生物脱氮除磷PPT课件

合集下载

废水生物脱氮除磷技术148页PPT

废水生物脱氮除磷技术148页PPT

概述
废水生物脱氮利用自然界氮素循环的原理, 在水处理构筑物中营造出适宜于不同微生物 种群生长的环境,通过人工措施,提高生物 硝化反硝化速率,达到废水中氮素去除的目 的。废水生物脱氮一般由三种作用组成:氨 化作用、硝化作用和反硝化作用。
氨化作用
在未经处理的原废水中,含氮化合物主要以
有机氮如蛋白质、尿素、胺类化合物、硝基 化合物以及氨基酸等形式存在,此外还含有 部分氨态氮如NH3和NH+4-N。在细菌的作用 下,有机氮化合物分解、转化为氨态氮。以 氨基酸为例,反应式为:
亚硝酸菌
H4+ +H2CO3 + HCO3- + O2 NO3- +
H2O + 硝酸菌
(13-3)
总反应:
NH4+ + O2 + HCO3微生物细胞
生物脱氮的基本原理及影响因素
一、生物脱氮的基本原理 二、生物脱氮的影响因素
生物脱氮的基本原理
概述 1、氨化作用(Nitrogen) 2、硝化作用(Nitrification) 3、反硝化作用(Denitrification) 4、生物脱氮的新发现
概述
废水生物脱氮技术是70年代中期美国和南 非等国的水处理专家们在对化学、催化和生 物处理方法研究的基础上,提出的一种经济 有效的处理技术。废水生物脱氮有同化脱氮 与异化脱氮。同化脱氮是指微生物的合成代 谢利用水体中的氮素合成自身物质,从而将 水体中的氮转化为细胞成分而使之从废水中 分离。通常所说的废水生物脱氮是指异化脱 氮。
氮、磷污染的环境效应及现状
我国水体富营养化问题已越来越突出,成 为近几年我国水体污染中非常严峻的问题。 “富营养化”(Eutrophication)是湖泊分类 方面的概念。湖泊学家认为天然富营养化是 水体衰老的一种表现。而过量的植物性营养 元素氮、磷进入水体则是人为加速了水体的 富营养化过程。

生物脱氮除磷工艺共183页PPT

生物脱氮除磷工艺共183页PPT
含有机氮的农药有:氢基甲酸酯类、酰胺类、脲类等。 在土壤里,会随雨水冲淋、农业排水和地表径流排入水体 中。
此外农村的家畜养殖场、牧场中的家畜废弃物、排泄物 也是农业污水中氮的来源。
生物脱氮除磷工艺
本章目录
第1节 水体中的氮、磷
二.水体中的磷 1. 水体中磷的形态
主要以游离磷和磷酸盐形式存在于污水中。 2.水体中磷的危害
3.水体中氮的来源
水体中的氮其来源是多方面的,主要由城市生活污水、工 业废水和农溉污水三方面。此外自然界的天然固氮也是一 个方面,通过雷电固定大气中的氮就占天然固氮的15%。 大气中的氮通过下雨会降解到水体,水体本身尚有许多能 固氮的微生物,如某些固氮菌和蓝绿藻,在光照充足的情 况下能将大气中的氮固定下来并进人水体。
足量氯气将废水中的有机物及其它易氧化的物质氧化后, 氯与氨离子产生反应最终形成氮气。
N 4 H O N 2 C C H H l lH 2 O
2 N 2 C H H l O N 2 3 C C H 2 l O l3 H
每mgNH4+-N被氧化为氮气,至少需要7.5mg的氯, 实际上为保证反应的完全进行,加氯应略过量,折点的 CL2与NH4+-N的重量比在8:1~10:1。由于加氯略过量, 所以常用SO2或活性炭来脱除余氯:
氨氮的吹脱过程包括将废水的PH调整到10.5~11.5,然
后再提供足够的空气并使气水接触从溶液中将氨气吹出,
通常利用苛性碱或石灰来调整PH。
进水
石灰或 石灰乳
调节pH值
沉淀池 排泥


出水

吹脱法脱氨处理流程
生物脱氮除磷工艺
本章目录
第2节 氮磷的物化处理法
2、折点加氯法去除氨氮 通过投加足量氯气于废水中使氨氮氧化成氮气。在投加

污水厂生物脱氮除磷工艺讲座PPT

污水厂生物脱氮除磷工艺讲座PPT
厌氧—好氧生物除磷工艺 生物法与化学法结合的除磷工艺
生物除磷原理与过程
好氧条件下, 除磷菌过量 摄取磷
厌氧条件下, 除磷菌将磷 释放
I——PHB(聚羟基丁酸) S——聚合磷酸盐
高含磷污 泥的排出
一、厌氧——好氧除磷工艺(A—O工艺)
一、厌氧——好氧除磷工艺(A—O工艺)
工艺特点: 水力停留时间为3~6h; 曝气池内的污泥浓度一般在2700~3000mg/l; 磷的去除效果好(~70%),出水中磷的含量低于1mg/l; 污泥中的磷含量约为4%,肥效好; SVI小于100,易沉淀,不易膨胀。
5Ca 2
4OH
3HPO
2 4
Ca5 (OH )( PO4 )3
3H 2O
羟磷灰石
废水生物脱氮工艺与技术
一、活性污泥法脱氮传统工艺 二、缺氧—好氧活性污泥法生物脱氮系统(A—O工艺) 三、氧化沟生物脱氮工艺 四、生物转盘生物脱氮工艺
一、活性污泥法脱氮传统工艺
1、三级活性污泥法流程:
①碳化: ②氨化:
二、缺氧——好氧活性污泥脱氮系统(A—O工艺)
在反硝化反应过程中产生的碱度可补偿硝化反应消耗的碱 度的一半左右;
硝化曝气池在后,使反硝化残留的有机物得以进一步去除, 无需增建后曝气池。
三、氧化沟生物脱氮工艺
四、生物转盘硝化脱氮工艺
好氧碳化及硝化
进 水
BOD去除
缺氧 脱氮
好氧
废水生物除磷工艺与技术
生物脱氮除磷工艺
概述 生物脱氮工艺与技术 生物除磷工艺与技术 同步脱氮除磷工艺
概述
一、营养元素的危害 二、脱氮的物化法 三、除磷的物化法
一、营养元素的危害
氨氮会消耗水体中的溶解氧;

污水生物脱氮除磷教程PPT课件

污水生物脱氮除磷教程PPT课件
第32页/共65页
• ANAMMOX微生物的增长率与产率是非常低的。 • 但是氮的转换率却为0.25mgN/(mgSS·d),这与传
统好氧硝化的转换率相当。
第33页/共65页
• ANAMMOX反应在10~43℃的温度范围内具有活 性,适宜的pH为6.7~8.3。
• ANAMMOX无需有机碳源存在,碳酸盐/二氧化碳 是ANAMMOX微生物生长所需的无机碳源。
• 虽然目前CANON工艺在世界范围内仍处于研发阶段,还没有真正的工程应用,但是它必将会给污水脱氮技 术带来革命性的变革。
第46页/共65页
•2.2 除磷新工艺
• 反硝化除磷细菌 • 反硝化除磷工艺
第47页/共65页
反硝化除磷细菌
• 脱氮要经历好氧(硝化)/厌氧(反硝化), • 除磷要经历厌氧(释放磷)/好氧(积聚 磷). • 如果能使反硝化细菌同时具有生物摄/ 放磷作用则可以将反硝化脱氮与生物除 磷有机地合二为一。
+
CO2
→→→→ 2 3N + 6HCO3- + 7H2O
• 节约 CH3OH 40%
第25页/共65页
图3 亚硝化细菌和硝化细菌的 最小污泥龄与温度关系
0.8d 0.4d
第26页/共65页
• SHARON工艺的基本工作原理便是利用温度高有 利于亚硝化细菌增殖这一特点,使硝化细菌失去 竞争。
第27页/共65页
第59页/共65页
▪(缺氧/好氧)混合池 ▪主要功能是脱氮,正常情况 下该池可不充氧,缺氧条件可 通过好氧池回流的混合液来维 持。
第60页/共65页
• 好氧池 • 同常规的处理工艺一样,其主要功能是去除COD、BOD及氨氮的硝化。
第61页/共65页

污水生物脱氮除磷新工艺(共41张PPT)

污水生物脱氮除磷新工艺(共41张PPT)
响厌氧产物PHB的合成,进而影响到后续除磷效果。
▪ 一般而言,要同时达到氮磷的去除目的,城 市污水中碳氮比(COD/TKN)至少为 9。当城 市污水中碳源低于此要求时,由于大多数处 理工艺流程都把缺氧反硝化置于厌氧释磷之 后,反硝化效果受到碳源量的限制,大量的 未被反硝化的硝酸盐随回流污泥进入厌氧区 ,干扰厌氧释磷的正常进行,最终影响到整 个营养盐去除系统的稳定运行。
▪ 一、脱氮除磷的传统工艺
▪ 1、 脱氮的传统工艺 ▪ 2 、除磷的传统工艺
▪ 1、 脱氮的传统工艺 ▪ 自然界中氮一般有四种形态:
▪ 有机氮、
▪ 氨氮、 ▪ 亚硝酸盐氮 ▪ 硝酸盐氮
▪ 生活污水中的氮主要形态是有机氮和氨氮。
▪ 有机氮占生活污水含氮量的40-60%, ▪ 氨氮占50-60%,
▪ 亚硝酸盐和硝酸盐氮仅占0-5%。
▪ 总反应
▪ NH4+ + O2 + HCO3- →

NO3- + H2O + H2CO3 + 微生物细胞
▪ 反硝化反应如下:

▪ NO3- + CH3OH + H2CO3 → ▪ N2↑+H2O + HCO3-+微生物细胞 ▪
生物脱氮工艺
▪ 传统生物脱氮存在问题?
▪ 首先,需要充分地氧化氨氮到硝酸氮,要消
内回流
污泥回流
图3 MUCT工艺
▪ MUCT工艺有两个缺氧池,前一个接受二沉池回流污泥,后一个接受好 氧区硝化混合液,使污泥的脱氮与混合液的脱氮分开,进一步减少硝酸 盐进入厌氧区的可能。
OWASA工艺
进水
初沉池 污泥
混合液内回流
厌氧
缺氧

生物脱氮除磷ppt

生物脱氮除磷ppt
• MCRT 8-15d • 水力停留时间 厌氧1-2h 缺氧1.5-2.0h 好氧 6h
以上
• 内回流和外回流 300-500%,50-100%(最低, 避免过多硝酸盐进入厌氧段,干扰磷的释放,
为什么硝酸盐会干扰磷的释放?反硝化菌活性 增强,聚磷菌活性降低)
• BOD5/TKN >4.0(甲醇) BOD5/TP>20 (低级脂肪酸)
其他特 VIP专享精彩活动

VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
磷+上清液化学沉淀(回流污泥过程,旁 路) 回流污泥厌氧放磷后+进水——曝气池吸收 磷
三、 生物脱氮除磷
1. 工艺
A-A-O:厌氧——缺氧——好氧 OWASA:厌氧上清液回流到厌氧或缺氧段,
促进放磷或反硝化,为什么能?
改 进 Bardenpho : 厌 氧 —— 缺 氧 —— 好 氧 — —缺氧——好氧,A—A-O—A-O串联
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下载特权,一 次发放,全年内有效。
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。

《生物脱氮除磷》课件

《生物脱氮除磷》课件

生物除磷
1
机理
通过将废水中的磷转化为无机磷和有机
A2 /O生物脱氮除磷工艺
2
磷,再通过微生物代谢过程去除。
结合好氧、厌氧和沉淀等工艺,实现废
水中氮、磷的去除。
3
Bardenpho工艺
在好氧、厌氧、好氧的条件下,通过不
SBR污水处理工艺
4
同污泥的代谢过程实现氮、磷的去除。
利用SBR反应器对废水进行交替好氧/厌 氧处理,最终实现氮、磷的去除。
《生物脱氮除磷》PPT课 件
生物脱氮除磷技术是一种高效、环保、可持续发展的废水处理技术。本课件 将为大家详细介绍生物脱氮除磷技术的定义、分类与应用实例。
概述
定义
生物脱氮除磷是利用微生物代谢特性,将废水中的氮、磷物质转化为气体、微量元素等不容 易造成环境污染和资源浪费的物质。
作用与意义
生物脱氮除磷技术能够达到国家排放标准,不仅是治理污水的有效手段,同时也是重要的水 资源再生和开发途径。
现状与展望
现状
生物脱氮除磷技术在全球范围得到了广泛的应用和 推广,成为污水处理领域的基础性技术。
发展趋势
生物脱氮除磷技术还有进一步完善和提升的空间, 例如膜技术、基因工程技术等将对其进行更进一步 的优化和推广。
结论
1
优势与不足
生物脱氮除磷技术具有高效、环保等优
未来前景
2
势,但同时也存在设备投入成本高的不 足。
分类
生物脱氮除磷技术可分为好氧法、厌氧法和好氧/厌氧复合法三大类。
生物脱氮
机理
通过微生物氧化还原过程实现废水中的氮质转化和 去除。
好氧乙烯氧化法
将氨氮依次氧化成亚硝酸盐态氮和硝酸盐态氮,并 在好氧环境下脱除。

生物脱氮除磷原理及工艺 ppt课件

生物脱氮除磷原理及工艺  ppt课件

聚磷酸ploy 厌氧段 ADP 进水 释放 好氧段 ATP ATP 无机磷 聚磷 ADP 有机磷
无机磷 有机磷 聚磷菌+Poly 合成 溶解质 ATP PHB PHB ADP
聚磷菌
降解 ADP 无机物 ATP
释放的少
污泥回流
剩余污泥(高磷) 摄取的多
PHB:聚—β—羟基酸盐 生物除磷几乎全为活性污泥法,生物膜法很少
杆状细菌 .
(2)环境因素对硝化反应的影响
※硝化菌对环境条件的变化极为敏感
①溶解氧—— 氧是电子受体,DO不能低于1.0mg/l 硝化需氧量(NOD)——4.57g(氧)/g(N) ②碱度——7.1g碱度(以CaCO3计)/1g氨态氮(以N计),一 般碱度不低于50mg/l ③PH——对PH变化敏感(硝化菌),最佳值8.0-8.4,效率最高 ④温度——适应20-30℃,15℃时硝化速度下降,低于5℃完全停 止 ⑤有机物——BOD应低于15-20mg/l ⑥污泥龄(SRT)——微生物在反应器内的停留时间(θc) N>(θc)Nmin,硝化菌最小的世代时间(θc)Nmin ⑦重金属机有害物质 重金属对硝化反应抑制 高浓度NH4+—N,高浓度NOx-—N
二、 污水生物脱氮原理
活性污泥法的传统功能——去除水中溶解性有机物
1、同化作用
污水生物处理中,一部分氮备同化微生物细胞的 组分。按细胞干重计算,微生物中氮的含量约为 12.5%
2、氨化反应 与硝化反应 (1)氨化反应
RCHNH2COOH+O2氨化菌


RCOOH+CO2+NH3
3、硝化反应
(1)硝化过程
化学法除磷:使用Al盐注意事项 注意PH值,介于5-7之间无影响,无需调整 PH降低,应注意排放水对PH的要求 沉淀污泥回流,污泥中有Al(OH)3,能提高对磷的去除率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
15
二、硝化反应式 (二)硝化反应的生化反应
氨单加 氧酶
羟胺氧 还酶
羟胺氧 还酶
亚硝酸盐 氧还酶
NH3 → NH2OH → NO → NO2- → NO3-
(1)氨氧化为羟氨:氨单加氧酶 ✓ NH3 + O2 → NH2OH
.
16
(二)硝化反应的生化反应式
(2)羟胺氧化为亚硝酸盐:羟胺氧还酶 分两步,中间产物为NO
→1.00NO3-+0.00619C5H7NO2+0.00619H+
细胞物质: C5H7NO2
.
19
硝化生物合成总反应式:
NH4++1.89O2+0.0805CO2→ 0.984NO3-+ 0.0161C5H7NO2+0.952H2O+1.98H+
.
20
(2)硝化反应的化学计量关系
➢ 将1gNH3-N氧化为硝酸盐:
(以CO2、有机物为碳源), 少数可异养生长。 ✓ 亚硝酸细菌(五个属)
Nitrosomonas 自养、混养;
Nitrosococcus 自养、混养;
Nitrosospira 严格自养; Nitrosovibrio 自养、混养; Nitrosolobus 自养、混养;
以氨为唯一能源,自养生长时,以CO2为唯一碳源;
(二)硝化反应的生化反应式 (3)亚硝酸氧化为硝化盐: 亚硝酸盐氧还酶
✓ NO2- +H2O→ NO3-+ 2H++2e-
ΔG0= +83kJ/mol ✓ 0.5O2+ 2H++2e- → H2O
ΔG0= -137kJ/mol
➢ NO2-+0.5 O2→ NO3ΔG0= -54 kJ/mol
亚硝酸盐氧化所需的氧是由水提供的
氨单加氧酶(AMO)、羟胺氧还酶(HAO)、亚硝酸盐氧 还酶(NOR)。
.
14Biblioteka 二、硝化反应式 (一)硝化反应的化学反应式
✓ NH3+3/2O2→ NO2-+H2O+H+ ✓ NO2-+1/2 O2→ NO3➢ NH3+2O2→ NO3-+H2O+H+
硝化反应 耗氧量:
• NH4+→NO3• NH4+→NO2• NO2-→NO3-
4.57 g O2/g NH4+-N 3.43 g O2/g NH4+-N 1.14 g O2/g NO2--N
自养型硝化菌都是一些革兰氏阴性菌,硝化时它们以氧作 为最终的电子受体,属于严格的好氧菌。 (1)第一步由亚硝酸菌将氨氮(NH4+和NH3)转化成亚硝酸 盐(NO2-); (2)第二步再由硝酸菌将NO2-氧化成硝酸盐(NO3-)。
.
10
2.1.2 硝化反应与微生物
(二) 对硝化细菌的新认识
• 硝化细菌属自养型细菌,碳源是CO2。 ✓ 有些自养型硝化细菌能混养(混合营养)生长
厌氧氨氧化
BOD 碱度
NO3-
反.硝化菌
N2、NxO
3
第2章 生物脱氮机理及生物学基础
2.1 生物脱氮机理及生物学基础 2.2 生物脱氮反应动力学 2.3 生物脱氮影响因素 2.4 生物脱氮新理论 2.5 生物脱氮新工艺
.
4
2.1 生物脱氮机理及生物学基础
• 2.1.1 生物脱氮反应过程 • 2.1.2 硝化反应与微生物 • 2.1.3 反硝化反应
.
5
2.1.1 生物脱氮反应过程
✓ 1)氨化反应:将有机氮转化为氨。 ➢ 2)硝化反应:将氨氧化为亚硝酸盐和硝酸盐。 ➢ 3)反硝化反应:将亚硝酸盐和硝酸盐还原为N2。
.
6
2.1 生物脱氮机理及生物学基础
• 2.1.1 生物脱氮反应过程 • 2.1.2 硝化反应与微生物 • 2.1.3 反硝化反应
以NO2-为唯一能源,自养生长时,以CO2为唯一碳源;
混养时,可同化有机物。
.
12
2.1.2 硝化反应与微生物 一、硝化反应微生物 ➢ 二、硝化反应式
.
13
2.1.2 硝化反应与微生物
➢ 二、硝化反应式 (一)硝化反应的理论反应式 (二)硝化反应的生化反应式 (三)硝化反应的化学计量关系 (四)硝化反应代谢途径与电子转移数
混养时,可同化有机物。
.
11
(二) 对硝化细菌的新认识
2.1.2 硝化反应与微生物
✓ 硝酸细菌:自养型,有些可混养生长,某些菌株 能异养生长。 Nitrobacter 自养、可异养,自养快于异养 Nitrococcus 严格自养 Nitrospina 严格自养 Nitrospira 自养、混养
.
18
(三)硝化反应的化学计量关系
(1)硝化反应生物合成反应式:
若考虑硝化细菌新细胞的合成,则反应式为:
• 第一步 1.00NH4++1.44O2+0.0496HCO3-→ 0.99NO2-+0.01 C5H7NO2+0.97H2O+1.99H+
• 第二步 1.00NO2-+ 0.50O2+ 0.031CO2+ 0.00619NH4++0. 124H2O
污水的生物脱氮除磷技术
第1章 概述 第2章 生物脱氮机理及生物学基础 第3章 生物除磷机理及生物学基础 第4章 生物脱氮除磷工艺
.
1
第1章 概述
• 1.1 我国氮磷的污染状况 • 1.2 氮磷对水体的危害
.
2
O2 碱度 O2 碱度
有机氮 水 解
NH4+
亚硝 酸菌
NO2-
硝酸 菌
同化作用
有机氮
(产生细胞物质)
.
7
2.1.2 硝化反应与微生物 ➢ 一、硝化反应微生物 ➢ 二、硝化反应式
.
8
2.1.2 硝化反应与微生物
➢ 一、硝化反应与微生物 (一) 硝化过程 (二) 对硝化细菌的新认识
.
9
2.1.2 硝化反应与微生物
➢ 一、硝化反应与微生物 (一) 硝化过程 与微生物
硝化菌由亚硝酸细菌(氨氧化细菌)和硝酸细菌(亚硝酸 盐氧化细菌)两个亚群组成。
✓ NH2OH+ H2O → HNO2+4H+ + 4 eΔG0= +23 kJ/mol
✓ 0.5 O2 + 2H+ + 2 e-→ H2O ΔG0= -137kJ/mol
✓ NH2OH+0.5 O2 → HNO2+2H+ + 2 eΔG0= -114 kJ/mol
羟胺氧化所需的氧是由水提供的
.
17
• 消耗约 4.3 gO2 • 中和 7.14g 碱度 • 利用 0.08g 无机碳 • 产生 0.15g 新细胞
➢ 消耗氧的计量关系: 完全氧化1gNH4+-N,需消耗4.25gO2 完全氧化生成1gNO3--N,需消耗4.34gO2
.
21
(四)硝化反应代谢途径与电子转移数
✓ 代谢过程由多种酶催化
相关文档
最新文档