自动控制理论基础知识
自动控制理论知识点总结

自动控制理论知识点总结1.控制系统的基本结构:一个典型的控制系统由被控对象、传感器、执行器、控制器和连接它们的信号线组成。
传感器将被控对象的状态转化为电信号,控制器根据目标和实际状态的差异来产生控制信号,执行器根据控制信号来调整被控对象的状态。
2.控制系统的稳定性:稳定性是控制系统最重要的性能之一、控制系统稳定即表示系统输出能够在有界的范围内保持在稳定值附近,不会出现无限增长或无限衰减的情况。
稳定性的分析基于控制系统的传递函数,通过判断系统的特征根位置来确定系统稳定性。
3.控制系统的性能指标:控制系统除了要求稳定外,还需要满足一定的性能指标。
常见的性能指标包括超调量、调节时间、稳态误差、抗干扰能力等。
这些指标通常与控制系统的设计需求有关,不同应用领域的控制系统对性能指标的要求也有所不同。
4.PID控制器:PID控制器是自动控制中最常见的一种控制器。
PID控制器根据比例、积分和微分三个部分对误差进行调节,从而实现系统状态的稳定控制。
PID控制器结构简单、调节方便,并且在很多领域都有广泛应用。
5.系统辨识:系统辨识是指通过对已有数据进行分析和处理,确定出系统的数学模型。
系统辨识可以基于频域分析、时域分析等方法进行。
通过系统辨识,可以为控制系统的设计、分析和优化提供重要的基础。
6.线性系统与非线性系统:控制系统可以分为线性系统和非线性系统。
线性系统的特点是可以通过叠加原理进行分析,传递函数和状态空间模型可以直接应用于控制系统。
而非线性系统则需要利用非线性控制的方法进行分析和设计。
7.鲁棒控制:鲁棒控制是一种能够保证控制系统在不确定性和干扰的情况下依然能保持稳定性和性能的控制方法。
鲁棒控制通常使用基于频域设计的方法,能够有效地抑制外界不确定性和不良影响。
8.自适应控制:自适应控制是指能够根据系统动态特性和外界环境变化,自动调整控制器参数和结构的控制方法。
自适应控制可以有效地应对系统参数不确定性和变化的情况,有助于提高系统的稳定性和性能。
自动控制的基本知识

七、调节过程的品质指标 调节过度过程: 1)等幅振荡 2)扩散振荡 3)衰减振荡 4)非周期过程
1。稳定性:衰减率
Ψ愈大,越稳定。 Ψ=0.75~0.98
2.准确性:准确性是指被控量的偏差大小,它包括动态偏差yM和 静态(稳态)偏差yK 动态偏差:在控制过程中,被控量与给定值之间的最大偏差称为动态偏差. 静态偏差:在控制过程结束后,被控量的稳态值y∞与给定值yg之间的残余
只包含一个容积
单容对象是最简单的热工调节对象,电厂热工生产过程中 许多储水容器,如除氧器、加热器、凝汽器等。
2)多容对象
包含两个或以上容积
(1)有自平衡能力的多容对象: 可用一个迟延时间为τ的纯迟延环节和个时间常数为Tc的惯性环节 近似。
(2)无自平衡能力的多容对象: 可用一个迟延时间为τ的纯迟延环节和一个积分环节近似。
3。阶跃响应特性:比较直观 在阶跃输入信号的作用下,系统的输出特性。 突然的扰动。 在电厂生产过程中,有许多输入信号近似于阶跃信号, 如负荷突然变化,阀门、挡板的开与关等。只要生产 过程允许,一般也比较容易通过控制机构(如控制阀 门)或扰动机构造成一个阶跃输入扰动。所以常在现 场用阶跃响应试验来检验控制系统的工作性能。
3。比例带δ对调节过程的影响
比例带: 3。比例带δ对调节过程的影响
比例带δ 小:调节作用强;
比例带δ太小:调节阀动作过频繁,不稳定。
二、积分调节规律调节器(P)
1。积分规律调节器的动态特性
U (S ) 1 WI ( S ) KP E (S ) Ti s 式中 Si——称为积分规律调节器的积分速度; Ti,——积分时间,习惯上多用积分时间来表示被调量偏差 积累的快慢。 Ti 越小表示偏差积累越快,积分作用越强。Ti是积分规律调节 器的整定参数。
自动控制基础知识总结(环工 给排水专业)

第一章自动控制基本知识1.任何自动化系统都是由被控对象和自动化装置两大部分组成。
2.被控对象是指需要控制的设备、机器或生产过程。
3.自动化装置指实现自动化的工具。
包括:测量元件及变送器,控制器,执行器,定值器,辅助装置(如电源,稳压装置)。
4.自动检测是实现生产过程自动化的首要基础。
5.在自动控制系统中,需要控制工艺参数的生产设备叫被控对象,简称对象。
6.测量元件与变送器在自动控制系统中起着获取信息的作用。
7.控制器:接收测量元件与变送器的信号,根据被控对象的数学模型及控制所要达到的要求,按照一定的控制规律进行运算,并输出相应的信号给执行器。
8.执行器:接收来自控制器的信号,改变操纵变量的大小或符号,从而实现对生产的控制,在过程控制系统中,常用的有电动、气动执行器。
9.定值器:将被控变量的给定值转换成统一信号的装置,以便使给定值送入控制器和测量信号进行比较。
10.在自动控制系统中,被控对象中需要控制的那个参数叫做被控变量。
被控变量要求保持的那个规定值称为给定值(亦称设定值),烦恼影响被控变量偏离给定值的各种因素称为干扰。
11.方框图具有单向传递性。
c(t)是被控对象的被控变量,z(t)是被控对象的测量值,r(t)是被控对象的希望值即给定值,e(t)是给定值与测量值的偏差,e(t)=r(t)-z(t).12.方框图的优点:只要依照信号的流向,便可将表示各元件或设备的方框连接起来,很容易组成整个系统。
与纯抽象的数学表达式相比,它还能比较直观、形象地表示出组成系统的各个部分间的相互作用关系及其在系统中所起的作用。
与物理系统相比,它能更容易地体现系统运动的因果关系。
13.反馈:把系统的输出信号又返回输入端的做法。
14.把被控变量不随时间而变化的平衡状态称为系统的静态,而把被控变量随时间而变化的不平衡状态称为系统的动态、15.平衡是暂时的、相对的、有条件的;不平衡是普遍的、绝对的、无条件的。
16.过度过程:自动控制系统在动态过程中被控变量是不断变化的,这种随时间而变化的过程,称为自动控制系统的过度过程,也就是系统由一个平衡状态过渡到另一个平衡状态的过程,或者说是自动控制系统的控制作用不断克服干扰的全过程。
自动控制原理知识点总结

自动控制原理知识点总结自动控制原理是一门研究自动控制系统的基本理论和方法的学科,它对于理解和设计各种控制系统具有重要意义。
下面将对自动控制原理的一些关键知识点进行总结。
一、控制系统的基本概念控制系统是由控制对象、控制器和反馈环节组成的。
控制对象是需要被控制的物理过程或设备,例如电机的转速、温度的变化等。
控制器则是根据输入的控制信号和反馈信号来产生控制作用,以实现对控制对象的期望控制。
反馈环节则将控制对象的输出信号反馈给控制器,形成闭环控制,从而提高系统的控制精度和稳定性。
在控制系统中,常用的术语包括输入量、输出量、偏差量等。
输入量是指施加到系统上的外部激励,输出量是系统的响应,而偏差量则是输入量与反馈量的差值。
二、控制系统的数学模型建立控制系统的数学模型是分析和设计控制系统的基础。
常见的数学模型有微分方程、传递函数和状态空间表达式。
微分方程描述了系统输入与输出之间的动态关系,通过对系统的物理规律进行分析和推导,可以得到微分方程形式的数学模型。
传递函数则是在零初始条件下,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。
它将复杂的微分方程转化为简单的代数形式,便于系统的分析和设计。
状态空间表达式则是用一组状态变量来描述系统的内部动态特性,能够更全面地反映系统的性能。
三、控制系统的性能指标为了评估控制系统的性能,需要定义一些性能指标。
常见的性能指标包括稳定性、准确性和快速性。
稳定性是控制系统能够正常工作的前提,如果系统不稳定,输出将无限制地增长或振荡,无法实现控制目标。
准确性通常用稳态误差来衡量,它表示系统在稳态时输出与期望输出之间的偏差。
快速性则反映了系统从初始状态到达稳态的速度,常用上升时间、调节时间等指标来描述。
四、控制系统的稳定性分析判断控制系统的稳定性是自动控制原理中的重要内容。
常用的稳定性判据有劳斯判据和赫尔维茨判据。
劳斯判据通过计算系统特征方程的系数来判断系统的稳定性,具有计算简单、直观的优点。
自动控制原理知识点汇总

自动控制原理知识点汇总自动控制原理是研究和设计自动控制系统的基础学科。
它研究的是用来实现自动化控制的基本概念、理论、方法和技术,以及这些概念、理论、方法和技术在工程实践中的应用。
下面是自动控制原理的一些重要知识点的汇总。
一、控制系统的基本概念1.控制系统的定义:控制系统是用来使被控对象按照一定要求或期望输出的规律进行运动或改变的系统。
2.控制系统的要素:输入、输出、被控对象、控制器、传感器、执行器等。
3.控制系统的分类:开环控制和闭环控制。
4.控制系统的性能评价指标:稳定性、快速性、准确性、抗干扰性、鲁棒性等。
二、数学建模1.控制对象的数学建模方法:微分方程模型、离散时间模型、差分方程模型等。
2.控制信号的形式化表示:开环信号和闭环信号。
三、传递函数和频率响应1.传递函数:描述了控制系统输入和输出之间的关系。
2.传递函数的性质:稳定性、正定性、因果性等。
3.频率响应:描述了控制系统对不同频率输入信号的响应。
四、稳定性分析和设计1.稳定性的定义:当外部扰动或干扰没有足够大时,系统的输出仍能在一定误差范围内稳定在期望值附近。
2.稳定性分析的方法:根轨迹法、频域方法等。
3.稳定性设计的方法:规定根轨迹范围、引入正反馈等。
五、PID控制器1.PID控制器的定义:是一种用于连续控制的比例-积分-微分控制器,通过调节比例、积分和微分系数来实现对系统的控制。
2.PID控制器的工作原理和特点:比例控制、积分控制、微分控制、参数调节等。
六、根轨迹设计方法1.根轨迹的定义:描述了系统极点随控制输入变化时轨迹的变化规律。
2.根轨迹的特点:实轴特征点、虚轴特征点、极点数量等。
3.根轨迹的设计方法:增益裕量法、相位裕量法等。
七、频域分析与设计1.频率响应的定义:描述了系统对不同频率输入信号的响应。
2.频率响应的评价指标:增益裕量、相位裕量、带宽等。
3.频域设计方法:根据频率响应曲线来调整系统参数。
八、状态空间分析与设计1.状态空间模型:描述了系统状态和输入之间的关系。
自动控制原理知识点

第一节自动控制的基本方式一、两个定义:(1) 自动控制:在没有人直接参与的情况卞,利用控制装置使某种设备、装置或生产过程 中的某些物理屋或工作状态能自动地按照预定规律变化或数值运行的方法,称为自动控制。
(2) 自动控制系统:由控制器(含测量元件)和被控对彖组成的有机整体。
或由相互关联、相互制约、相互影响的一些元部件组成的具有自动控制功能的有机整体。
称为自动控制系统。
在控制系统中,把影响系统输出量的外界输入量称为系统的输入量。
系统的输入屋,通常指两种:给定输入量和扰动输入量。
给定输入量,又常称为参考较输入量,它决定系统输出量的要求值或某种变化规律。
扰动输入量,又常称为干扰输入量,它是系统不希望但又客观存在的外部输入量,例如,电 源电压的波动、环境温度的变化、电动机拖动负载的变化等,都是实际系统中存在的扰动输 入量。
扰动输入量影响给定输入量对系统输出量的控制。
自动控制的基本方式二、基本控制方式(3种)1、开环控制方式⑴定义:控制系统的输出量对系统不产生作用的控制方式,称为开环控制方式。
具有这种控制方式的有机整体,称为开坏控制系统。
如果从系统的结构角度看,开环控制方式也可表达为,没有系统输出量反馈的控制方式。
⑵职能方框图任何开坏控制系统,从组成系统元部件的职能角度看,均可用下面的方框图表示。
2、闭坏控制方式(1)定义:系统输出量直接或间接地反馈到系统的输入端,参予了系统控制的方式,称为闭坏控制方式。
如果从系统的结构看,闭环控制方式也可表达为,有系统输出量反馈的控制方式。
自动控制的基本方式工作原理开环调速结构基础上引入一台测速发电机,作为检测系统输出量即电动机转速并转换为 电压。
反馈电压与给定电压比较(相减)后,产生一偏差电压,经电压和功率放人器放大后去控制 电动机的转速。
当系统处于稳定运行状态时,电动机就以电位器滑动端给出的电压值所对应的希望转速 运行。
当系统受到某种干扰时(例如负载变人),电动机的转速会发生变化(下降),测速反馈扰动输入量输出量电压跟着变化(变小),由于给定电压值未变,偏差电压值发生变化(变人),经放人后使电动机电枢电压变化(提高),从而电动机转速也变化(上升),去减小或消除由于干扰引起的转速偏差。
自动控制原理基本概念知识点总结

自动控制原理基本概念知识点总结自动控制原理是现代控制工程的基础理论,研究自动控制系统的建模、分析与设计方法。
掌握自动控制原理的基本概念对于理解和应用控制技术起着重要的作用。
本文将对自动控制原理的基本概念知识点进行总结。
一、控制系统基本概念1.1 控制系统的定义控制系统是通过对被控制对象施加命令,以达到预期目标的系统。
它由输入信号、输出信号、被控制对象和控制器等组成。
1.2 开环控制系统与闭环控制系统开环控制系统是指控制器的输出不受被控制对象的反馈信号影响的控制系统。
闭环控制系统是指控制器的输出受到被控制对象的反馈信号影响的控制系统。
1.3 正反馈与负反馈正反馈是指系统的输出信号与输入信号同方向,有放大的作用;负反馈是指系统的输出信号与输入信号反向,有稳定的作用。
二、控制系统的数学描述2.1 传递函数传递函数是用来描述控制系统输入与输出之间的关系的数学模型。
它通常由拉普拉斯变换或者Z变换得到。
2.2 系统的稳定性系统的稳定性是指当系统受到扰动或者参数变化时,输出信号是否趋于有限,并且不出现无穷大的情况。
2.3 时域指标时域指标包括超调量、调节时间、上升时间等,用来衡量系统的动态性能。
三、控制系统的设计方法3.1 PID控制器PID控制器是最常用的一种控制器,它由比例项、积分项和微分项组成,可用于调节系统的稳态误差、快速响应和抑制振荡。
3.2 稳态误差补偿稳态误差补偿方法用于减小系统在达到稳态时的误差,例如使用积分控制器。
3.3 根轨迹法根轨迹法是一种用于分析系统稳定性和性能的图形法,它通过在复平面上绘制传递函数的极点和零点来描述系统的特性。
四、控制系统的稳定性分析4.1 极点配置法极点配置法是一种通过调整系统的极点位置来改变系统的动态响应,从而实现稳定性分析和改进的方法。
4.2 Nyquist准则Nyquist准则是一种通过绘制传递函数的频率响应曲线,并通过判断曲线与负实轴交点的数量来判断系统稳定性的方法。
自动控制原理知识点

自动控制原理知识点自动控制原理是研究如何有效地对系统进行控制的一门学科。
以下是一些与自动控制原理相关的知识点:1. 控制系统:自动控制原理研究的对象是各类控制系统。
控制系统通常由输入、输出、执行器和传感器组成。
输入是系统的控制命令,输出是系统的控制结果。
执行器根据输入控制命令来执行相应的动作,传感器用于检测系统的状态并将信息反馈给控制器。
2. 控制器:控制器是控制系统中的关键部分,用于决定执行器的控制命令。
常见的控制器包括比例控制器(P控制器)、积分控制器(I控制器)和微分控制器(D控制器)。
这些控制器可以根据系统的需求进行组合以实现更好的控制效果。
3. 反馈:自动控制原理中的一个重要概念是反馈。
反馈是通过传感器将系统的实际输出信息反馈给控制器,以便控制器可以根据实际输出对控制命令进行调整。
反馈可以帮助控制系统实现更准确、稳定的控制。
4. 控制策略:控制系统可以采用不同的控制策略来实现不同的控制目标。
常见的控制策略包括比例控制、积分控制、微分控制、比例-积分控制、比例-微分控制和模糊控制等。
每种控制策略都有其特定的适用场景和优缺点。
5. 系统建模:在进行自动控制设计之前,需要对要控制的系统进行建模。
系统建模可以分为传递函数模型和状态空间模型两种。
传递函数模型通常用于线性系统,而状态空间模型适用于线性和非线性系统。
6. 频域分析:频域分析是自动控制原理中常用的分析方法之一,用于理解系统的频率响应特性。
常见的频域分析方法包括频率响应曲线、Bode图和Nyquist图等。
7. 闭环控制与开环控制:自动控制系统可以分为闭环控制和开环控制两种。
闭环控制中,系统的输出信息被反馈给控制器,以便对控制命令进行调整,以达到系统要求的性能。
而开环控制中没有反馈,系统的控制命令只基于输入信号来决定。
8. 鲁棒控制:鲁棒控制是自动控制原理中一种可以应对系统参数变化、外界扰动等不确定性因素的控制方法。
鲁棒控制可以提高系统的稳定性和抗干扰能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要使自动控制系统满足工程实际的需 要 , 必须研究自动控制系统的结构参数与 系统性能之间的关系。 系统性能之间的关系。 为了方便地分析系统性能, 为了方便地分析系统性能 , 一般用 框图来表示系统的结构,如图所示: 框图来表示系统的结构,如图所示
预期 温度 偏差 _ 控制器 反馈量 执行机构 实际 பைடு நூலகம்度 阀门 水箱
例 转速负反馈直流电动机调速系统 给定电压 : 系统组成: 系统组成 反馈电压 直流电机 测速发电机 测速发电机 e = Un −U f 转速取决于给 电源和放 大装置 定电压与反馈 电压的差值。 电压的差值。 负载
Un
Uf
调速系统结构图
un
e
_
放大器
ud
直流电动机
n
uf
测速机
由电网电压波动, 由电网电压波动,负载变化以及其他 闭环控制系统具有的特点: 闭环控制系统具有的特点: 部分的参数变化所引起的转速变化, 部分的参数变化所引起的转速变化,都可 减小或消除由于扰动所形成的偏差值, 减小或消除由于扰动所形成的偏差值 , 以通过系统的自动调整加以抑制。 以通过系统的自动调整加以抑制。 具有较高的控制精度和较强的抗扰能力。 具有较高的控制精度和较强的抗扰能力。 n↓ →Uf↓ →e↑ →Ud↑ →n↑
前向通道:系统输入量到输出量之间的通道。 前向通道:系统输入量到输出量之间的通道。 反馈通道:从输出量到反馈信号之间的通道。 反馈通道:从输出量到反馈信号之间的通道。 比较环节:输出量为各输入量的代数和。 比较环节:输出量为各输入量的代数和。 输入量:u r 输出量:n 输入量: 输出量:
u 控制量: 反馈量: f 控制量: 反馈量: u
反馈:将检测出来的输出量送回到系统的输入端, 反馈:将检测出来的输出量送回到系统的输入端, 并与输入信号比较的过程。反馈分为负反馈 负反馈( 并与输入信号比较的过程。反馈分为负反馈(反馈 信号与输入信号相减) 正反馈( 信号与输入信号相减)和正反馈(反馈信号与输入 信号相加)。 信号相加)。
例 水温自动控制系统 系统中增加了: 系统中增加了: 通过电机调 控制器 节阀门的开度 电机 从而调节蒸 工作原理: 工作原理 汽流入, : 汽流入,控制 水的温度. 水的温度 实 加入给定信号 现没有人直接 检测实际温度 参入的自动水 产生控制信号 温控制. 温控制
常用的名词术语 输入信号:也叫参考输入,给定量或给定值, 输入信号:也叫参考输入,给定量或给定值,它是控制着输出 量变化规律的指令信号。 量变化规律的指令信号。 输出信号:是指被控对象中要求按一定规律变化的物理量, 输出信号:是指被控对象中要求按一定规律变化的物理量,又 称被控量,它与输入量之间保持一定的函数关系。 称被控量,它与输入量之间保持一定的函数关系。 反馈信号:由系统(或元件)输出端取出并反向送回系统(或元件) 反馈信号:由系统(或元件)输出端取出并反向送回系统(或元件) 输入端的信号称为反馈信号。反馈有主反馈 局部反馈之分 主反馈和 之分。 输入端的信号称为反馈信号。反馈有主反馈和局部反馈之分。 偏差信号:它是指参考输入与主反馈信号之差。 偏差信号:它是指参考输入与主反馈信号之差。 误差信号:指系统输出量的实际值与期望值之差,简称误差。 误差信号:指系统输出量的实际值与期望值之差,简称误差。 扰动信号:简称扰动或干扰、它与控制作用相反, 扰动信号:简称扰动或干扰、它与控制作用相反,是一种不希 望的、影响系统输出的不利因素。扰动信号既可来自系统内部, 望的、影响系统输出的不利因素。扰动信号既可来自系统内部, 外部扰动。 又可来自系统外部,前者称内部扰动 后者称外部扰动 内部扰动, 又可来自系统外部,前者称内部扰动,后者称外部扰动。
一、自动控制系统的概念
自动控制:是指在没有人直接参与的条件下, 自动控制:是指在没有人直接参与的条件下,利用外加 的设备或装置(称控制装置或控制器),使机器、 的设备或装置(称控制装置或控制器),使机器、设备 ),使机器 或生产过程(统称被控对象) 或生产过程(统称被控对象)的某个工作状态或参数 (即被控量)自动地按照预定的规律运行。 即被控量)自动地按照预定的规律运行。 系统:由相互制约的各个部分按一定的规律组成的、为 系统:由相互制约的各个部分按一定的规律组成的、 达到一定目的、具有一定功能的整体 达到一定目的、具有一定功能的整体。 自动控制理论:是研究自动控制共同规律的科学。 自动控制理论:是研究自动控制共同规律的科学。
本章难点
1.深刻理解反馈的概念和思想; 深刻理解反馈的概念和思想; 深刻理解反馈的概念和思想 2.确定控制系统的被控对象、被控量、给定量等; 确定控制系统的被控对象、被控量、给定量等; 确定控制系统的被控对象 绘制方块图,分析实际控制系统的基本原理。 绘制方块图,分析实际控制系统的基本原理。
§1-1
自动控制系统: 自动控制系统:为了实现各种复杂的 控制任务, 控制任务,首先要将被控对象和控制装置 按照一定的方式连接起来,组成一个有机 按照一定的方式连接起来, 整体,这就是自动控制系统。 整体,这就是自动控制系统。
自动控制系统的基本控制方式 自动控制系统的基本控制方式
1. 开环控制 2. 闭环控制 3. 复合控制
3.复合控制 .
按偏差控制和按扰动控制相结合的控 制方式称为复合控制。 制方式称为复合控制。 前馈补偿控制 + 复合控制: 复合控制: 反馈控制 复合控制具有两种基本形式. 复合控制具有两种基本形式
(a) 按输入前馈补偿的复合控制
前馈控制
给定值 _
控制器 受控对象
被控制量
检测元件
(b) 按扰动前馈补偿的复合控制
a
偏差量( = 偏差量 ue )=给定量 ( u r )-反馈量 u f ) -反馈量(
+ RP1 R0 ug R0 -ut +
R1
∞+ uc
RP2 +
(a) 原理图
udo
M
TG
扰动
给定 装置
ug
ue (-) ut
放大器
触发器 控制装置 转速反 馈装置
晶阐管可 控整流器
udo
电动机 受控对象
n
(b) 方框图
应用较为广泛,如家电、加热炉、车床等等。 应用较为广泛,如家电、加热炉、车床等等。
闭环控制 控制装置与受控对象之间,不但有顺向作用, 控制装置与受控对象之间,不但有顺向作用, 而且还有反向联系. 而且还有反向联系 闭环控制又称为反馈控制或按偏差控制。 闭环控制又称为反馈控制或按偏差控制。 反馈控制
控制系统的基本原理
• 自动控制技术在工农业生产、国防、航空航天等各 个领域中起着重要的作用! • 广泛应用于各种工程学科领域,并扩展到生物、医学、 环境、经济管理和其它许多社会生活领域。 • 独立的学科并与其它学科相互渗透、相互促进。 •《自动控制原理》是自动控制技术的基础理论,是一 门理论性较强的工程科学。 现代的工程技术人员和科学工作者, 现代的工程技术人员和科学工作者,必须具备 一定的自动控制理论基础知识! 一定的自动控制理论基础知识!
执行元件——根据偏差信号的性质执行相应的控制作用, 执行元件——根据偏差信号的性质执行相应的控制作用,以便 ——根据偏差信号的性质执行相应的控制作用 使被控量按期望值变化。 使被控量按期望值变化。 控制对象——又称被控对象或受控对象, 控制对象——又称被控对象或受控对象,通常是指生产过程中 ——又称被控对象或受控对象 需要进行控制的工作机械或生产过程。 需要进行控制的工作机械或生产过程。出现于被控对象中需要 控制的物理量称为被控量。 控制的物理量称为被控量。
闭环控制系统:通过反馈回路使系 统构成闭环并按偏差的性质产生控 制作用,以求减小或消除偏差(从而 减小或消除误差)的控制系统。
闭环控制系统的特点: 闭环控制系统的特点:
1. 系统对外部或内部干扰(如内部件参数变动)的影响不甚敏感。 2. 出于采用反馈装置,导致设备增多,线路复杂。 3. 闭环系统存在稳定性问题。由于反馈通道的存在,对于那些 惯性较大的系统,若参数配合不当,控制性能可能变得很 差.甚至出现发散或等幅振荡等不稳定的情况。 注意:对于主反馈必须采用负反馈。若采用正反馈将使 偏差越来越大。
按扰动控制的开环控制系统, 按扰动控制的开环控制系统,是利用可测量的扰动 量,产生一种补偿作用,以减小或抵消扰动对输出 产生一种补偿作用, 的影响,这种控制方式也称顺馈控制 顺馈控制。 的影响,这种控制方式也称顺馈控制。
o
o
ur
ue
ua
o
ub
按扰动控制的速度控制系统
开环控制系统的特点: 开环控制系统的特点 1. 结构简单、造价低。 结构简单、造价低。 2. 系统的控制精度取决于给定信号的标定精度及控制器 及被控对象参数的稳定性。 及被控对象参数的稳定性。 3. 开环系统没有抗干扰的能力。因此精度较低。 开环系统没有抗干扰的能力。因此精度较低。 应用场合: 应用场合: 1. 2. 3. 控制量的变化规律可以预知。 控制量的变化规律可以预知。 可能出现的干扰可以抑制。 可能出现的干扰可以抑制。 被控量很难测量。 被控量很难测量。
+ GT ug V udo M
(a) 原理图 扰动量 给定信号 (电压) 电压) 触发 器 晶闸管可 控整流器 控制装置 (b) 方块图 输出量 电动机 被控对象 (转速) 转速)
•控制装置与被控对象之间只有顺向作用而无反向联系。 控制装置与被控对象之间只有顺向作用而无反向联系。 控制装置与被控对象之间只有顺向作用而无反向联系 结论:开环控制优点 结构简单, 结论:开环控制优点——结构简单,缺点 结构简单 缺点——无抗干扰能力 无抗干扰能力
第一章 控制系统导论
1.1 自动控制的基本原理 1.2 自动控制系统示例 1.3 自动控制系统的分类 1.4 对控制系统的基本要求
End
本章重点
1. 自动控制和自动控制系统的含义; 自动控制和自动控制系统的含义; 2. 反馈和反馈控制的概念、反馈控制的特点; 反馈和反馈控制的概念、反馈控制的特点; 3. 控制系统的组成和分类和特点。 控制系统的组成和分类和特点。