导函数图像与原函数图像关系我

合集下载

高二数学函数图像试题答案及解析

高二数学函数图像试题答案及解析

高二数学函数图像试题答案及解析1.函数f(x)=(x2﹣2x)e x(e为自然数的底数)的图象大致是().【答案】A.【解析】的定义域为,且;令,得;令,得;所以在上递增,在上递增在上递增,故排除B,D;又,故排除C;因此选A.【考点】函数的图像.2.函数的图像大致是( )A. B. C. D【答案】A【解析】注意到当时,,显然可排除B、C;再注意当时,,所以,所以排除D,故选A.【考点】函数的图象.3.设,则函数的图像大致形状是()【答案】B【解析】函数,当时,,因此选【考点】函数的图象.4.函数f(x)=ln(x2+1)的图象大致是( )【答案】A【解析】由函数的解析式来判定函数的大致图象,我们一般考虑这几方面,函数的奇偶性、单调性、当自变量趋向某个特殊值时函数值的变化情况,特别是趋于正无穷大时,函数值的变化趋势.由函数的特点可知其与对数函数有关,另外含有,所以验证奇偶性,得函数为偶函数.当时,,故选A.【考点】由函数解析式推断函数图象.5.函数在同一平面直角坐标系内的大致图象为()【答案】C【解析】对于函数偶函数,当时,,此时函数为单调递减函数,故可排除;对于函数,两边平方可得,可知此时图象表示的是以原点为圆心,1为半径的下半圆,故排除.故选.【考点】函数图象的判断.6.现有四个函数:①;②;③;④的图象(部分)如下:则按照从左到右图象对应的函数序号安排正确的一组是()A.①④②③B.①④③②C.④①②③D.③④②①【答案】A【解析】由于从左到右图象的第一个图象关于y轴对称,所以其对应函数是偶函数,而已知的四个函数中①是偶函数,②是奇函数,③是奇函数,④非奇非偶函数;故第一个图象对应的函数只能是①,这样就右排除C和D了,对于A和B,第二个图象对应的函数均是④,所以只须看第三个图象:在y轴右侧图象有在x轴的下方的部分,而函数③,当时,显然,所以第三个图象对应的函数不能是③,故只能是②,这样就排除B,而应选A.【考点】函数的图象.7.若函数有两个零点,则实数的取值范围 .【答案】【解析】令,结合图像可知,两条切线为临界点,此时实数的取值范围为【考点】函数图像8.已知函数的图象不经过第四象限,则实数的最小值是 .【答案】【解析】解得x=-2或1,易知当x=1取极小值,由图象知≥0,即答案为,故最小值为.【考点】函数的图象.9.已知函数的导函数的图象如图所示,那么函数的图象最有可能的是()【答案】A【解析】∵当(x)>0时(x)单调递增,当(x)<0时(x)单调递减∴当x时(x)单调递增,当x时(x)单调递增,当x时(x)单调递增.【考点】导数在函数单调性中的应用.10.在上满足,则的取值范围是_________【答案】(-4,0【解析】当a=0时,-1<0成立;当时,由在上满足,得,,解得;综上知,的取值范围是(-4,0。

通过函数的研究培养学生核心素养

通过函数的研究培养学生核心素养

通过函数的研究培养学生核心素养作者:钟英来源:《教育·校长参考》2021年第08期新一轮高中数学课程改革目标的集中体现是发展和培养学生数学六大核心素养,数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。

数学课程实施主要在课堂,如何在课堂上培养和发展学生核心素养?近些年一线教师做了很多实践探索,也有很多课题研究结果。

本文是在这些前辈基础上以《利用导数研究函数图像与性质复习课》为例,浅谈通过绘制函数图像、研究函数性质,提升学生核心素养。

本人先认真研读新课标,了解六大核心素养的主要表现与水平、培养与评价,再研读教材,研读新课标对“导数”内容的分析:导数是研究函数的局部性质。

本节课主要是探究利用导数研究非基本初等函数,通过探讨导数图像与原函数图像性质间关系,培养学生数学抽象、直观想象、逻辑推理的核心素养。

笔者结合上述分析,明确以下教学目标:一是学生能读懂导函数图像,通过导函数图像分析原函数的图像与性质;二是学会利用导数研究函数图像,提升逻辑推理、直观想象素养;三是学生在经历利用导数研究函数图像过程中,体会导数的工具性,体会数形结合、分类讨论数学思想,提升学生数学思维的能力。

为了实现以上目标,本节课主要设计了五个教学环节,下面笔者对这五个环节进行一一说明。

一是创设情境,回顾知识。

引入:函数的导函数是一条过点(0,-2),(1,0)的直线,请写出在点(2,1)处的切线方程;能画出原函数图像吗?若增加条件,能画出函数图像吗?学生通过解答上述问题,复习相关概念。

三个思考题层层递进,复习求切线方程、导函数图像与原函数图像关系,培养数学抽象和直观想象素养。

二是应用知识,总结方法。

给出一个函数的部分取值表格和其导函数的图像,请学生结合相关信息研究函数。

学生通过解决问题理解导函数图像、绘制函数图像,利用图像解决问题,突破教学重点,提高学生分类讨论数学思想。

这些“逻辑推理”的过程完善了学生的数学思维,培养学生数学抽象、直观想象素养。

导数应用易错点分析、归纳

导数应用易错点分析、归纳

导数应用易错点分析、归纳作者:纪颖伟来源:《成才之路》2009年第05期导数作为高中数学新教材中的新增内容,为解决函数单调性、最(极)值、取值范围等问题提供了新的工具。

但学生在学习导数时,由于对导数基本概念、理论的理解存在着误区,应用时常常出错,下面,对有关的易错点举例加以分析、归纳。

一、忽视了“过某点的切线”与“在某点的切线”的差别例1:求经过点A(-1,4)的曲线y= x3-5 x2+6x的切线方程错解:y'=3x2-10x+6, y'|x=-1=19。

故过点A(-1,4)的曲线的切线方程为y-4=19(x+1),即19x-y+23=0。

分析:由导数的几何意义知f'(x0)是曲线在点(x0,f(x0))处的切线的斜率,其中点(x0,f(x0))在曲线上,而点A(-1,4)显然不在曲线上,故不正确。

正解:设切点坐标P(x0,y0),则 y0=x03-5x02+6x0 ,则过点p的切线方程为y-y0=(3x02-10x0+6)(x-x0),即y=(3x02-10x0+6)x-2x03+5x02 。

因其经过点A(-1,4),代入上面切线方程,可求得x0 =1,或x0=-,将 x0的值分别代入切线方程,得到三条切线方程:y=-x+3,y=(21-10 )x+25-10和 y=(21+10 )x+25+10。

二、误解了“导数为零”与“有极值”的逻辑关系利用导数求极值的算法可为三步:⑴求导数f'(x),⑵求方程f'(x)=0的根,⑶检验f'(x)在方程f'(x)=0的根的左右两边的符号,确定极值。

例2:函数f(x)=x3+ax2+bx+a2在x=1处有极值10,求a、b值。

错解:f'(x)=3x2+2ax+b,由题意知:f'(1)=0 且 f(1)=10,即2a+b+3=0且a2+a+b+1=10,解之得a=4,b=-11 或a=-3,b=3。

利用导数研究函数单调性5种常见题型总结(原卷版)

利用导数研究函数单调性5种常见题型总结(原卷版)

第10讲 利用导数研究函数单调性5种常见题型总结【考点分析】考点一:利用导数判断函数单调性的方法 ①求函数的定义域(常见的0,ln >x x );①求函数的导数,如果是分式尽量通分,能分解因式要分解因式;①令()0='x f ,求出根 ,,,321x x x ,数轴标根,穿针引线,注意x 系数的正负;④判断()x f '的符号,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数. 考点二:已知函数的单调性求参数问题①若()f x 在[]b a ,上单调递增,则()0f x '≥在[]b a ,恒成立(但不恒等于0); ①若()f x 在[]b a ,上单调递减,则()0f x '≤在[]b a ,恒成立(但不恒等于0).【题型目录】题型一:利用导数求函数的单调区间题型二:利用导函数与原函数的关系确定原函数图像 题型三:已知含量参函数在区间上单调性求参数范围 题型四:已知含量参函数在区间上不单调求参数范围 题型五:已知含量参函数存在单调区间求参数范围【典型例题】题型一:利用导数求函数的单调区间【例1】(2022·广东·雷州市白沙中学高二阶段练习)函数()()2e x f x x =+的单调递减区间是( )A .(),3-∞-B .()0,3C .()3,0-D .()3,-+∞【例2】(2022·北京市第三十五中学高二阶段练习)函数ln xy x=的单调递增区间是( ) A .1,e ⎛⎫-∞ ⎪⎝⎭B .()e,+∞C .10,e ⎛⎫⎪⎝⎭D .()0,e【例3】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)-B .(0,1)C .(1,)+∞D .(0,2)【例4】(2022·黑龙江·铁人中学高三开学考试)函数2()ln 1f x x x =--的单调增区间为_________.【例5】(2022·河南·安阳一中高三阶段练习(理))已知函数()()ln 1f x x x =+,则( ) A .()f x 在()1,-+∞单调递增 B .()f x 有两个零点C .曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处切线的斜率为1ln2-- D .()f x 是偶函数【例6】(2022·江苏·盐城市第一中学高三阶段练习)若函数()312f x x x =-在区间()1,1k k -+上不是单调函数,则实数k 的取值范围是( ) A .3k ≤-或11k -≤≤或3k ≥ B .31k -<<-或13k << C .22k -<<D .不存在这样的实数【例7】(2022·全国·高二课时练习多选题)设函数()e ln x f x x =,则下列说法正确的是( )A .()f x 的定义域是()0,∞+B .当()0,1x ∈时,()f x 的图象位于x 轴下方C .()f x 存在单调递增区间D .()f x 有两个单调区间【例8】(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .()0,∞- B .(1,+∞)C .()1,∞-D .(0,+∞)【例9】 (2022·全国·高二专题练习)已知函数()1xlnx f x e +=,(其中e =2.71828…是自然对数的底数).求()x f 的单调区间.【例10】【2020年新课标2卷理科】已知函数()x x x f 2sin sin 2=.(1)讨论()x f 在区间()π,0的单调性;【例11】(2022·黑龙江·哈尔滨市第六中学校高二期末)已知函数()ln f x x x x =-. (1)求()f x 的单调区间;【例12】(2022·陕西渭南·高二期末(文))函数()()2e x f x x ax b =++,若曲线()y f x =在点()()0,0f 处的切线方程为:450x y ++=. (1)求,a b 的值;(2)求函数()f x 的单调区间.【例13】【2020年新课标1卷理科】已知函数2()e x f x ax x =+-. (1)当1=a 时,讨论()x f 的单调性;【例14】【2019年新课标2卷理科】已知函数()11ln x f x x x -=-+.(1)讨论()x f 的单调性,并证明()x f 有且仅有两个零点;【题型专练】1.(2022湖南新邵县教研室高二期末(文))函数()4ln f x x x =-的单调递减区间为( ) A .()0,∞+ B .10,4⎛⎫⎪⎝⎭C .1,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫+∞ ⎪⎝⎭2.(2022·广东·东莞四中高三阶段练习)函数()()3e x f x x =-,则()f x 的单调增区间是( )A .(),2-∞B .()2,+∞C .(),3-∞D .()3,+∞3.(2022·四川绵阳·高二期末(文))函数()2ln 2x x x f -=的单调递增区间为( )A .()1,-∞-B .()+∞,1C .()1,1-D .()1,04.(2022·广西桂林·高二期末(文))函数()3213f x x x =-的单调递减区间为( )A .()02,B .()()02∞∞-+,,,C .()2+∞,D .()0-∞,5.(2022·重庆长寿·高二期末)函数()65ln f x x x x=--的单调递减区间为( )A .(0,2)B .(2,3)C .(1,3)D .(3,+∞)6.(2023·全国·高三专题练习)函数21()ln 3f x x x =-的单调减区间为__________.7.(2022·全国·高二专题练习)函数2()2x x f x =的单调递增区间为__________.8.(2022·全国·高二专题练习)函数cos y x x =+的单调增区间为_________.9.(2023·全国·高三专题练习)求下列函数的单调区间(1)()211x f x x +=-;(2)()21ln 2f x x x =-; (3)()3223361f x x x x =+-+;(4)()sin ,0f x x x x π=-<<;(5)()()22e xf x x x -=+;(6)()sin 2cos xf x x=+.10.(2022·全国·高二单元测试)已知函数()()321313x x x f x =-++,求()f x 的单调区间.11.函数()x e x x f -=2的递增区间是( ) A .()0,2B .(),0∞-C .(),0∞-,()2,+∞D .()(),02,-∞+∞12.【2022年新高考2卷】已知函数f(x)=x e ax −e x . (1)当a =1时,讨论f(x)的单调性;13.(2022·四川省绵阳南山中学高二期末(理))已知函数()29ln 3f x x x x =-+在其定义域内的一个子区间()1,1m m -+上不单调,则实数m 的取值范围是( )A .51,2⎡⎫⎪⎢⎣⎭B .31,2⎛⎫ ⎪⎝⎭C .51,2⎛⎫⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭14.(2020·河北省石家庄二中高二月考)函数1()ln f x x x=的单调递减区间为____________. 15.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.题型二:利用导函数与原函数的关系确定原函数图像【例1】(2022·河南·高三阶段练习(文))如图为函数()f x (其定义域为[],m m -)的图象,若()f x 的导函数为()f x ',则()y f x '=的图象可能是( )A .B .C .D .【例2】(2022·四川·遂宁中学外国语实验学校高三开学考试(理))设()f x '是函数()f x 的导函数,()y f x '=的图像如图所示,则()y f x =的图像最有可能的是( )A .B .C .D .【例3】(2022·全国·高二课时练习)已知函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,其图象如图所示.记()y f x =的导函数为()y f x '=,则不等式()0xf x '≤的解集为( )A .[][)31,0,12,323⎛⎤--⋃⋃ ⎥⎝⎦B .[]18,01,2,333⎡⎤⎡⎫-⋃⋃⎪⎢⎥⎢⎣⎦⎣⎭C .[)1,12,33⎡⎤-⎢⎥⎣⎦D .31148,,,323233⎛⎫⎡⎤⎡⎫--⋃⋃ ⎪⎪⎢⎥⎢⎝⎭⎣⎦⎣⎭【例4】(2022·全国·高二单元测试)已知函数()f x 的导函数()'f x 图像如图所示,则()f x 的图像是图四个图像中的( ).A .B .C .D .【例5】(2022·广东潮州·高二期末多选题)已知函数()f x 与()f x '的图象如图所示,则下列结论正确的为( )A .曲线m 是()f x 的图象,曲线n 是()f x '的图象B .曲线m 是()f x '的图象,曲线n 是()f x 的图象C .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为()0,1D .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为41,3⎛⎫⎪⎝⎭【题型专练】1.(2022·江苏常州·高三阶段练习)如图是()y f x '=的图像,则函数()y f x =的单调递减区间是( )A .()2,1-B .()()2,0,2,-+∞C .(),1-∞-D .()(),1,1,-∞-+∞2.(2022·吉林·东北师大附中高三开学考试)已知函数()y f x =的部分图象如图所示,且()f x '是()f x 的导函数,则( )A .()()()()12012f f f f ''''-=-<<<B .()()()()21012f f f f ''''<<<-=-C .()()()()02112f f f f ''''>>>-=-D .()()()()21021f f f f ''''<<<-<-3.(2022·福建莆田·高二期末)定义在()1,3-上的函数()y f x =,其导函数()y f x '=图像如图所示,则()y f x =的单调递减区间是( )A .()1,0-B .()1,1-C .()0,2D .()2,34.(2022·广东广州·高二期末)已知函数()y f x =的图象是下列四个图象之一,函数()y f x ='的图象如图所示,则函数()y f x =图象是( )A .B .C .D .5.(2022·北京·牛栏山一中高二阶段练习)设()f x '是函数()f x 的导函数,在同一个直角坐标系中,()y f x =和()y f x '=的图象不可能是( )A .B .C .D .6.(2022·福建宁德·高二期末多选题)设()f x 是定义域为R 的偶函数,其导函数为()f x ',若0x ≥时,()f x 图像如图所示,则可以使()()0f x f x '⋅<成立的x 的取值范围是( )A .(),3-∞-B .()1,0-C .()0,1D .()1,3题型三:已知含量参函数在区间上单调性求参数范围【例1】(2023·全国·高三专题练习)已知函数()ax x x x f ++=2ln 的单调递减区间为1,12⎛⎫ ⎪⎝⎭,则( ).A .(],3a ∈-∞-B .3a =-C .3a =D .(],3a ∈-∞【例2】(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m 的取值范围为( ) A .(),1-∞- B .[]1,1- C .[]1,3 D .[]1,3-【例3】(2022·浙江·高二开学考试)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫ ⎪⎝⎭上是减函数,则实数a 的取值范围为( )A .1a >B .1a ≥C .1a >D .1a ≥-【例4】(2022·全国·高二课时练习)若函数()2ln f x x ax x =-+在区间()1,e 上单调递增,则实数a 的取值范围是( ) A .[)3,+∞ B .(],3-∞C .23,e 1⎡⎤+⎣⎦ D .(2,e 1⎤-∞+⎦【例5】(2022·河南·荥阳市教育体育局教学研究室高二阶段练习)已知函数()321f x x x ax =+-+在R 上为单调递增函数,则实数a 的取值范围为( ) A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .1,3⎡⎫-+∞⎪⎢⎣⎭【例6】(2023·全国·高三专题练习)若函数1()sin 2cos 2f x x a x =+在区间(0,)π上单调递增,则实数a 的取值范围是( ) A .(,1]-∞-B .[1,)-+∞C .(,1)-∞-D .[1,)+∞【例7】(2022·山东临沂·高二期末)若对任意的()12,,x x m ∈+∞,且当12x x <时,都有121212ln ln 3x x x x x x ->-,则m 的最小值是________.【例8】(2022·全国·高三专题练习(文))已知函数()()0ln 232>+-=a x x axx f ,若函数()x f 在[]2,1上为单调函数,则实数a 的取值范围是________.【题型专练】1.(2023·全国·高三专题练习)若函数2()ln 5f x x ax x =+-在区间11,32⎡⎤⎢⎥⎣⎦内单调递增,则实数a 的取值范围为( ) A .(,3]-∞ B .3,2⎛⎤-∞- ⎥⎝⎦C .253,8⎡⎤⎢⎥⎣⎦D .25,8⎡⎫+∞⎪⎢⎣⎭2.(2022·山西·平遥县第二中学校高三阶段练习)若函数()ln 1f x x x ax =-+在[e,)+∞上单调递增,则实数a 的取值范围是( ) A .(,2)-∞ B .(,2]-∞ C .(2,)+∞ D .[2,)+∞3.(2023·全国·高三专题练习)已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥ B .22a -≤≤ C .2a ≥- D .0a ≥或2a ≤-4.(2022·全国·高三专题练习)若函数()d cx bx x x f +++=23的单调递减区间为()3,1-,则=+c b ( )A .-12B .-10C .8D .105.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______. 6.函数321()3f x ax x a =-+在[1,2]上单调递增,则实数a 的取值范围是( ) A .1a >B .1a ≥C .2a >D .2a ≥7.对于任意1x ,2[1,)x ∈+∞,当21x x >时,恒有2211ln 2()x a x x x <-成立,则实数a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .(,2]-∞D .(,3]-∞8.若函数2()ln f x x x x=++在区间[],2t t +上是单调函数,则t 的取值范围是( ) A .[1,2] B .[1,)+∞C .[2,)+∞D .(1,)+∞题型四:已知含量参函数在区间上不单调,求参数范围【例1】(2022·河南宋基信阳实验中学高三阶段练习(文))已知函数()3212132a g x x x x =-++.若()g x 在()2,1--内不单调,则实数a 的取值范围是______.【例2】(2021·河南·高三阶段练习(文))已知函数()()41xf x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭【题型专练】 1.函数()()2244xf x e xx =--在区间()1,1k k -+上不单调,实数k 的范围是 .2.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.题型五:已知含量参函数存在单调区间,求参数范围【例1】(2023·全国·高三专题练习)若函数()21()ln 12g x x x b x =+--存在单调递减区间,则实数b 的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .(),3-∞D .(],3-∞【例2】(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.【例3】(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.【例4】(2023·全国·高三专题练习)已知()2ln ag x x x x=+-. (1)若函数()g x 在区间[]1,2内单调递增,求实数a 的取值范围; (2)若()g x 在区间[]1,2上存在单调递增区间,求实数a 的取值范围.【题型专练】1.(2022·全国·高三专题练习(文))若函数()()0221ln 2≠--=a x ax x x h 在[]4,1上存在单调递减区间”,则实数a 的取值范围为________.2.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为 .3.故函已知函数32()3()f x ax x x x =+-∈R 恰有三个单调区间,则实数a 的取值范围为( ) A .()3,-+∞ B .()()3,00,-+∞C .()(),00,3-∞D .[)3,-+∞4.已知函数()()R a x ax x x f ∈+++=123在⎪⎭⎫⎝⎛--31,32内存在单调递减区间,则实数a 的取值范围是( ) A .(0,√3] B .(−∞,√3]C .(√3,+∞)D .(√3,3)。

原函数与二阶导函数的关系

原函数与二阶导函数的关系

原函数与二阶导函数的关系
原函数和它的二阶导函数之间有着密切的关系。

对于函数 y = f(x),其二阶导函数为 y'' = f''(x)。

当 f''(x) > 0,则函数 y = f(x) 在该点是凹函数,即具有下凹形状。

当 f''(x) < 0,则函数 y = f(x) 在该点是凸函数,即具有上凸形状。

当 f''(x) = 0,则函数 y = f(x) 在该点是平函数,即具有平凡形状。

另外,二阶导函数也可以用来判定函数的单调性,如果二阶导函数在整个定义域内都是正数,那么原函数就是下凹函数,即单调递增,反之就是下凸函数,即单调递减,如果在整个定义域内都是0,则原函数是常函数。

原函数与导函数的关系

原函数与导函数的关系

课题:探究原函数与导函数的关系首师大附中数学组王建华设计思路这节课是在学完导数和积分之后,学生从大量的实例中对原函数和导函数的关系有了一定的认识的基础上展开教学的。

由于这部分内容课本上没有,但数学内部的联系规律和对称美又会使学生既觉得有挑战性又充满探究的兴趣。

备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣和成就感。

教师实际上是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。

最终学生能否记住这些结论并不重要,重要的是研究相互关联的事物的一般思路和方法。

对优秀生或热爱数学的学生来说会有更多的收获。

整个教学流程1. 从经验观察发现,猜想得命题p,q. 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。

2. 学生自然会想到这个命题的逆命题是否成立,尝试证明。

证明的思路也要逆向思考。

发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y轴对称的性质能够保持,但关于原点对称的性质就不能保证了。

3. 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶对称,研究前面的四个命题还是否成立。

研究方法可以类函数的性质拓展为关于直线x a比迁移前面的方法。

能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。

4.已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。

教学目标在这个探究过程中1.加强学生对导函数与原函数相生相伴的关系的理解;2.增强学生对函数对称性的理解和抽象概括表达能力;3体验研究事物的角度,一个新定理是怎样诞生的,怎样才是全面地认识了一个事物。

4.培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。

教学重点以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、辨别真伪的过程。

原函数与导函数的区别

原函数与导函数的区别

原函数与导函数的区别
函数的最基本定义是一个把一个变量X映射到另一个变量Y的关系式。

函数分为原函数与导函数。

原函数是一个函数表达式,简单地说是把自变量x对应到因变量y上。

而导函数是原函数的变形,是原函数的切线斜率值。

两者都是函数,有着不同的用途,也有着不同的特点。

原函数
原函数是一种函数,只能表示x与y之间的关系,而不能表示代入x变化时y的变化情况。

原函数可以表示如x的平方、平方根、三角函数等,也可以表示经过高次拟合的复杂的函数。

从数学角度来讲,原函数是计算x变化时y的变化情况的基础。

导函数
导函数是原函数的变形,是原函数在每一个点处的斜率。

也就是说,是求解每个点处函数的梯度。

导函数可以描述原函数的变化趋势,比如当x变小时y是减小还是增大。

而且可以用来求解各种数学问题,比如求解函数的极值以及求解微分方程。

原函数与导函数的区别
原函数与导函数有着明显的不同,从功能上来说,它们各自有着不同的作用。

1.能上的区别:原函数是把x与y之间的关系表达出来,而导函
数是把x变化时y的变化情况表达出来。

2.质上的区别:原函数是一个可以描述因变量y随自变量x变化关系的函数,而导函数是原函数的变形,表示每个点的斜率,是原函数的梯度。

3.解上的区别:原函数可以用来求解x与y之间的关系,比如求函数极值、做图等;而导函数可以用来求函数极值以及求解微分方程。

结论
原函数与导函数是数学中不可分割的组成部分。

二者在功能上、性质上和求解上都有着明显的不同,它们各自有着不同的作用,要想在数学中取得更好的效果,就要正确掌握它们的特点和用法。

原函数与导函数的奇偶关系证明

原函数与导函数的奇偶关系证明

原函数与导函数的奇偶关系证明原函数与导函数的奇偶关系是微积分中一个重要的概念。

在研究函数的性质时,我们常常需要分析函数及其导函数的奇偶性。

通过研究函数的奇偶性,我们可以得到函数在坐标系中的对称关系,从而更好地理解函数的行为。

我们来回顾一下奇函数和偶函数的定义。

一个函数被称为奇函数,当且仅当对于任意的x,有f(-x)=-f(x)成立。

换句话说,奇函数在原点对称。

例如,函数f(x)=x^3就是一个奇函数。

因为f(-x)=(-x)^3=-x^3=-f(x)。

另一方面,一个函数被称为偶函数,当且仅当对于任意的x,有f(-x)=f(x)成立。

换句话说,偶函数在y轴对称。

例如,函数f(x)=x^2就是一个偶函数。

因为f(-x)=(-x)^2=x^2=f(x)。

现在,让我们来研究原函数和导函数之间的奇偶关系。

假设f(x)是一个函数,F(x)是它的原函数,即F'(x)=f(x)。

我们可以推导出以下结论:1. 如果f(x)是奇函数,那么F(x)是偶函数。

这是因为由于f(x)是奇函数,我们有f(-x)=-f(x)。

然后,根据原函数和导函数的关系,我们可以得到F'(-x)=-f(-x)=-(-f(x))=f(x),即F'(-x)=f(x)。

这意味着F(x)在y 轴对称,即F(x)是偶函数。

2. 如果f(x)是偶函数,那么F(x)是奇函数。

这是因为由于f(x)是偶函数,我们有f(-x)=f(x)。

然后,根据原函数和导函数的关系,我们可以得到F'(-x)=f(-x)=f(x),即F'(-x)=f(x)。

这意味着F(x)在原点对称,即F(x)是奇函数。

通过这样的推导,我们可以看到原函数和导函数的奇偶关系。

这个关系告诉我们,如果我们知道一个函数是奇函数或偶函数,我们可以推断出它的原函数是什么奇偶性。

这对于研究函数的性质和行为非常有用。

举例来说,我们考虑函数f(x)=sin(x)。

我们知道sin(x)是一个奇函数,因为sin(-x)=-sin(x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导函数图像类型题
类型一:已知原函数图像,判断导函数图像。

的图象如右图,那么导)如果函数(福建卷11)(xy?f1.?的图象可能是函数)(y?fx) (
的图象如下左图所示,则导函数y=fx)在定义域内可导,y=f(x)设函数)(x的图象可能为( ) 2.
f(
?)(x(x)y?fy?f的图像如下右图所示,则函数)的图像可能是(3.
2cbx??f(x)?x)'(xf)的图象的顶点在第四象限,则其导函数的图象是(若函数4.
类型二:已知导函数图像,判断原函数图像。

y
??)(f(x)xf)?yf(x的图)年广东佛山 5.(2007是函数的导函数,设1 x
2 O
)(xy?f)的图象最有可能的是(象如右图所示,则
y
y y y
2
11O 222O1 1O
x
x
x
Ox
DA
B
C
y
已(2010年3月广东省深圳市高三年级第一次调研考试文科6.)2?fc?(xbx)?ax?的导函数的图象如右图,则知函数)xf(o
)
的图象可能是( )f(x x
33?(?(?,3),3))xf(x)f(内的图象如图所示,则函数,导函数在函数的定义域为开区间7.
22f(x)的单调增区间是_____________
?)?fx(y
类型三:利用导数的几何意义判断图像。

y?f(x)[a,b]y?f(x)在区上是增函数,的导函数在区间则函数湖南卷文)(8.2009若函数[a,b]) ( 上的图象可能是间.
y y
y
y
oo
o
o xx
x
x
bba
a
b b a
a
....D B C A
'(x,x)(x,x))xy?f()y?f(x内的图像在区间9.若函数在区间内是单调递减函数,则函数2211可以是()
A B C D
10.(选做)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),y=g(x)的图象可能是
()
类型四:根据实际问题判断图像。

9.(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某一容器的三视图,现向容器t h变化的可能图象是(随时间)中匀速注水,容器中水面的高度
hhhh
OttOtOtO
l ll开始在平面上绕点o从和圆c,当按逆时针方向如图,直线10.
0 90)时,它扫过的园内阴影部分的匀速转动(转动角度不超过)t的函数,这个函数的图像大致是(S面积是时间
h
tOttOtOO
请分别注入下面四种底面积相同的容器中, (即单位时间内注入水的体积相同)11.如图, 水以常速. t的函数关系图象找出与各容器对应的水的高度h与时间
y
?)(yx)?fxy?f(的图像如下,10.已知函数的导函数)则(
)(fx 1个极小值点有函数1个极大值点,)(xf函数 22个极大值点,个极小值点有)f(x 1个极小值点有3个极大值点,函数????xx)fx(x x 3个极大值点,函数个极小值点1有x
O4
132
?(x)在(fa,b))fx()b(a,内的图象如图所示,其导函数,11. (2008珠海质检理)函数的定义域为
f(x)(a,b)内极小值点的个数是(则函数)在区间(A).1 (B).2 (C).3 (D).4
32xcx?)?ax?bxf(x5,在点已知函数处取得极大值12.
0(2,0)(1,0)f'(x)y?,如图所,其导函数的图象经过点求:示.x(Ⅰ)的值;0c,a,b. (Ⅱ)的

3
,3)(?)xf(y?内可导,其图象如13.函数在定义域2/)x?f(y)(xy?f,则不等图,记的导函数为
/0x)?f(式的解集为_____________
23d?cx)?ax??bxf(x14.的图象,如图为函数0)?)x?f'(xf'(x)f(x_____ _ 的导函数,则不等式为函数的解集为12x)?lnx?f(x的图象大致是文】15.【湛江市·函数2
y
yyy
x O x O x O x O
CDAB....
2a)(fx?bx??x的部分图如图是二次函数【珠海·16.文】?))fxln??(xxg((的零点所在的区间是)象,则函数
111)1,(),( B. A. 224.
x2232。

相关文档
最新文档