正比例图像课件

合集下载

正比例函数的图象与性质课件

正比例函数的图象与性质课件

在同一坐标系内画下列正比例函数的图像: 在同一坐标系内画下列正比例函数的图像:
1 y=3x y=x y= x y 3
3
y =3x
当k>0 时,它的图 经过第 像 经过第 一、三象 限
y=x
1 y= x 3
1
3
1
o
x
在同一坐标系内画下列正比例函数的图像: 在同一坐标系内画下列正比例函数的图像:
y = −3x
2 3 4
-4
-3
-2
-1 -1 -2
x
-4
-3
-2
-1 -1 -2
-3 -3 -4 -4
1 y =− x 3
x
y = −x
y = −3x
正比例函数y 的性质: 正比例函数y = kx(k ≠ 0)的性质:
(1) 当k>0时,正比例函数的图像经过第一、三象 自变量x逐渐 限,自变量 逐渐增大时,y的值也随着逐渐增大。 的值也随着逐渐 (2) 当k<0时,正比例函数的图像经过第二、四象限, 正比例函数的图像经过第 象限, 自变量x逐渐 自变量 逐渐增大时,y的值则随着逐渐减小。 的值则随着逐渐
4.已知正比例函数图像经过点(2,- 已知正比例函数图像经过点( ,- 已知正比例函数图像经过点 6),⑴求出此函数解析式;⑵若点 ),⑴ ), 求出此函数解析式; 若点M )、N( 在该函数图像上, (m,2)、 (− 3,n)在该函数图像上,求 , )、
m、n的值;⑶点E(- ,4)在这个图像上吗?试 的值; (-1, )在这个图像上吗? (- 说明理由; 的取值范围是什么; 说明理由;⑷若-2≤x≤5,则y的取值范围是什么; , 垂足B的坐 若点A在这个函数图像上 在这个函数图像上, ⊥ ⑸若点 在这个函数图像上,AB⊥y轴,垂足 的坐

认识正比例图像课件

认识正比例图像课件

在坐标系中,线性函数模型表 现为一条直线,斜率为 k。
指数函数模型
指数函数模型是另一种常见的正比例 图像,其表达式为 y = a^x 或 y = k * a^x,其中 a 是底数,k 是比例常数。
在坐标系中,指数函数模型表现为一 条向上翘曲的曲线,随着 x 的增大,y 的增长速度逐渐加快。
当 x 增加时,y 以指数方式增加,保 持 y 和 x 的正比例关系。
02
通过计算两个变量之间的相关系数,判断是否接近1,从而判断
是否为正比例关系。
利用函数图像变换规律
03
了解函数图像的平移、伸缩等变换规律,有助于判断正比例图像。
理解正比例图像的变换规律
横向伸缩
当图像在横轴方向上伸 缩时,纵轴上的点也按
相同的比例伸缩。
纵向伸缩
当图像在纵轴方向上伸 缩时,横轴上的点也按
正比例图像的形状保持不变,只是大小发生变化。
判断坐标轴
正比例图像中,一个变量按比例变化时,另一个 变量也按相同的比例变化。
理解函数关系
正比例图像表示两个变量之间存在线性关系,可 以用一次函数表示。
判断正比例图像的技巧
对比变量关系
01
通过对比不同图像中两个变量的关系,判断是否符合正比例关系。
计算相关系数
在化学学科中的应用案例
总结词
化学反应速率分析
详细描述
在化学反应中,反应速率与反应物浓度之间的关系可以通过正比例图像来表示。 通过观察图像的变化,可以分析反应速率随时间的变化情况,进而了解反应机理 和条件。
适合数学研究和教学。
使用绘图工具绘制正比例图像
工具选择
选择绘图工具如Microsoft PowerPoint、Keynote等,这些工具 都提供了绘图功能。

正比例和反比例ppt课件

正比例和反比例ppt课件
在直角坐标系中,反比例函数图 像是一个双曲线。
正反比例的性质对照
相同点
两者都涉及到两个量的变化关系,其中一个量变化时,另一个量也相应变化。
不同点
正比例中,比值是一定的;反比例中,比值是不定的。正比例关系是一条直线,而反比例 关系是一个双曲线。
应用场景
正比例关系在物理、化学、工程等领域都有广泛应用,如速度、密度等;反比例关系在电 力、运输、通讯等领域常见,如电流与电阻、运输成本与运输距离等。
02 正比例和反比例的应用
正比例的应用
01
02
03
计算增长率
在统计学中,正比例常用 于计算某一变量的增长率 ,如GDP增长率、人口增 长率等。
猜测模型
在猜测模型中,正比例关 系可用于猜测未来趋势, 例如猜测产品销售量与广 告投入的关系。
线性回归分析
在回归分析中,正比例关 系可用于描写两个变量之 间的线性关系,例如身高 与体重的关系。
在坐标系中,反比例关系表现为一条 双曲线。
当一个量y随着另一个量x的增大而减 小,或者随着x的减小而增大时,我们 说y与x成反比。
正反比例数学表达的异同点
相同点
正比例和反比例都涉及到两个量之间的变化关系,且都存在 一个常数k来描写这种关系。
不同点
正比例是y与x之间的直接关系,而反比例是xy之间的乘积关 系;正比例关系中y随x增大而增大,而反比例关系中y随x增 大而减小或随x减小而增大;正比例在坐标系中表现为直线, 而反比例表现为双曲线。
则它们成反比例。
反比例关系在现实生活中也广泛 存在,如一定质量的物体下,压 力与面积成反比;一定速度下,
距离与时间成反比等。
正反比例的异同点
相同点
正比例和反比例都是描写两个量之间关系的比例关系,都涉及到两个变量的变 化趋势。

4.正比例函数的图象和性质-北师大版八年级数学上册课件

4.正比例函数的图象和性质-北师大版八年级数学上册课件
解析:因为函数图象经过第一、三象限,所以k+1>0, 解得k>-1. (2)若函数图象经过点(2,4),则k_=_1___.
解析:将坐标(2,4)带入函数表达式中,得4=(k+1)·2, 解得k=1.
练一练
1.已知正比例函数y=kx (k>0)的图象上有两点(x1,y1),(x2,y2), 若x1<x2,则y1 < y2.
4.已知正比例函数y=(2m+4)x. (1)当m >-2 ,函数图象经过第一、三象限; (2)当m <-2 ,y 随x 的增大而减小; (3)当m =0.5 ,函数图象经过点(2,10).
5. 如图分别是函数y=k1 x,y=k2 x,y=k3 x,y=k4 x的图象.
(1)k1 < k2,k3 < k4(填“>”或“<”或“=”);
3.什么是函数值?函数的图像?
一 正比例函数的图象的画法 例1:画出下面正比例函数y=2x的图象. 画函数图象的一般步骤: 解: ①列表
②描点 ③连线
以表中各组对应值作为点的坐标,在 直角坐标系内描出相应的点
练一练
1.请你画出y=-3x 的图像,并思考以下几个问题. (1)请你列出几个满足y=-3x 的x,y所对应的点(x,y),并 在图像上描出来,视察它们都在y=-3x 的图像上吗?
7. 已知某种小汽车的耗油量是每100km耗油15 L.所使用的汽油 为5元/ L . (1)写出汽车行驶途中所耗油费y(元)与行程 x(km)之间 的函数关系式. (2)在平面直角坐标系内描出大致的函数图象. (3)计算该汽车行驶220 km所需油费是多少.
解:(1)y=5×15x/100,

(2)用不等号将k1, k2, k3, k4及0依次连接起来.

正比例图像正比和反比例PPT课件

正比例图像正比和反比例PPT课件

(2)连接图中各点,你有什么发现?
路程/千米
G F
答:图中各点都在一条直线上。
E D
C
(3)根据图像判断,这辆汽车2.5小时行驶多少千米?行驶440 千米需要多少小时?
路程/千米
G F
E D
C
这辆汽车2.5小时行驶 200千米,行驶440千米 需要5.5小时。
小玲用计算机打字的数量和所用的时间如下表:
小玲用计算机打字的数量和所用的时间如下表:
时间/分 2
4
6
8
10
12
14
……Biblioteka 数量/个 100 200 300 400 500 600 700 ……
(2)在下图中描出打字数量和时间所对应的点,再按顺序连接起来。
数量/个
时间/分
(3)根据图像判断,小玲5分钟可以打多少个字?打750个字 需要多少分钟?
例1表中的各组数据,可以用下图中的点表示。
路程/千米
G F
E D
C
(1)图中的点 A 表示1小时 行 80千米,点 B 表示5小时 行400千米。其他各点呢?
1 2 3 4 5 6 7 8 时间/小时
点C 表示2小时行160千米 点D 表示3小时行240千米 点E 表示4小时行320千米 点 F 表示6小时行480千米 点 G 表示7小时行560千米
答:购买彩带的总价和长度成正比例,因为它们的比值一定。
(4)根据图像判断,购买3.5米彩带需要多少元?
答:购买3.5米彩带需 要17.5元。
总价/元
长度/米
正比例的图像
正比例的图像
1.是一条直线。 2.作图时,先描点,再连线。
一根弹簧挂上物体后长度会伸长,(所挂物体的质量不超过20 千克)物体的质量与伸长的长度如下:

正比例函数的图象和性质课件

正比例函数的图象和性质课件

们只相交于原点。
06
CHAPTER
03
正比例函数的性质
增减性
01
02
03
增减性
正比例函数在定义域内是 单调的,即随着x的增大 (或减小),y也相应增 大(或减小)。
增减性的判断
根据斜率k的正负来判断 。当k>0时,函数为增函 数;当k<0时,函数为减 函数。
增减性的应用
在解决实际问题时,可以 利用增减性判断函数的值 域或最值。
y=-3/x
提升练习题
01
总结词
深化理解与运用
02
03
04
题目1
已知某物体的速度v与时间t的 关系为v=kt,其中k为常数。 求该物体在t=3时的速度v。
题目2
画出函数y=0.5x和y=-0.2x的 图象,并比较它们的性质。
题目3
已知某物体的位移s与时间t的 关系为s=2t^2,求该物体在
t=5时的位移s。
斜率
1 2 3
斜率定义
正比例函数y=kx(k≠0)的斜率是k。
斜率与函数图像的关系
斜率决定了函数图像的形状和倾斜程度。当k>0 时,图像从左下到右上上升;当k<0时,图像从 左上到右下下降。
斜率的应用
在解决实际问题时,可以利用斜率判断函数的单 调性和变化趋势。
截距
截距定义
正比例函数y=kx(k≠0)的截距是0。
正比例函数的图象和性 质ppt课件
CONTENTS
目录
• 正比例函数的概念 • 正比例函数的图象 • 正比例函数的性质 • 正比例函数的应用 • 练习与思考
CHAPTER
01
正比例函数的概念
正比例函数的定义

新人教版小学数学六年级下册课件:4.1正比例(共26张ppt)

新人教版小学数学六年级下册课件:4.1正比例(共26张ppt)
课后习题
(4)树高与对应影长成正比例关系吗?你是依据什么作出判断的?
成正比例关系,物体的长度和它影子长度比值一定,即物体的长 度和它的影子的长度的成正比例。
7.下表中x和y两个量成正比例,请把表格填写完整。
1.8
0.375
两倍。
教学新知
做一做:一辆汽车行驶的时间和路程如下表。
(1)写出几组路程与相对应的时 间的比,并比较比值的大小。(2)说一说这个比值表示什么。(3)汽车行驶的路程与时间成正比例关系吗?为什么?
80:1=80 160:2=80 比值相等
比值表示速度
成正比例关系。因为路程和时间是相关联的量,并且它们的比值速度是一定的量。
课后习题
(3)造纸吨数与造纸时间成正比例吗?为什么?(4)根据图表判断, 5小时造纸多少吨?
成正比例,因为它们的图像是一条直线,一个量随着另一具量的变化而变化。
7.5吨
6.测量小组几次经过测量不同高度的竹竿直立在地面上,测得它的影子。 其结果记录如下:
竹竿的高度(米)
1
2
3
4
5

影子的长度(米)
教学新知
(1)成正比例,因为路程与耗油量的比值一定;(2)成正比例的量的图像是一条直线;(3)7升多一点。
讨论:1.判断两种相关联的量成不成正比例的关键是什么?2.请你说说你对正比例的图像的理解。
教学新知
例一:根据下表填空。
时间(分钟)
1
6
8
……
做口算题数(道)
25
150
200
……
(1)上表中相关联和两具量是( )和( )。(2)写出做题数与时间的比,并求出比值。(3)给出的比值起个名字,再写出上表的文字关系式。

正比例函数图像课件ppt

正比例函数图像课件ppt

正比例函数的应用场景
总结词
正比例函数在现实生活中有许多应用场景,如速度-时间关系 、加速度-时间关系等。
详细描写
在物理学中,速度和时间是成正比的,可以用正比例函数表 示。同样地,加速度和时间的关系也可以用正比例函数表示 。此外,在经济学、统计学等领域中也有许多应用场景,如 收入与工作时间的关系等。
k值变化时
当k的值产生变化时,图像的斜率也 会相应变化,但始终保持垂直于x轴 。
03 正比例函数图像的性质
函数的单调性
单调递增
当比例系数大于0时,随着x的增大 ,y的值也增大。
单调递减
当比例系数小于0时,随着x的增大,y 的值减小。
函数的对称性
关于原点对称
正比例函数的图像总是经过原点,并且关于原点对称。
正比例函数的基本性质
总结词
正比例函数具有一些基本性质,包括斜率固定、过原点、y 随 x 增大而增大或 减小等。
详细描写
正比例函数的斜率为 k,即当 x 增加时,y 会以 k 的比例增加或减少。如果 k>0,则函数图像为增函数;如果 k<0,则函数图像为减函数。由于图像过原 点,因此当 x=0 时,y=0。
解决代数问题
正比例函数是线性函数的一种特殊情势,通过正比例函数图像可以直观地表示函数的增减性、交点等性质,有助 于解决代数方程、不等式等问题。
在物理中的应用
描写光强与距离的关系
在光学中,光强与光源的距离成正比。通过正比例函数图像,可以表示光强与距离之间的关系,进而 分析光学现象。
描写声音强度与距离的关系
续的学习打下坚实的基础。
提高练习题
总结词:深化理解
详细描写:提高练习题是在学生掌握正比例函数的基本概念后,进一步深化对正 比例函数的理解。这些练习题将涉及更复杂的函数情势、参数变化对函数图像的 影响等内容,有助于培养学生的思维能力和解决问题的能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 正比例图象
R·六年级下册
精品课件
新课导入
某人造地球卫星在空中绕地球的周数和所用 的时间的关系如下表:
周数 2 4 6 8 10 时间 3.6 7.2 10.8 14.4 18.0
精品课件
依据表中的数据描点
精品课件
从图中你发现了什么?
这些点都在同一条直 线上。
精品课件
推进新课
描出这一对应的点,它们是否在同一直线上? 你还能提出什么问题?有什么体会?请同学 们以小组为单位汇报。
精品课件
根据计算你们发现了什么?
相对应的两个数的比值固 定不变,在数学上叫做一 定。
精品课件
用式子表示它们的关系: 路 时程 间速度(一定)
精品课件
上节课,我们学习了成正比例的量,下面我 们继续学习和练习。
精品课件
已知y与x成正比例关系,在下表的空格中填 写合适的数。
x 1 2 3 5 8 10 15 20 y 2.5 5 7.5 12. 20 25 37.5 50
精品课件
①正比例关系的图象是一条经过原点的直线。 ②利用正比例图象不用计算,可以由一个量 的值,直接找到对应的另一个量的值。
精品课件
随堂演练
1.下面是小林家去年上半年每月用电量情况。
月份
123456
用电量/千瓦时 120 130 110 120 130 150
电费/元
60 65 55 60 65 75
5 观察表中的数据。请同学们以小组为单位完 成下面的任务。 a.动手画一画,谈谈图象的特点。 b. 说一说,相互交流。
精品课件
课堂作业
1.根据x和y成正比例关系,填写表中的空格。
3.5
8
4.8
8
精品课件
看图回答问题。
(1)在这一过程中,哪个量没变? (2)路程和时间有什么关系? (3)不计算,从图中看出4小时行驶多少 千米? (4)7小时行驶多少千米?
精品课件
一列火车1小时行驶90km,2小时行驶 180km,3小时行驶270km,4小时行 驶360km,5小时行驶450km,6小时 行驶540km,7小时行驶630km,8小 时行驶720km……
一列火车行驶的时间和路程
精品课件
填表并思考发现了什么? 随着时间的变化,路程也在变化,我们就说 时间和路程是两种相关联的量。
精品课件
课后作业
1.从课后习题中选取; 2.完成练习火花,要想使它成熊熊 火焰,哪就只有学习!学习。
—— 高尔基
(1)分别写出各月电费与用电量的比,比 较比值的大小。 (2)说明这个比值所表示的意义。 (3)电费与相应的用电量成正比例关系吗? 为什么?
精品课件
回顾正比例的意义及判断是否成正比例的方 法。请同学们独立完成练习。
精品课件
请同学们从两个方面说明为什么成正比例。 a.电是随着用电量的增加而增加; b.电费与用电量的比值总是相等的。
相关文档
最新文档