高考物理动能与动能定理试题经典及解析
高考物理动能与动能定理题20套(带答案)含解析

高考物理动能与动能定理题20套(带答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。
质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。
已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求:(1)剪断细绳前弹簧的弹性势能E p(2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E(3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。
【答案】(1)19.5J(2)6.75J(3)R =1.25m 时水平位移最大为x =5m 【解析】 【详解】(1)对m 1和m 2弹开过程,取向左为正方向,由动量守恒定律有:0=m 1v 1-m 2v 2解得v 1=10m/s剪断细绳前弹簧的弹性势能为:2211221122p E m v m v =+ 解得E p =19.5J(2)设m 2向右减速运动的最大距离为x ,由动能定理得:-μm 2gx =0-12m 2v 22 解得x =3m <L =4m则m 2先向右减速至速度为零,向左加速至速度为v 0=1.5m/s ,然后向左匀速运动,直至离开传送带。
设小物体m 2滑上传送带到第一次滑离传送带的所用时间为t 。
取向左为正方向。
根据动量定理得:μm 2gt =m 2v 0-(-m 2v 2)解得:t =3s该过程皮带运动的距离为:x 带=v 0t =4.5m故为了维持传送带匀速运动,电动机需对传送带多提供的电能为:E =μm 2gx 带解得:E =6.75J(3)设竖直光滑轨道AC 的半径为R 时小物体m 1平抛的水平位移最大为x 。
高考物理动能与动能定理试题经典及解析

(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。
(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。
【答案】(1)80N;(2)6m/s,6m;(3)见解析。
【解析】
【详解】
【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
2.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,忽略空气阻力.求:
高考物理动能与动能定理试题经典及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,半径R=0.5 m的光滑圆弧轨道的左端A与圆心O等高,B为圆弧轨道的最低点,圆弧轨道的右端C与一倾角θ=37°的粗糙斜面相切。一质量m=1kg的小滑块从A点正上方h=1 m处的P点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10 m/s2。
【解析】
试题分析:小物块从开始运动到与挡板碰撞,重力、摩擦力做功,运用动能定理。求小物块经过B点多少次停下来,需要根据功能转化或动能定理求出小物块运动的路程,计算出经过B点多少次。小物块经过平抛运动到达D点,可以求出平抛时的初速度,进而求出在BC段上运动的距离以及和当班碰撞的次数。
高中物理动能定理经典计算题和答案

动能和动能定理经典试题【1】例 1 一架喷气式飞机,质量m=5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02),求飞机受到的牵引力。
例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s2)例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为()A .Δv=0 B. Δv=12m/s C. W=0 D. W=10.8J 例4 在h 高处,以初速度v0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( )A. gh v 20+B. gh v 20-C. gh v 220+D. gh v 220-例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。
小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( )A. mglcosθB. mgl(1-cosθ)C. FlcosθD. Flsinθ 例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.例7如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。
高考物理动能定理理解经典题型分析

1、动能定理的理解【例题解析】物体在合外力作用下做直线运动的v -t 图象如图所示.下列表述正确的是( )A .在0~1 s 内,合外力做正功B .在0~2 s 内,合外力总是做负功C .在1~2 s 内,合外力不做功D .在0~3 s 内,合外力总是做正功 【答案】A【例题解析】(多选)如图所示,A 、B 质量相等,它们与地面间的动摩擦因数也相等,且F A = F B ,如果A 、B 由静止开始运动相同的距离,那么: ( ) A .F A 对A 做的功与F B 对B 做的功相同B .F A 对A 做功的平均功率大于F B 对B 做功的平均功率C .到终点时物体A 获得的动能大于物体B 获得的动能D .到终点时物体A 获得的动能小于物体B 获得的动能【答案】ABC 【解析】由题意可知,A 、B 水平方向上运动的距离相等,且F 1=F 2,根据W=FLcosα可知,F 1、F 2做的功相同,故A 正确;由牛顿第二定律可知,F 1cosα-μ(mg-F 1sinα)=ma A ;F 2cosα-μ(mg+F 2sinα)=ma B ;因为F 1=F 2,可知a A >a B ,在相同距离内t A <t B ,又两力做功相同,由WP t可知:P A >P B ,故B 正确;受力分析可知A 受到的摩擦力f 1=μ(mg-F 1sinα)小于B 受到的摩擦力f 2=μ(mg+F 2sinα),根据动能定理可知:对A :W 合A =F 1cosα-μ(mg-F 1sinα)]L 对B :W 合B =F 2cosα-μ(mg+F 2sinα)]L ;即W 合A >W 合B ,可知A 获得的动能大于B 获得的动能,故C 正确,D 错误;【例题解析】(单选)如图所示,固定斜面倾角为θ,整个斜面分为AB 、BC 两段,且1.5AB =BC 。
小物块P (可视为质点)与AB 、BC 两段斜面之间的动摩擦因数分别为μ1、μ2。
高考物理动能定理的综合应用题20套(带答案)含解析

高考物理动能定理的综合应用题20套(带答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。
【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)求滑块与斜面间的动摩擦因数μ;(2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值;(3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR -μmgcos37°2sin 37R︒=0-0 解得:μ=0.375⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ①在C 点时,根据牛顿第二定律有:mg +N =2Cv m R② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37°2sin 37R ︒=212C mv -2012mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④在竖直方向的位移为:y =212gt ⑤ 根据图中几何关系有:tan37°=2R yx-⑥ 由④⑤⑥式联立解得:t =0.2s考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.3.如图所示,光滑曲面与光滑水平导轨MN 相切,导轨右端N 处于水平传送带理想连接,传送带长度L =4m ,皮带轮沿顺时针方向转动,带动皮带以恒定速率v =4.0m/s 运动.滑块B 、C 之间用细绳相连,其间有一压缩的轻弹簧,B 、C 与细绳、弹簧一起静止在导轨MN 上.一可视为质点的滑块A 从h =0.2m 高处由静止滑下,已知滑块A 、B 、C 质量均为m =2.0kg ,滑块A 与B 碰撞后粘合在一起,碰撞时间极短.因碰撞使连接B 、C 的细绳受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离.滑块C 脱离弹簧后以速度v C =2.0m/s 滑上传送带,并从右端滑出落至地面上的P 点.已知滑块C 与传送带之间的动摩擦因数μ=0.2,重力加速度g 取10m/s 2.(1)求滑块C 从传送带右端滑出时的速度大小; (2)求滑块B 、C 与细绳相连时弹簧的弹性势能E P ;(3)若每次实验开始时弹簧的压缩情况相同,要使滑块C 总能落至P 点,则滑块A 与滑块B 碰撞前速度的最大值v m 是多少? 【答案】(1) 4.0m/s (2) 2.0J (3) 8.1m/s 【解析】 【分析】 【详解】(1)滑块C 滑上传送带到速度达到传送带的速度v =4m/s 所用的时间为t ,加速度大小为a ,在时间t 内滑块C 的位移为x ,有mg ma μ=C v v at =+212C x v t at =+代入数据可得3m x = 3m x L =<滑块C 在传送带上先加速,达到传送带的速度v 后随传送带匀速运动,并从右端滑出,则滑块C 从传送带右端滑出时的速度为v=4.0m/s(2)设A 、B 碰撞前A 的速度为v 0,A 、B 碰撞后的速度为v 1,A 、B 与C 分离时的速度为v 2,有2012A A m gh m v =01()A A B m v m m v =+ 12()()A B A B C C m m v m m v m v +=++A 、B 碰撞后,弹簧伸开的过程系统能量守恒222A 1A 2111()()222P B B C C E m m v m m v m v ++=++代入数据可解得2.0J P E =(3)在题设条件下,若滑块A 在碰撞前速度有最大值,则碰撞后滑块C 的速度有最大值,它减速运动到传送带右端时,速度应当恰好等于传送带的速度v .设A 与B 碰撞后的速度为1v ',分离后A 与B 的速度为2v ',滑块C 的速度为'C v ,C 在传送带上做匀减速运动的末速度为v =4m/s ,加速度大小为2m/s 2,有22()Cv v a L '-=- 解得42m/s Cv '= 以向右为正方向,A 、B 碰撞过程1()A m A B m v m m v '=+弹簧伸开过程12()()A B C C A B m m v m v m m v '''+=++22212111+()()+222p A B A B C C E m m v m m v m v '''+=+代入数据解得74228.14m v =+≈m/s .4.一个平板小车置于光滑水平面上,其右端恰好和一个光滑圆弧轨道AB 的底端等高对接,如图所示.已知小车质量M=3.0kg ,长L=2.06m ,圆弧轨道半径R=0.8m .现将一质量m=1.0kg 的小滑块,由轨道顶端A 点无初速释放,滑块滑到B 端后冲上小车.滑块与小车上表面间的动摩擦因数.(取g=10m/s 2)试求:(1)滑块到达B 端时,轨道对它支持力的大小; (2)小车运动1.5s 时,车右端距轨道B 端的距离;(3)滑块与车面间由于摩擦而产生的内能.【答案】(1)30 N (2)1 m (3)6 J 【解析】(1)滑块从A 端下滑到B 端,由动能定理得(1分)在B 点由牛顿第二定律得(2分) 解得轨道对滑块的支持力N (1分)(2)滑块滑上小车后,由牛顿第二定律对滑块:,得m/s2 (1分)对小车:,得m/s2 (1分)设经时间t后两者达到共同速度,则有(1分)解得s (1分)由于s<1.5s,故1s后小车和滑块一起匀速运动,速度v="1" m/s (1分)因此,1.5s时小车右端距轨道B端的距离为m (1分)(3)滑块相对小车滑动的距离为m (2分)所以产生的内能J (1分)5.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6m,始终以v0=6m/s的速度顺时针运动.将一个质量m=1kg 的物块由距斜面底端高度h1=5.4m的A点静止滑下,物块通过B点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H=5m,g取10m/s2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h3=1.8m②当离传送带高度为h4时物块进入传送带后一直匀减速运动,h4=9.0m所以当离传送带高度在1.8m~9.0m的范围内均能满足要求即1.8m≤h≤9.0m6.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.【答案】(1)0.32μ=(2)F=130N【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F△t=mv′﹣mv,代入数据解得:F=130N.7.如图所示,BC 225竖直放置的光滑细圆管,O为细圆管的圆心,在圆管的末端C连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球从进入圆管开始受到始终竖直向上的力F=5N的作用,当小球运动到圆管的末端C时作用力F立即消失,小球能平滑地冲上粗糙斜面.(g=10m/s2)求:(1)小球从O点的正上方某处A点水平抛出的初速度v0为多少?(2)小球在圆管中运动时对圆管的压力是多少?(3)小球在CD斜面上运动的最大位移是多少?【答案】(1)2m/s ;(2)7.1N ;(3)0.35m. 【解析】 【详解】(1)小球从A 运动到B 为平抛运动, 水平方向:r sin45°=v 0t ,在B 点:tan45°=y v gt v v =, 解得:v 0=2m/s ;(2)小球到达在B 点的速度:22m/s cos 45v v ︒==,由题意可知:mg =0.5×10=5N=F ,重力与F 的合力为零,小球所受合力为圆管的外壁对它的弹力,该力不做功, 小球在管中做匀速圆周运动,管壁的弹力提供向心力,22(22)0.5N 7.1N225v F m r ==⨯= 由牛顿第三定律可知,小球对圆管的压力大小:7.1N F '=; (3)小球在CD 上滑行到最高点过程,由动能定理得:21sin 45?cos 45?02mg s mg s mv μ︒︒--=-解得:s ≈0.35m ;8.如图,与水平面夹角θ=37°的斜面和半径R =1.0m 的光滑圆轨道相切于B 点,且固定于竖直平面内。
动能与动能定理经典习题及答案(免费》

1.关于做功和物体动能变化的关系,不正确的是().A.只有动力对物体做功时,物体的动能增加B.只有物体克服阻力做功时,它的功能减少C.外力对物体做功的代数和等于物体的末动能和初动能之差D.动力和阻力都对物体做功,物体的动能一定变化2.下列关于运动物体所受的合外力、合外力做功和动能变化的关系正确的是().A.如果物体所受的合外力为零,那么合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下作变速运动,动能一定变化D.物体的动能不变,所受的合外力必定为零3.两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是().A.乙大B.甲大C.一样大D.无法比较4.一个物体沿着高低不平的自由面做匀速率运动,在下面几种说法中,正确的是().A.动力做的功为零B.动力做的功不为零C.动力做功与阻力做功的代数和为零D.合力做的功为零5.放在水平面上的物体在一对水平方向的平衡力作用下做匀速直线运动,当撤去一个力后,下列说法中错误的是().A.物体的动能可能减少B.物体的动能可能增加C.没有撤去的这个力一定不再做功D.没有撤去的这个力一定还做功平面上做匀速圆周运动,拉力为某个值F时,转动半径为B,当拉力逐渐减小到了F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功大小是().A、FR/4B、3FR/4C、5FR/2D、零7. 一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。
从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为()A. 0B. 8JC. 16JD. 32J8.质量为5×105kg的机车,以恒定的功率沿平直轨道行驶,在3minl内行驶了1450m,其速度从10m/s增加到最大速度15m/s.若阻力保持不变,求机车的功率和所受阻力的数值.9. 一小球从高出地面Hm 处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对球的平均阻力是其重力的多少倍。
高考物理动能与动能定理试题(有答案和解析)

的小物块从轨道右侧 A 点以初速度
冲上轨道,通过圆形轨道,水平轨道
后压缩弹簧,并被弹簧以原速率弹回,取
,求:
(1)弹簧获得的最大弹性势能 ; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能 ; (3)当 R 满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离 轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m 或 0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从 A 到压缩弹簧至最短的过程中,由动
代入数据得:Q=126 J 故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【点睛】 对物体受力分析并结合图像的斜率求得加速度,在 v-t 图像中图像包围的面积代表物体运 动做过的位移。
5.如图所示,一质量为 M、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧 相连,弹簧的另一端固定在墙上.平板上有一质量为 m 的小物块以速度 v0 向右运动,且在 本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为 μ,弹簧弹性势能 Ep 与弹簧形变量 x 的平方成正比,重力加速度为 g.求:
6J
(3)滑块从 A 点运动到 C 点过程,由动能定理得
解得 BC 间距离
mg
3r
mgs
1 2
mvc2
s 0.5m
小球与弹簧作用后返回 C 处动能不变,小滑块的动能最终消耗在与 BC 水平面相互作用的
过程中,设物块在 BC 上的运动路程为 s ,由动能定理有
mgs
1 2
mvc2
解得
s 0.7m 故最终小滑动距离 B 为 0.7 0.5m 0.2m处停下.
(1)物体与传送带间的动摩擦因数; (2) 0~8 s 内物体机械能的增加量; (3)物体与传送带摩擦产生的热量 Q。 【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【解析】 【详解】 (1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,
2025届高考物理复习:经典好题专项(动能定理及其应用)练习(附答案)

2025届高考物理复习:经典好题专项(动能定理及其应用)练习1.(2023ꞏ北京市东城区模拟)复兴号动车在世界上首次实现速度350 km/h 自动驾驶功能,成为我国高铁自主创新的又一重大标志性成果。
一列质量为m 的动车,初速度为v 0,以恒定功率P 在平直轨道上运动,经时间t 达到该功率下的最大速度v m ,设动车行驶过程所受到的阻力F 保持不变。
下列关于列车在整个过程中的说法正确的是( )A .做匀加速直线运动B .牵引力的功率P =F v mC .当动车速度为v m 3时,其加速度为3F mD .牵引力做的功等于12m v m 2-12m v 022. 如图所示,竖直平面内有一半径为R 的14B 。
一质量为m的小物块从A 处由静止滑下,沿轨道运动至C 处停下,B 、C 两点间的距离为R ,物块与圆轨道和水平轨道之间的动摩擦因数相同。
现用始终平行于轨道或轨道切线方向的力推动物块,使物块从C 处缓慢返回A 处,重力加速度为g ,设推力做的功至少为W ,则( )A .W =mgRB .mgR <W <2mgRC .W =2mgRD .W >2mgR3. 如图所示,AB 是带有半径为R 的竖直圆轨道的光滑轨道,它的质量为M ,置于左右固定的水平地面上,紧挨轨道的B 点有一倾角为θ的斜面,一质量为m 的小球从光滑斜面上距B 点4R 处由静止释放,当小球通过圆轨道最高点时轨道恰好能离开地面,已知斜面倾角θ=53°,sin 53°=0.8,不计小球经过B 点时的能量损失,则轨道质量M 与小球质量m 之间的关系为( )A .M =0.8mB .M =1.2mC .M =1.4mD .M =2.0m4. 如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小球以速度v 从轨道下端滑入轨道,并保证从轨道上端水平飞出,则关于小球落地点到轨道下端的水平距离x 与轨道半径R 的关系,下列说法正确的是( )A .R 越大,则x 越大B .R 越小,则x 越大C .当R 为某一定值时,x 才有最大值D .当R 为某一定值时,x 才有最小值5. (2023ꞏ四川绵阳市诊断)如图所示,有一倾角θ=45°的粗糙斜面固定于空中的某位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理动能与动能定理试题经典及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB是在竖直平面内的14圆周,B点离地面的高度h=0.8m,该处切线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求:(1)圆弧轨道的半径(2)小球滑到B点时对轨道的压力.【答案】(1)圆弧轨道的半径是5m.(2)小球滑到B点时对轨道的压力为6N,方向竖直向下.【解析】(1)小球由B到D做平抛运动,有:h=12gt2x=v B t解得:10410/220.8Bgv x m sh==⨯=⨯A到B过程,由动能定理得:mgR=12mv B2-0解得轨道半径R=5m(2)在B点,由向心力公式得:2Bv N mg mR -=解得:N=6N根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.如图所示,斜面高为h,水平面上D、C两点距离为L。
可以看成质点的物块从斜面顶点A处由静止释放,沿斜面AB和水平面BC运动,斜面和水平面衔接处用一长度可以忽略不计的光滑弯曲轨道连接,图中没有画出,不计经过衔接处B点的速度大小变化,最终物块停在水平面上C点。
已知物块与斜面和水平面间的滑动摩擦系数均为μ。
请证明:斜面倾角θ稍微增加后,(不改变斜面粗糙程度)从同一位置A 点由静止释放物块,如图中虚线所示,物块仍然停在同一位置C 点。
【答案】见解析所示 【解析】 【详解】设斜面长为L ',倾角为θ,物块在水平面上滑动的距离为S .对物块,由动能定理得:cos 0mgh mg L mgS μθμ-⋅'-=即:cos 0sin hmgh mg mgS μθμθ-⋅-= 0tan hmgh mgmgS μμθ--= 由几何关系可知:tan hL S θ=- 则有:()0mgh mg L S mgS μμ---=0mgh mgL μ-=解得:hL μ=故斜面倾角θ稍微增加后,(不改变斜面粗糙程度)从同一位置A 点由静止释放物块,如图中虚线所示,物块仍然停在同一位置C 点。
3.如图所示,AB 是一倾角为θ=37°的绝缘粗糙直轨道,滑块与斜面间的动摩擦因数=0.30μ,BCD 是半径为R =0.2m 的光滑圆弧轨道,它们相切于B 点,C 为圆弧轨道的最低点,整个空间存在着竖直向上的匀强电场,场强E = 4.0×103N/C ,质量m = 0.20kg 的带电滑块从斜面顶端由静止开始滑下.已知斜面AB 对应的高度h = 0.24m ,滑块带电荷q = -5.0×10-4C ,取重力加速度g = 10m/s 2,sin37°= 0.60,cos37°=0.80.求:(1)滑块从斜面最高点滑到斜面底端B 点时的速度大小;(2)滑块滑到圆弧轨道最低点C 时对轨道的压力. 【答案】(1) 2.4m/s (2) 12N 【解析】 【分析】(1)滑块沿斜面滑下的过程中,根据动能定理求解滑到斜面底端B 点时的速度大小; (2)滑块从B 到C 点,由动能定理可得C 点速度,由牛顿第二定律和由牛顿第三定律求解. 【详解】(1)滑块沿斜面滑下的过程中,受到的滑动摩擦力:()cos370.96N f mg qE μ=+︒=设到达斜面底端时的速度为v 1,根据动能定理得:()211sin 372h mg qE h fmv +-=o 解得:v 1=2.4m/s(2)滑块从B 到C 点,由动能定理可得:()()222111=1cos3722m mg q v E v m R +︒-- 当滑块经过最低点时,有:()2N 2F mg qE v m R-+= 由牛顿第三定律:N N 11.36N F F ==,方向竖直向下. 【点睛】本题是动能定理与牛顿定律的综合应用,关键在于研究过程的选择.4.如图甲所示,长为4 m 的水平轨道AB 与半径为R =0.6 m 的竖直半圆弧轨道BC 在B 处相连接。
有一质量为1 kg 的滑块(大小不计),从A 处由静止开始受水平向右的力F 作用,F 随位移变化的关系如图乙所示。
滑块与水平轨道AB 间的动摩擦因数为μ=0.25,与半圆弧轨道BC 间的动摩擦因数未知,g 取10 m/s 2。
求: (1)滑块到达B 处时的速度大小;(2)若到达B 点时撤去F ,滑块沿半圆弧轨道内侧上滑,并恰好能到达最高点C ,滑块在半圆弧轨道上克服摩擦力所做的功。
【答案】(1)210 m/s 。
(2)5 J 。
【解析】 【详解】(1)对滑块从A 到B 的过程,由动能定理得:2113312B F x F x mgx mv μ--=, 即21202-101-0.251104J=12B v ⨯⨯⨯⨯⨯⨯⨯,得:210m/s B v =;(2)当滑块恰好能到达最高点C 时,2Cv mg m R=;对滑块从B 到C 的过程中,由动能定理得:2211222C B W mg R mv mv -⨯=-, 带入数值得:=-5J W ,即克服摩擦力做的功为5J ;5.如图所示,一长度LAB=4.98m ,倾角θ=30°的光滑斜面AB 和一固定粗糙水平台BC 平滑连接,水平台长度LBC=0.4m ,离地面高度H=1.4m ,在C 处有一挡板,小物块与挡板碰撞后原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内。
在斜面顶端A 处静止释放质量为m="2kg" 的小物块(可视为质点),忽略空气阻力,小物块与BC 间的动摩擦因素μ=0.1,g 取10m/s 2。
问:(1)小物块第一次与挡板碰撞前的速度大小;(2)小物块经过B 点多少次停下来,在BC 上运动的总路程为多少;(3)某一次小物块与挡板碰撞反弹后拿走挡板,最后小物块落在D 点,已知半球体半径r=0.75m,OD 与水平面夹角为α=53°,求小物块与挡板第几次碰撞后拿走挡板?(取)【答案】(1)7 m/s;(2)63次 24.9m(3)25次【解析】试题分析:小物块从开始运动到与挡板碰撞,重力、摩擦力做功,运用动能定理。
求小物块经过B 点多少次停下来,需要根据功能转化或动能定理求出小物块运动的路程,计算出经过B点多少次。
小物块经过平抛运动到达D点,可以求出平抛时的初速度,进而求出在BC段上运动的距离以及和当班碰撞的次数。
(1)从A到C段运用动能定理mgsin-L AB=mv2v=7m/s(2)从开始到最后停下在BC段所经过的路程为xmgsin L AB-mgx=0x=24.9m=31.1经过AB的次数为312+1=63次(3)设小物块平抛时的初速度为V0H -r=gt2r+=v 0tv0=3 m/s设第n次后取走挡板mv2-mv02=2L bc nn=25次考点:动能定理、平抛运动【名师点睛】解决本题的关键一是要会根据平抛运动的规律求出落到D时平抛运动的初速度;再一个容易出现错误的是在BC段运动的路程与经过B点次数的关系,需要认真确定。
根据功能关系求出在BC段运动的路程。
6.光滑水平面AB与一光滑半圆形轨道在B点相连,轨道位于竖直面内,其半径为R,一个质量为m的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C点再落回到水平面,重力加速度为g.求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C点时mg=m则联立知:EP≥mgR.综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为EP≤mgR 或 EP≥mgR .7.如图所示,水平传送带长为L =4m ,以02m /s v =的速度逆时针转动。
一个质量为lkg 的物块从传送带左侧水平向右滑上传送带,一段时间后它滑离传送带。
已知二者之间的动摩擦因数0.2μ=,g =10m/s 2。
(1)要使物块能从传送带右侧滑离,则物块的初速度至少多大?(2)若物块的初速度为3m /s v '=,则物块在传送带上运动时因摩擦产生的热量为多少? 【答案】(1)4m/s v >;(2)12.5J 【解析】 【详解】(1)设物块初速度为v ,物块能从传送带右侧滑离,对其分析得:212k mgL E mv μ-=-0k E >解得:4m/s v >(2)物块在传送带上的运动是先向右减速运动,后向左加速运动。
物块向右减速运动时,有:1v t a '=21102mgx mv μ'-=-物块与传送带的相对滑动产生的热量:()1011Q mg v t x μ=+向左加速运动时,有:2v t a =22012mgx mv μ=物块与传送带的相对滑动产生的热量:()2022Q mg v t x μ=-1212.5J Q Q Q '=+=8.如图为一水平传送带装置的示意图.紧绷的传送带AB 始终保持 v 0=5m/s 的恒定速率运行,AB 间的距离L 为8m .将一质量m =1kg 的小物块轻轻放在传送带上距A 点2m 处的P 点,小物块随传送带运动到B 点后恰好能冲上光滑圆弧轨道的最高点N .小物块与传送带间的动摩擦因数μ=0.5,重力加速度g =10 m/s 2.求:(1)该圆轨道的半径r ;(2)要使小物块能第一次滑上圆形轨道达到M 点,M 点为圆轨道右半侧上的点,该点高出B 点0.25 m ,且小物块在圆形轨道上不脱离轨道,求小物块放上传送带时距离A 点的位置范围.【答案】(1)0.5r m =(2)77?.5,05?.5m x m x m ≤≤≤≤ 【解析】 【分析】 【详解】试题分析:(1)小物块在传送带上匀加速运动的加速度25/a g m s μ==小物块与传送带共速时,所用的时间01v t s a== 运动的位移02.52v x m a∆==<L -2=6m 故小物块与传送带达到相同速度后以05/v m s =的速度匀速运动到B ,然后冲上光滑圆弧轨道恰好到达N 点,故有:2Nv mg m r=由机械能守恒定律得22011(2)22N mv mg r mv =+,解得0.5r m = (2)设在距A 点x 1处将小物块轻放在传送带上,恰能到达圆心右侧的M 点,由能量守恒得:1()mg L x mgh μ-= 代入数据解得17.5?x m = 设在距A 点x 2处将小物块轻放在传送带上,恰能到达右侧圆心高度,由能量守恒得:2()mg L x mgR μ-=代入数据解得27?x m =则:能到达圆心右侧的M 点,物块放在传送带上距A 点的距离范围;同理,只要过最高点N 同样也能过圆心右侧的M 点,由(1)可知38 2.5 5.5?x m m m -== 则:0 5.5x m ≤≤.故小物块放在传送带上放在传送带上距A 点的距离范围:77?.505?.5m x m x m ≤≤≤≤和 考点:考查了相对运动,能量守恒定律的综合应用9.质量为M 的小车固定在地面上,质量为m 的小物体(可视为质点)以v 0的水平速度从小车一端滑上小车,小物体从小车另一端滑离小车时速度减为02v ,已知物块与小车之间的动摩擦因数为μ.求:(1)此过程中小物块和小车之间因摩擦产生的热Q 以及小车的长度L .(2)若把同一小车放在光滑的水平地面上,让这个物体仍以水平速度v 0从小车一端滑上小车.a. 欲使小物体能滑离小车,小车的质量M 和小物体质量m 应满足什么关系?b. 当M =4m 时,小物块和小车的最终速度分别是多少?【答案】(1)2038Q mv =,2038v L g μ=(2)a. M >3m ;b. 025v ,0320v 【解析】 【详解】(1) 小车固定在地面时,物体与小车间的滑动摩擦力为f mg μ=,物块滑离的过程由动能定理220011()222v fL m mv -=- ① 解得:2038v L gμ=物块相对小车滑行的位移为L ,摩擦力做负功使得系统生热,Q fL = 可得:2038Q mv =(2)a.把小车放在光滑水平地面上时,小物体与小车间的滑动摩擦力仍为f . 设小物体相对小车滑行距离为L '时,跟小车相对静止(未能滑离小车)共同速度为v , 由动量守恒定律:mv 0=(M +m )v ②设这过程小车向前滑行距离为s . 对小车运用动能定理有:212fs Mv =③ 对小物体运用动能定理有:22011()22f L s mv mv '-+=- ④联立②③④可得220011()()22mv fL mv M m M m'=-++ ⑤物块相对滑离需满足L L '>且2038fL mv = 联立可得:3M m >,即小物体能滑离小车的质量条件为3M m >b.当M =4m 时满足3M m >,则物块最终从小车右端滑离,设物块和车的速度分别为1v 、2v .由动量守恒:012mv mv Mv =+由能量守恒定律:222012111()222fL mv mv Mv =-+ 联立各式解得:1025v v =,20320v v =10.如图,质量为m=1kg 的小滑块(视为质点)在半径为R=0.4m 的1/4圆弧A 端由静止开始释放,它运动到B 点时速度为v=2m/s .当滑块经过B 后立即将圆弧轨道撤去.滑块在光滑水平面上运动一段距离后,通过换向轨道由C 点过渡到倾角为θ=37°、长s=1m 的斜面CD 上,CD 之间铺了一层匀质特殊材料,其与滑块间的动摩擦系数可在0≤μ≤1.5之间调节.斜面底部D 点与光滑地面平滑相连,地面上一根轻弹簧一端固定在O 点,自然状态下另一端恰好在D 点.认为滑块通过C 和D 前后速度大小不变,最大静摩擦力等于滑动摩擦力.取g=10m/s 2,sin37°=0.6,cos37°=0.8,不计空气阻力.(1)求滑块对B 点的压力大小以及在AB 上克服阻力所做的功; (2)若设置μ=0,求质点从C 运动到D 的时间; (3)若最终滑块停在D 点,求μ的取值范围. 【答案】(1)20N , 2J ;(2)13s ;(3)0.125≤μ<0.75或μ=1. 【解析】 【分析】(1)根据牛顿第二定律求出滑块在B 点所受的支持力,从而得出滑块对B 点的压力,根据动能定理求出AB 端克服阻力做功的大小.(2)若μ=0,根据牛顿第二定律求出加速度,结合位移时间公式求出C 到D 的时间. (3)最终滑块停在D 点有两种可能,一个是滑块恰好从C 下滑到D ,另一种是在斜面CD和水平面见多次反复运动,最终静止在D 点,结合动能定理进行求解.【详解】(1)滑块在B 点,受到重力和支持力,在B 点,根据牛顿第二定律有:F −mg =m 2v R, 代入数据解得:F=20N ,由牛顿第三定律得:F′=20N .从A 到B ,由动能定理得:mgR −W =12mv 2, 代入数据得:W=2J .(2)在CD 间运动,有:mgsinθ=ma ,加速度为:a=gsinθ=10×0.6m/s 2=6m/s 2,根据匀变速运动规律有:s =vt +12at 2 代入数据解得:t=13s . (3)最终滑块停在D 点有两种可能:a 、滑块恰好能从C 下滑到D .则有:mg sinθ•s −μ1mg cosθ•s =0−12mv 2, 代入数据得:μ1=1,b 、滑块在斜面CD 和水平地面间多次反复运动,最终静止于D 点.当滑块恰好能返回C 有:−μ1mg cosθ•2s =0−12mv 2, 代入数据得到:μ1=0.125,当滑块恰好能静止在斜面上,则有:mgsinθ=μ2mgcosθ,代入数据得到:μ2=0.75.所以,当0.125≤μ<0.75,滑块在CD 和水平地面间多次反复运动,最终静止于D 点. 综上所述,μ的取值范围是0.125≤μ<0.75或μ=1.【点睛】解决本题的关键理清滑块在整个过程中的运动规律,运用动力学知识和动能定理进行求解,涉及到时间问题时,优先考虑动力学知识求解.对于第三问,要考虑滑块停在D 点有两种可能.11.如图所示,一轻质弹簧左端固定在轻杆的A 点,右端与一质量1m kg =套在轻杆的小物块相连但不栓接,轻杆AC 部分粗糙糙,与小物块间动摩擦因数02 =.,CD 部分为一段光滑的竖直半圆轨道.小物块在外力作用下压缩弹簧至B 点由静止释放,小物块恰好运动到半圆轨道最高点D ,5BC m =,小物块刚经过C 点速度4v m s =/,g 取210/m s ,不计空气阻力,求:(1)半圆轨道的半径R ;(2)小物块刚经过C 点时对轨道的压力;(3)小物块在外力作用下压缩弹簧在B 点时,弹簧的弹性势能p E .【答案】⑴0.4m ⑵50N 方向垂直向下(3)18J【解析】【分析】【详解】(1)物块由C 点运动到D 点,根据机械能守恒定律2122mgR mv =R=0.4m ⑵小物块刚过C 点时F N -mg = m 2v R所以250N v F mg m N R=+= 根据牛顿第三定律知小物块刚经过C 点时对轨道的压力:50N F F N ==方向垂直向下(3)小物块由B 点运动到C 点过程中,根据动能定理212BC W mgL mv μ-=弹 带入数据解得:=18W J 弹 所以18p E J =.12.一束初速度不计的电子流在经U =5000V 的加速电压加速后在距两极板等距处垂直进入平行板间的匀强电场,如图所示,若板间距离d =1.0cm ,板长l =5.0cm ,电子电量e =191.610-⨯C ,那么(1)电子经过加速电场加速后的动能为多少?(2)要使电子能从平行板间飞出,两个极板上最多能加多大的电压?【答案】(1) 16810k E -=⨯J (2)要使电子能飞出,所加电压最大为400V【解析】【详解】(1)加速过程,由动能定理得:2012ls E eU mv ==① 解得:5000k E =eV 16810-=⨯J(2)在加速电压一定时,偏转电压U 越大,电子在极板间的偏转距离就越大当偏转电压大到使电子刚好擦着极板的边缘飞出,此时的偏转电压,即为题目要求的最大电压. 进入偏转电场,电子在平行于板面的方向上做匀速运动0l v t =② 在垂直于板面的方向上做匀加速直线运动,加速度:F eU a m dm'==③ 偏转距离212y at =④ 能飞出的条件为12y d ≤⑤ 解①~⑤式得:()()222222225000 1.0102 4.0105.010Ud U l --⨯⨯⨯'==⨯⨯ (V)即要使电子能飞出,所加电压最大为400V。