my y x my ⎧=⇒+=⎨=+⎩,整理可得: ()2282160m y m y +-+= 222816,P Q P Q m y y y y m m-∴+=⋅= 再联立,OA PQ 直线方程:416414N y x y x my m =⎧⇒=⎨=+-⎩22281621614P Q N P Q my y MN MN m y MP MQ y y mm -+∴+=⋅=⋅=-例7:在ABC 中,,A B的坐标分别是()),,点G 是ABC 的重心,y 轴上一点M 满足GM ∥AB ,且MC MB = (1)求ABC 的顶点C 的轨迹E 的方程(2)直线:l y kx m =+及轨迹E 相交于,P Q 两点,若在轨迹E 上存在点R ,使得四边形OPRQ 为平行四边形(其中O 为坐标原点),求m 的取值范围解:(1)设(),C x y 由G 是ABC 的重心可得:,33x y G ⎛⎫ ⎪⎝⎭ 由y 轴上一点M 满足平行关系,可得0,3y M ⎛⎫⎪⎝⎭由MC MB ==化简可得:()221026x y y +=≠C ∴的轨迹E 的方程为:()221026x y y +=≠ (2)四边形OPRQ 为平行四边形OR OP OQ ∴=+设()()1122,,,P x y Q x y ()1212,R x x y y ∴++R 在椭圆上()()22121236x x y y ∴+++=()()22221122121233626xy x y x x y y +++++= ①因为,P Q 在椭圆上,所以221122223636x y x y ⎧+=⎪⎨+=⎪⎩,代入①可得:121212126212633x x y y x x y y ++=⇒+=- ②联立方程可得:()22222326036y kx mk x kmx m x y =+⎧⇒+++-=⎨+=⎩ 212122226,33km m x x x x k k -∴+=-=++()()()2222121212122363m k y y kx m kx m k x x km x x m k -∴=++=+++=+代入②可得:2222222636332333m m k m k k k --⋅+=-⇒=+++ ()2223260kx kmx m +++-=有两不等实根可得:()()222244360k m k m ∆=-+->,即2236180m k -++>,代入2223k m =- ()22236231800m m m ∴-+-+>⇒>另一方面:22230m k -=≥ 2322m m ∴≥⇒≥或2m ≤-6,,m ⎛⎡⎫∴∈-∞+∞ ⎪⎢⎝⎦⎣⎭例8:已知椭圆()2222:10x y C a b a b +=>>的离心率为12,直线l 过点()()4,0,0,2A B ,且及椭圆C 相切于点P(1)求椭圆C 的方程(2)是否存在过点()4,0A 的直线m 及椭圆交于不同的两点,M N ,使得23635AP AM AN =⋅?若存在,求出直线m 的方程;若不存在,请说明理由解(1)12ce a == ::2a b c ∴=∴椭圆方程化为:22222221341243x y x y c c c+=⇒+=l 过()()4,0,0,2A B∴设直线1:12422x y l y x +=⇒=-+联立直线及椭圆方程:2223412122x y c y x ⎧+=⎪⎨=-+⎪⎩消去y 可得:2221342122x x c ⎛⎫+-+= ⎪⎝⎭整理可得:222430x x c -+-=l 及椭圆相切于P()2444301c c ∴∆=--=⇒=∴椭圆方程为:22143x y +=,且可解得31,2P ⎛⎫⎪⎝⎭(2)思路:设直线m 为()4y k x =-,()()1122,,,M x y N x y ,由(1)可得:31,2P ⎛⎫⎪⎝⎭,再由()4,0A 可知2454AP =,若要求得k (或证明不存在满足条件的k ),则可通过等式23635AP AM AN =⋅列出关于k 的方程。