人工智能实验报告天气决策树解读
天气决策树ID3

一、上机目的及内容1.上机内根据下列给定的14个样本数据,运用ID3算法构造一个是否适宜打网球的天气决策树。
2.上机目的(1)学习用Information Gain构造决策树的方法;(2)在给定的例子上,构造出正确的决策树; (3)理解并掌握构造决策树的技术要点。
二、实验原理及基本技术路线图(方框原理图或程序流程图)1、决策树通过把实例从根节点排列到某个叶子节点来分类实例,叶子节点即为实例所属的分类。
树上的每一个节点说明了对实例的某个属性的测试,并且该节点的每一个后继分支对应于该属性的一个可能值。
构造好的决策树的关键在于如何选择好的逻辑判断或属性。
对于同样一组例子,可以有很多决策树能符合这组例子。
人们研究出,一般情况下或具有较大概率地说,树越小则树的预测能力越强。
要构造尽可能小的决策树,关键在于选择恰当的逻辑判断或属性。
由于构造最小的树是NP-难问题,因此只能采取用启发式策略选择好的逻辑判断或属性。
用信息增益度量期望熵最低,来选择分类属性。
公式为算法:创建树的Root 结点如果Examples 都为正,那么返回label=+中的单结点Root 如果Examples 都为反,那么返回lable=-单结点树Root如果Attributes 为空,那么返回单节点树Root ,lable=Examples 中最普遍的目标属性值否则开始∑∑=∈⨯-=-=ci ii v A Values v v p p S Entropy S Entropy SS S Entropy A S Gain 12)(log )()()(),(A<-Attributes中分类能力最好的属性Root的决策属性<-A对于每个可能值在Root下加一个新的分支对应测试A=vi令Example-vi为Examples中满足A属性值为vi的子集如果Examples-vi为空在这个新分支下加一个叶子结点,节点的lable=Examples中最普遍的目标属性值否则在这个新分支下加一个子树ID3(example-vi,target-attribute,attributes-|A|)结束返回 Root算法实现:天气数据存放在data.txt 中;第一行为样本数量14和每个样本中属性的数量4;第二行为每个属性取值的数量;后面n行皆为例子;节点数据结构struct DTNode{int name; //用 1,2,3,4表示选择的属性,0表示不用分类,即叶节点int data[D_MAX+1]; //表示此节点包含的数据,data[i]=1,表示包含二维数组data[][]中的第i条数据int leaf; //leaf=1 正例叶节点;leaf=2 反例叶节点;leaf=0不是节点 int c; //c=1 正类;c=0 反类DTNode *child[P+1]; //按属性值的个数建立子树};定义函数void Read_data() //从数据文件data.txt中读入训练数据DT_pointer Create_DT(DT_pointer Tree,int name,int value) //创建决策树int chose(int *da) //选择分类属性float Gain(int *da,int p) //计算以p属性分类的期望熵float Entropy(int *da) //计算数据的熵int test_leaf(int *da) //测试节点属性void Out_DT(DT_pointer Tree) //用线性表形式输出建立的决策树int Class(int *da) //对输入的测试样本分类全局变量FILE *fp;int p_num; //属性的数量int pi[P_MAX+1]; //每个属性有几种取值int d_num; //数据的数量int data[P_MAX+1][D_MAX+1];//存储训练数据三、所用仪器、材料(设备名称、型号、规格等或使用软件)1台PC及VISUAL C++6.0软件四、实验方法、步骤(或:程序代码或操作过程)#include "stdio.h"#include "math.h"int trnum;struct tr{int key,childs,father,kind;int child[4];}tree[100];int n=14,c[100][5],keykind[10][2],keykind_num;int p,q;int captionnum=4;float mc;int outtree[5];int caption[10]={3,3,2,2};char caption_name[5][10]={"天况","温度","湿度","风况","分类"};char key_name[5][3][10]={{"晴","多云","雨"},{"热","中","冷"},{"大","正常"},{"无","有"},{"-","+"}};void initdata()//初始化数据c[0][0]=1: 表示第一个实例的天况为晴{c[0][0]=1;c[0][1]=1;c[0][2]=1;c[0][3]=1;c[0][4]=1;c[1][0]=1;c[1][1]=1;c[1][2]=1;c[1][3]=2;c[1][4]=1;c[2][0]=2;c[2][1]=1;c[2][2]=1;c[2][3]=1;c[2][4]=2;c[3][0]=3;c[3][1]=2;c[3][2]=1;c[3][3]=1;c[3][4]=2;c[4][0]=3;c[4][1]=3;c[4][2]=2;c[4][3]=1;c[4][4]=2;c[5][0]=3;c[5][1]=3;c[5][2]=2;c[5][3]=2;c[5][4]=1;c[6][0]=2;c[6][1]=3;c[6][2]=2;c[6][3]=2;c[6][4]=2;c[7][0]=1;c[7][1]=2;c[7][2]=1;c[7][3]=1;c[7][4]=1;c[8][0]=1;c[8][1]=3;c[8][2]=2;c[8][3]=1;c[8][4]=2;c[9][0]=3;c[9][1]=2;c[9][2]=2;c[9][3]=1;c[9][4]=2;c[10][0]=1;c[10][1]=2;c[10][2]=2;c[10][3]=2;c[10][4]=2;c[11][0]=2;c[11][1]=2;c[11][2]=1;c[11][3]=2;c[11][4]=2;c[12][0]=2;c[12][1]=1;c[12][2]=2;c[12][3]=1;c[12][4]=2;c[13][0]=3;c[13][1]=2;c[13][2]=1;c[13][3]=2;c[13][4]=1;tree[0].father=-1;}void calculate_pq()//计算在当前条件限制下,p=正例多少个,q=反例多少个,{int u,k,i;p=0;q=0;for (i=0;i<n;i++){u=1;for (k=1;k<=keykind_num;k++)if (c[i][keykind[k][0]]!=keykind[k][1]){u=0;break;}if (u)if (c[i][4]==1) q++;else p++;}}void calculate_keykind(int x)//找出从当前节点出发,所有父节点的属性{int i;i=x;keykind_num=0;while (tree[i].father>=0){keykind_num++;keykind[keykind_num][0]=tree[tree[i].father].key;keykind[keykind_num][1]=tree[i].kind;i=tree[i].father;}}float calculate_mc(float x,float y)//计算相对于当前正例和反例的熵{if (x==0||y==0) return 0;return -(x/(x+y))*(log(x/(x+y))/log(2))-(y/(x+y))*(log(y/(x+y))/log(2));}float calculate_gain(int x,int num,float mc1)//计算以属性x对当前节点进行决策的gain值{float bc=0;int i;keykind[keykind_num][0]=x;for (i=0;i<caption[x];i++)//计算B(C,属性X){keykind[keykind_num][1]=i+1;calculate_pq();bc=bc+((p+q)/(num+0.0))*calculate_mc(p,q);}return mc1-bc;}int findkey(int x)//找出当前点x的决策属性{int not_use[10],i;calculate_keykind(x);//找出X节点及其父节点的所有决策calculate_pq();//计算正反实例的个数if (p==0||q==0) return -1;mc=calculate_mc(p,q);//计算正反实例的熵int num=p+q,nowkey=-2;float max=-1,ans;for (i=0;i<=captionnum;i++) not_use[i]=1;for (i=1;i<=keykind_num;i++) not_use[keykind[i][0]]=0;keykind_num++;for (i=0;i<captionnum;i++)//枚举法一次讨论每个可用属性对X节点进行决策的gain值,取gain 值最大的属性为决策属性if (not_use[i]){ans=calculate_gain(i,num,mc);if (ans>max){max=ans;nowkey=i;}}return nowkey;}void output_con(int x)//输出满足X节点以及其所有父节点的决策的实例集合{calculate_keykind(x);int u,k,i;p=0;q=0;for (i=0;i<n;i++){u=1;for (k=1;k<=keykind_num;k++)if (c[i][keykind[k][0]]!=keykind[k][1]){u=0;break;}if (u){for (k=0;k<captionnum;k++)printf("%s,",key_name[k][c[i][k]-1]);printf("%s\n",key_name[k][c[i][k]-1]);}}}void output(int x,int deep)//输出X节点的实例,如果X不是叶子节点,则递归,一直找到叶节点才输出满足相应决策的实例集合{outtree[deep]=x;if (tree[x].childs>=0){for (int i=0;i<=tree[x].childs;i++)output(tree[x].child[i],deep+1);}else{printf("\n");for (int j=0;j<=deep-1;j++){printf("%s(%s)-->",caption_name[tree[outtree[j]].key],key_name[tree[outtree[j]].key][tree[outtree[j+1]].ki nd-1]);}printf("\n");output_con(outtree[deep]);}}void main(){int i;initdata();trnum=0;int open=0;while (open<=trnum)//open用来一次访问决策树的每个节点//每次访问一个节点,就对其进行决策,如果决策成功,则将新的点加入到决策树中,直至不能再扩展{tree[open].key=findkey(open);//寻找决策属性tree[open].childs=-1;if (tree[open].key>=0){for (i=0;i<caption[tree[open].key];i++)//决策成功,向决策树加入新的节点{trnum++;tree[trnum].kind=i+1;tree[open].childs++;tree[open].child[tree[open].childs]=trnum;tree[trnum].father=open;}}open++;}output(0,0);}五、实验过程原始记录( 测试数据、图表、计算等)六、实验结果、分析和结论(误差分析与数据处理、成果总结等。
决策树算法在天气评估中的应用

决策树算法在天气评估中的应用近年来,随着技术的发展和快速增长,人们越来越流行使用机器学习技术来处理复杂的数据。
在许多领域,机器学习的应用越来越广泛,并得到广泛的认可。
一种有效的机器学习算法是决策树算法,它可以帮助人们更好地理解和把握数据,并做出准确的决策。
在本文中,我们将讨论决策树算法在天气评估中的应用。
决策树算法是一种从数据中提取信息的方法,它可以在多个特征之间建立一种模型。
这些特征可以是时间、地点、温度等等。
决策树算法根据这些特征建立一个树形结构,其中包含有各种条件,可以帮助人们做出正确的决策。
天气评估是一项非常复杂的工作,它需要收集大量的数据,然后进行严谨的分析。
因此,使用决策树算法来帮助进行天气评估是一个很好的选择。
决策树算法可以帮助分析大量的数据,并给出准确的预测结果。
决策树算法可以用来对未来几天的天气情况进行评估。
首先,根据获取的实时天气数据,建立决策树模型,然后估算未来几天的天气状况。
这种方法可以更加准确地预测天气,并且可以节省人力成本。
此外,决策树算法也可以用来评估降雨的可能性。
在评估降雨的可能性时,会考虑多种因素,如温度、湿度、风速、气压等等。
首先,根据实时数据,建立决策树模型,利用决策树模型来预测未来几小时内降雨的可能性。
此外,还可以利用模型预测未来数周内的降雨情况,帮助农民做出决策,提高作物的健康。
最后,决策树算法可以用来评估灾害风险,如暴风雪、洪水、地震等。
在这种情况下,决策树算法可以建立一个模型,根据环境变化、气候、地质结构等变量来预测灾害发生的可能性。
这种方法不仅可以帮助政府了解天气变化,也可以帮助人们更好地防范灾害。
综上所述,决策树算法在天气评估中的应用是非常有效的。
它可以帮助人们更好地分析和理解天气数据,并有助于准确预测未来的天气变化。
当这种技术被用于其他方面时,它也可以帮助人们更好地理解数据,做出正确的决策。
人工智能决策树例题经典案例

人工智能决策树例题经典案例一、经典案例:天气预测决策树在天气预测中有广泛应用,下面是一个关于是否适宜进行户外运动的示例:1. 数据收集:- 温度:高(>30℃)/中(20℃-30℃)/低(<20℃)- 降水:是/否- 风力:高/中/低- 天气状况:晴朗/多云/阴天/雨/暴雨- 应该户外运动:是/否2. 构建决策树:- 根据温度将数据分为三个分支:高温、中温、低温- 在每个分支中,继续根据降水、风力和天气状况进行划分,最终得到是否适宜户外运动的决策3. 决策树示例:温度/ / \高温中温低温/ | | \ |降水无降水风力适宜/ \ | | / \是否高中低| |不适宜适宜- 如果温度是高温且有降水,则不适宜户外运动- 如果温度是高温且无降水,则根据风力判断,如果风力是高,则不适宜户外运动,如果风力是中或低,则适宜户外运动 - 如果温度是中温,则不论降水和风力如何,都适宜户外运动- 如果温度是低温,则需要考虑风力,如果风力是高,则适宜户外运动,如果风力是中或低,则不适宜户外运动4. 参考内容:决策树的构建和应用:决策树通过对输入特征进行划分,构建了一棵树形结构,用于解决分类或回归问题。
构建决策树主要包括数据预处理、特征选择、划分策略和停止条件等步骤。
特征选择可以使用信息增益、基尼指数等算法,划分策略可以使用二叉划分或多叉划分,停止条件可以是叶子节点纯度达到一定阈值或达到预定的树深度。
决策树的应用包括数据分类、特征选择和预测等任务。
天气预测案例中的决策树:将天气预测问题转化为分类问题,通过构建决策树,可以得到识别是否适宜户外运动的规则。
决策树的决策路径可以用流程图或树状图表示,帮助理解和解释决策过程。
决策树的节点表示特征值,分支表示判断条件,叶子节点表示分类结果。
决策树的生成算法可以基于启发式规则或数学模型,如ID3、C4.5、CART等。
决策树的优缺点:决策树具有可解释性强、易于理解和实现、能处理非线性关系等优点。
人工智能决策树的名词解释

人工智能决策树的名词解释随着人工智能技术的迅速发展,人工智能决策树越来越受到关注和应用。
作为一种机器学习的方法,人工智能决策树能够对大量的数据进行分析和预测,从而帮助人们做出更明智的决策。
本文将对人工智能决策树的相关名词进行解释,并探讨其在不同领域的应用。
一、机器学习:机器学习是人工智能领域的重要分支,其旨在通过设计和开发能够自主学习和改进的算法和模型,使机器能够从数据中自动获取知识,不断演化和改进自身的性能。
人工智能决策树即是机器学习中的一种方法,通过学习训练数据中的模式和规律,能够对未知数据进行分类和预测。
二、决策树:决策树是一种表达决策规则的树状图模型。
它通过一系列的决策节点和叶子节点来表示不同的决策路径和结果。
在人工智能决策树中,每个节点都代表一个特征或属性,而边则表示不同的取值。
通过对每个节点进行判断和选择,最终可以到达叶子节点,得到最终的决策结果。
三、特征选择:特征选择是人工智能决策树中的一个重要步骤。
在构建决策树时,需要选择最优的特征作为节点,以便最大程度地减少不确定性和提高分类准确性。
特征选择通常使用不同的算法和指标来评估每个特征对数据集的重要性,如信息增益、基尼指数等。
四、剪枝:剪枝是优化人工智能决策树的一种技术,目的是避免过拟合和提高泛化能力。
在构建决策树时,可能会出现过于复杂的树结构,导致对训练数据的拟合程度过高,而对未知数据的预测效果较差。
通过剪枝操作,可以去除一些冗余的节点和边,从而得到更简洁、更泛化的决策树模型。
五、分类与回归决策树:人工智能决策树可用于分类和回归两种任务。
分类决策树用于将数据分为不同的类别或标签,如识别图像中的物体、垃圾邮件过滤等。
回归决策树则用于预测数值型的输出,如预测房价、销售额等。
分类决策树和回归决策树在构建和应用上有所不同,但都依赖于相似的决策树结构和算法。
六、人工智能决策树的应用:人工智能决策树在许多领域都有着广泛的应用。
在医疗领域,决策树可以用于疾病诊断和治疗方案选择;在金融领域,决策树可以用于信用评估和投资决策;在推荐系统中,决策树可以用于个性化推荐和用户画像构建。
AI技术中的决策树算法解析

AI技术中的决策树算法解析一、决策树算法简介决策树算法是一种常用的机器学习方法,它通过对数据集进行分类或回归来做出决策。
这种算法模拟了人类的思维流程,将问题划分为一个个小问题,并构建出一棵树形结构进行决策。
在人工智能技术中,决策树算法被广泛应用于数据挖掘、模式识别、预测分析等场景。
二、决策树算法原理1. 特征选择:在构建决策树之前,需要选择最佳的特征。
特征选择可以通过信息增益、基尼系数等方法来评估特征与目标变量之间的关联性。
2. 决策节点生成:利用特征选择确定划分的节点。
每个节点代表一个问题,将数据集划分为更小的子集。
3. 子节点递归构建:对于每个子数据集,重复执行特征选择和决策节点生成的过程,直到满足停止条件。
4. 剪枝处理:为了避免过拟合现象,在生成完全展开的决策树后,需要对其进行剪枝处理。
剪枝是通过减去一些决策树的分支,从而减少模型复杂度,并提高泛化能力。
三、决策树算法的优点1. 简单直观:决策树模型可以通过图形展示,易于理解和解释。
它们提供了清晰的决策规则,使得结果具有直观性和可解释性。
2. 适应各种数据类型:决策树算法能够处理多种类型的特征变量,包括连续型、离散型和序号型,对数据的要求相对较低。
3. 可处理缺失值和异常值:在决策树中,缺失值不会影响特征选择过程,并且可以在生成节点时考虑到异常值。
4. 处理非线性关系:与传统线性回归方法相比,决策树可以更好地捕捉到非线性关系。
四、决策树算法的局限性1. 过拟合问题:当决策树生长过深时,容易过拟合训练数据,并在新样本上产生较差的预测效果。
剪枝技术可以一定程度上缓解过拟合问题。
2. 忽略相关特征:决策树算法是通过单个特征来切分数据集,可能忽略多个相关变量之间的关系。
3. 对噪声敏感:决策树对于噪声数据非常敏感,容易受到异常值的影响。
五、决策树算法在AI技术中的应用1. 数据挖掘:决策树算法可以用于从大规模数据集中提取有用信息。
它可以发现关联规则,找出分类依据,并为进一步分析和预测提供基础。
实验二.天气决策树

Gain(C, “天况”) = M(C)-B(C,“天况”) =0. 940 -0. 694 =0. 247 bits
Gain
各属性Information Gain的比较
Gain(C, “天况”) = M(C)-B(C,“天况”) =0. 940 -0. 694 =0. 247 bits
“雨”的分支,含3个正例2个反例: M(天况为雨)=-3/5 * log2 (3/5)-2/5 * log2 (2/5) = 0. 971 bits
则以“天况”作划分后,对应决策树的信息量为:
B(C,“天况”)=5/14 * 0. 971 +4/14 * 0 +5/14 * 0. 971 =0. 694 bits
Gain(C, “温度”) = M(C)-B(C,"温度") =0. 940 -0. 911 =0. 029 bits
Gain(C, “湿度”) = M(C)-B(C,"湿度") =0. 940 -0. 788 =0.152 bits
Gain(C, “风况”) = M(C)-B(C,"风况") =0. 940 -0. 892=0. 048 bits
-5/14 * log2 (5/14) =0. 940 bits
选取属性“天况”的Information
计算各分支的熵
“晴”的分支含2个正例3个反例,所需期望信息量为:
M(天况为晴)=-2/5 * log2 (2/5)-3/5 * log2 (3/5) = 0. 971 bits
“多云”的分支,含4个正例0个反例: M(天况为多云)=0
实验二:天气决策树的构造
例子编号
实验二决策树实验实验报告

实验二决策树实验实验报告
一、实验目的
本实验旨在通过实际操作,加深对决策树算法的理解,并掌握
决策树的基本原理、构建过程以及应用场景。
二、实验原理
决策树是一种常用的机器学习算法,主要用于分类和回归问题。
其基本原理是将问题划分为不同的决策节点和叶节点,通过一系列
的特征测试来进行决策。
决策树的构建过程包括特征选择、划分准
则和剪枝等步骤。
三、实验步骤
1. 数据收集:从开放数据集或自有数据中选择一个适当的数据集,用于构建决策树模型。
2. 数据预处理:对收集到的数据进行缺失值处理、异常值处理
以及特征选择等预处理操作,以提高模型的准确性和可靠性。
3. 特征选择:采用合适的特征选择算法,从所有特征中选择对
分类或回归任务最重要的特征。
4. 构建决策树模型:根据选定的特征选择算法,以及划分准则(如信息增益或基尼系数)进行决策树模型的构建。
5. 模型评估:使用交叉验证等方法对构建的决策树模型进行评估,包括准确率、召回率、F1-score等指标。
6. 模型调优:根据评估结果,对决策树模型进行调优,如调整模型参数、采用剪枝技术等方法。
7. 模型应用:将得到的最优决策树模型应用于实际问题中,进行预测和决策。
四、实验结果及分析
在本次实验中,我们选择了某电商网站的用户购买记录作为数据集,利用决策树算法构建用户购买意愿的预测模型。
经过数据预处理和特征选择,选取了用户地理位置、年龄、性别和购买历史等特征作为输入。
利用信息增益作为划分准则,构建了一棵决策树模型。
解释决策树算法

解释决策树算法
嘿,咱今儿就来好好唠唠决策树算法!决策树,就像是一棵会思考
的大树!比如说吧,你要决定今天出门穿啥衣服,这就是一个小小的
决策过程。
如果天气热,那就穿短袖;要是天气冷,那就得穿厚衣服,这就像是决策树的一个分支。
决策树算法呢,就是通过分析大量的数据,来构建这样一棵“智慧树”。
它能帮我们找到各种问题的最佳答案。
好比你在纠结选哪个工作,决策树算法就能根据工作的薪资、发展前景、工作环境等因素,给你
指出一条相对较好的路。
咱再举个例子,就像你在超市里买水果。
你会考虑水果的新鲜度、
价格、品种等等。
决策树算法就能根据这些因素,帮你决定买哪种水
果最划算、最好吃。
它能把复杂的问题变得简单易懂,就像给你指了
一条明路。
你想想,要是没有决策树算法,咱面对那么多选择,得多迷茫啊!
它就像一个贴心的小助手,帮咱理清思路。
决策树算法的优点可不少呢!它简单直观,容易理解和解释。
而且
它还能处理各种类型的数据,不管是数字还是文字。
不过呢,它也不是完美的呀!它可能会受到噪声数据的影响,有时
候也可能会过度拟合。
但总的来说,决策树算法真的超有用!它能在很多领域发挥大作用,比如医疗、金融、市场营销等等。
它就像一把钥匙,能打开解决问题
的大门。
所以啊,可别小瞧了决策树算法,它可是很厉害的呢!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昆明理工大学信息工程与自动化学院学生实验报告
(201 —201 学年第 1 学期)
课程名称:人工智能开课实验室:年月日
一、上机目的及内容
1.上机内容
根据下列给定的14个数据,运用Information Gain构造一个天气决策树。
(1)学习用Information Gain构造决策树的方法;
(2)在给定的例子上,构造出正确的决策树;
(3)理解并掌握构造决策树的技术要点。
二、实验原理及基本技术路线图(方框原理图或程序流程图)
(1)设计并实现程序,构造出正确的决策树;
(2)对所设计的算法采用大O符号进行时间复杂性和空间复杂性分析;
程序流程图:
三、所用仪器、材料(设备名称、型号、规格等或使用软件)
1台PC及VISUAL C++6.0软件
四、实验方法、步骤(或:程序代码或操作过程)
源程序见同一文件夹下工程jueceshu。
以下为部分程序代码:
DataPoint processLine(std::string const& sLine)
{
std::istringstream isLine(sLine, std::istringstream::in);
std::vector<AttributeValue> attributes;
while( isLine.good() )
{
std::string rawfield;
isLine >> rawfield;
attributes.push_back( AttributeValue( rawfield ) );
}
AttributeValue v = attributes.back();
attributes.pop_back();
bool type = v.GetType();
return DataPoint(attributes, type);
}
void main()
{
std::ifstream ifs("in.txt", std::ifstream::in);
DataSet initDataset;
while( ifs.good() )
{
// TODO: need to handle empty lines.
std::string sLine;
std::getline(ifs, sLine);
initDataset.addDataPoint( processLine(sLine) );
}
std::list<DataSet> processQ;
std::vector<DataSet> finishedDataSet;
processQ.push_back(initDataset);
while ( processQ.size() > 0 )
{
std::vector<DataSet> splittedDataSets;
DataSet dataset = processQ.front();
dataset.splitDataSet(splittedDataSets);
processQ.pop_front();
for (int i=0; i<splittedDataSets.size(); ++i)
{
float prob = splittedDataSets[i].getPositiveProb();
if (prob == 0.0 || prob == 1.0)
{
finishedDataSet.push_back(splittedDataSets[i]);
}
else
{
processQ.push_back(splittedDataSets[i]);
}
}
}
五、实验过程原始记录( 测试数据、图表、计算等)
六、实验结果、分析和结论(误差分析与数据处理、成果总结等。
其中,绘制曲线图时必须用计算纸或程序运行结果、改进、收获)
通过这次实验,我对人工智能的应用有了更进一步的认识。
我了解了如何采用Information Gain构建天气决策树,知道了怎样构造决策树。
人工智能是一门综合性十分强的学科,它包括了以前我们学过的知识,还有一些是我们以前没有学习过,甚至没有接触过的领域。
读书的好处
1、行万里路,读万卷书。
2、书山有路勤为径,学海无涯苦作舟。
3、读书破万卷,下笔如有神。
4、我所学到的任何有价值的知识都是由自学中得来的。
——达尔文
5、少壮不努力,老大徒悲伤。
6、黑发不知勤学早,白首方悔读书迟。
——颜真卿
7、宝剑锋从磨砺出,梅花香自苦寒来。
8、读书要三到:心到、眼到、口到
9、玉不琢、不成器,人不学、不知义。
10、一日无书,百事荒废。
——陈寿
11、书是人类进步的阶梯。
12、一日不读口生,一日不写手生。
13、我扑在书上,就像饥饿的人扑在面包上。
——高尔基
14、书到用时方恨少、事非经过不知难。
——陆游
15、读一本好书,就如同和一个高尚的人在交谈——歌德
16、读一切好书,就是和许多高尚的人谈话。
——笛卡儿
17、学习永远不晚。
——高尔基
18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。
——刘向
19、学而不思则惘,思而不学则殆。
——孔子
20、读书给人以快乐、给人以光彩、给人以才干。
——培根。