人教版 高一数学知识点总结

合集下载

人教版高一数学知识点总结归纳最新五篇

人教版高一数学知识点总结归纳最新五篇

人教版高一数学知识点总结归纳最新五篇人教版高一数学知识点1函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x 的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)(见课本21页相关例2)2.值域:先考虑其定义域(1)观察法(2)配方法(3)代换法3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y 为坐标的点(x,y),均在C上.(2)画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。

人教版高一必修一数学知识点总结大全

人教版高一必修一数学知识点总结大全

人教版高一必修一数学知识点总结大全人教版高一必修一数学知识点总结大全数学知识点是高考的基础,掌握高一数学知识点将对高考复习起到重要作用,以下是小编准备的一些人教版高一必修一数学知识点总结,仅供参考。

高一必修一数学知识点整理一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y 轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k0时,直线必通过一、三象限,y随x的增大而增大;当k0时,直线必通过二、四象限,y随x的`增大而减小。

当b0时,直线必通过一、二象限;当b=0时,直线通过原点当b0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b①和y2=kx2+b②(3)解这个二元一次方程,得到k,b的值。

人教版高一数学知识点总结(优秀8篇)

人教版高一数学知识点总结(优秀8篇)

人教版高一数学知识点总结(优秀8篇)高一数学知识点总结最新篇一集合一、集合有关概念1、集合的含义2、集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3、集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N或N+整数集Z有理数集Q实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R|x-32},{x|x-32}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}关于集合的概念:(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

集合可以根据它含有的元素的个数分为两类:含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

非负整数全体构成的集合,叫做自然数集,记作N;在自然数集内排除0的集合叫做正整数集,记作N+或N;整数全体构成的集合,叫做整数集,记作Z;有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

高一数学全册知识点总结人教版

高一数学全册知识点总结人教版

高一数学全册知识点总结人教版一、实数1. 自然数、整数、有理数和无理数的概念与性质2. 实数的大小比较与数轴表示3. 绝对值与距离的概念及性质4. 实数的四则运算规则与性质5. 实数的积与商的估算二、一次函数与二次函数1. 一次函数的图象及性质2. 一次函数的性质与应用3. 二次函数的图象及性质4. 二次函数的抛物线与顶点的性质5. 二次函数的性质与应用三、多项式与因式分解1. 多项式的基本概念与性质2. 因式分解的方法与技巧3. 特殊多项式的因式分解与应用4. 公式与分解式的化简与应用5. 多项式方程的解的存在性与求解方法四、集合与不等式1. 集合的基本概念与表示2. 集合的运算与性质3. 不等式的基本概念与性质4. 一元一次不等式的解集与图象5. 不等式组的解集与图象五、平面向量与立体几何1. 平面向量的基本概念与运算法则2. 向量的线性运算与共线关系3. 向量的夹角与垂直关系4. 立体图形的基本概念与性质5. 空间中的位置关系与计算六、三角函数与解三角形1. 三角函数的基本概念与性质2. 三角函数的图像、周期与性质3. 三角函数的基本关系与恒等式4. 三角函数的综合应用与解三角形5. 平面向量与复数在三角形中的应用七、概率与统计1. 随机事件与概率的基本概念与性质2. 事件的独立性与乘法定理3. 排列与组合的基本概念与计算4. 概率的计算与统计图表的分析5. 随机变量与统计量的概念与性质以上是高一数学全册知识点总结人教版的内容,包含了实数、一次函数与二次函数、多项式与因式分解、集合与不等式、平面向量与立体几何、三角函数与解三角形、概率与统计等主要知识点。

通过系统学习这些知识,能够帮助同学们夯实数学基础,为进一步学习打下坚实的基础。

希望同学们能够认真学习并灵活运用这些知识,提升数学能力。

高一数学人教版知识点总结

高一数学人教版知识点总结

高一数学人教版知识点总结一、集合1. 集合的概念- 集合是由一些确定的、不同的对象所组成的整体。

这些对象称为集合的元素。

例如,全体自然数组成一个集合,每一个自然数都是这个集合的元素。

- 集合元素的特性:确定性(给定一个集合,任何一个对象是不是这个集合的元素是确定的)、互异性(集合中的元素互不相同)、无序性(集合中的元素没有顺序之分)。

2. 集合的表示方法- 列举法:把集合中的元素一一列举出来,写在大括号内。

例如{1,2,3}表示由1、2、3这三个元素组成的集合。

- 描述法:用确定的条件表示某些对象是否属于这个集合。

一般形式为{x|p(x)},其中x是集合中的代表元素,p(x)是元素x所满足的条件。

例如{x|x > 0,x∈R}表示所有大于0的实数组成的集合。

- 韦恩图(Venn图):用平面上封闭曲线的内部代表集合。

3. 集合间的基本关系- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊂eq B(或B⊃eq A)。

如果A⊂eq B且B中至少有一个元素不属于A,则称A是B的真子集,记作A⊂neqq B。

- 相等:如果A⊂eq B且B⊂eq A,那么A = B。

- 空集varnothing:不含任何元素的集合,空集是任何集合的子集,是任何非空集合的真子集。

4. 集合的基本运算- 交集:由所有属于集合A且属于集合B的元素所组成的集合,记作A∩B={x|x∈ A且x∈ B}。

- 并集:由所有属于集合A或属于集合B的元素所组成的集合,记作A∪ B ={x|x∈ A或x∈ B}。

- 补集:设U是一个全集,A是U的一个子集,由U中所有不属于A的元素组成的集合称为A相对于U的补集,记作∁_U A={x|x∈ U且x∉ A}。

二、函数1. 函数的概念- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A 到集合B的一个函数,记作y = f(x),x∈ A。

人教版高一数学知识点整理归纳

人教版高一数学知识点整理归纳

人教版高一数学知识点整理归纳(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!人教版高一数学知识点整理归纳本店铺为各位同学整理了《人教版高一数学知识点整理归纳》,希望对你的学习有所帮助!1.人教版高一数学知识点整理归纳篇一①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交。

最新人教版高一数学知识点总结汇总详细版(建议收藏)

最新人教版高一数学知识点总结汇总详细版(建议收藏)

人教版高一数学知识点总结汇总(详细完整版)高一数学知识点总结(一)1、概念:(1)回归直线方程(2)回归系数2.最小二乘法3.直线回归方程的应用(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。

(3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标。

如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。

4.应用直线回归的注意事项(1)做回归分析要有实际意义;(2)回归分析前,先作出散点图;(3)回归直线不要外延。

高一数学必修二重要知识点1、棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的.端点字母,如五棱柱ABCDE?A'B'C'D'E'几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

2、棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥P?ABCDE几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3、棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCD—A'B'C'D'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点4、圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

人教版高一数学知识点归纳总结

人教版高一数学知识点归纳总结

人教版高一数学知识点归纳总结
本文旨在归纳总结人教版高一数学的知识点,帮助学生复与梳理研究内容。

一. 几何
1. 平面几何
- 点、线、面的基本概念与性质
- 三角形的分类、性质及相关定理
- 直线与平面的关系及相交定理
- 圆的性质与相关定理
- 多边形的分类、性质及相关定理
- 空间几何中的相关概念与关系
2. 立体几何
- 空间图形的表达与展开
- 空间几何体的体积与表面积计算
- 空间几何体的相关性质与定理
- 空间几何体的位置关系与相交问题
二. 代数
1. 数与式的运算
- 实数的运算与性质
- 代数式的展开与因式分解
- 分式的运算与性质
- 根式的运算与性质
2. 方程与不等式
- 一元一次方程与一元一次不等式
- 一元二次方程与一元二次不等式
- 二元一次方程组与二元一次不等式组- 分式方程与分式不等式
3. 函数
- 函数的概念与性质
- 一次函数
- 二次函数与二次函数图像
- 分段函数及其图像
- 对数与指数函数及其图像
三. 数据与概率
1. 数据与统计
- 数据收集与整理
- 数据的图表展示与分析
- 统计分布的描述与应用
2. 概率与统计
- 随机事件与概率理论
- 概率计算
- 统计分析与推断
以上为人教版高一数学的主要知识点归纳总结,希望对高一学生的数学学习有所帮助。

学生应结合教材进行深入学习与理解,并进行大量的练习和例题的掌握,以提高数学水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学知识总结必修一一、集合一、集合有关概念集合的含义集合的中元素的三个特性:元素的确定性如:世界上最高的山元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R| x-3>2} ,{x| x-3>2}语言描述法:例:{不是直角三角形的三角形}Venn图:4、集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

注意:B⊆/B或B⊇/A反之: 集合A不包含于集合B,或集合B不包含集合A,记作A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集二、函数1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略3、恒成立问题的求解策略4、反函数的几种题型及方法5、二次函数根的问题——一题多解&指数函数y=a^xa^a*a^b=a^a+b(a>0,a 、b 属于Q)(a^a)^b=a^ab(a>0,a 、b 属于Q)(ab)^a=a^a*b^a(a>0,a 、b 属于Q)指数函数对称规律:1、函数y=a^x 与y=a^-x 关于y 轴对称2、函数y=a^x 与y=-a^x 关于x 轴对称3、函数y=a^x 与y=-a^-x 关于坐标原点对称&对数函数y=loga^x如果0>a ,且1≠a ,0>M ,0>N ,那么:○1 M a (log ·=)N M a log +N a log ;○2 =N M a log M a log -N a log ;○3 n a M log n =M a log )(R n ∈.注意:换底公式a bb c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ).幂函数y=x^a(a 属于R)1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数. 2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。

即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.3、函数零点的求法:○1 (代数法)求方程0)(=x f 的实数根;○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数)0(2≠++=a c bx ax y . (1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程02=++c bx ax 有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点.三、平面向量向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为0的向量.单位向量:长度等于1个单位的向量.相等向量:长度相等且方向相同的向量&向量的运算加法运算AB +BC =AC ,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点O 出发的两个向量OA 、OB ,以OA 、OB 为邻边作平行四边形OACB ,则以O 为起点的对角线OC 就是向量OA 、OB 的和,这种计算法则叫做向量加法的平行四边形法则。

对于零向量和任意向量a ,有:0+a =a +0=a 。

|a +b|≤|a|+|b|。

向量的加法满足所有的加法运算定律。

减法运算与a 长度相等,方向相反的向量,叫做a 的相反向量,-(-a)=a ,零向量的相反向量仍然是零向量。

(1)a +(-a)=(-a)+a =0(2)a -b =a +(-b)。

数乘运算实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,|λa|=|λ||a|,当λ > 0时,λa 的方向和a 的方向相同,当λ < 0时,λa 的方向和a 的方向相反,当λ = 0时,λa = 0。

设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ μ)a = λa μa (3)λ(a ± b) = λa ± λb (4)(-λ)a =-(λa) = λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算。

向量的数量积已知两个非零向量a 、b ,那么|a||b|cos θ叫做a 与b 的数量积或内积,记作a?b ,θ是a 与b 的夹角,|a|cos θ(|b|cos θ)叫做向量a 在b 方向上(b 在a 方向上)的投影。

零向量与任意向量的数量积为0。

a?b 的几何意义:数量积a?b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。

四、三角函数1、善于用“1“巧解题2、三角问题的非三角化解题策略3、三角函数有界性求最值解题方法4、三角函数向量综合题例析5、三角函数中的数学思想方法15、正弦函数、余弦函数和正切函数的图象与性质:sin y x = cos y x = tan y x = 图象定义域R R ,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭ 值域 []1,1- []1,1- R函 数 性 质最值当22x kππ=+()k∈Z时,max1y=;当22x kππ=-()k∈Z时,min1y=-.当()2x k kπ=∈Z时,max1y=;当2x kππ=+()k∈Z时,min1y=-.既无最大值也无最小值周期性2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k kππππ⎡⎤-+⎢⎥⎣⎦()k∈Z上是增函数;在32,222k kππππ⎡⎤++⎢⎥⎣⎦()k∈Z上是减函数.在[]()2,2k k kπππ-∈Z上是增函数;在[]2,2k kπππ+()k∈Z上是减函数.在,22k kππππ⎛⎫-+⎪⎝⎭()k∈Z上是增函数.对称性对称中心()(),0k kπ∈Z对称轴()2x k kππ=+∈Z对称中心(),02k kππ⎛⎫+∈Z⎪⎝⎭对称轴()x k kπ=∈Z对称中心(),02kkπ⎛⎫∈Z⎪⎝⎭无对称轴必修四角α的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{} 36036090,k k kαα⋅<<⋅+∈Z第二象限角的集合为{} 36090360180,k k kα⋅+<⋅+∈Z第三象限角的集合为{} 360180360270,k k kαα⋅+<<⋅+∈Z第四象限角的集合为{} 360270360360,k k kαα⋅+<<⋅+∈Z终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n n α∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为n α终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.口诀:奇变偶不变,符号看象限.公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2k π+α)=sin αcos (2k π+α)=cos αtan (2k π+α)=tan αcot (2k π+α)=cot α公式二:设α为任意角,π α的三角函数值与α的三角函数值之间的关系:sin (π+α)=-sin αcos (π+α)=-cos αtan (π+α)=tan αcot (π+α)=cot α公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)=-sin αcos (-α)=cos αtan (-α)=-tan αcot (-α)=-cot α公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)=sin αcos (π-α)=-cos αtan (π-α)=-tan αcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)其他三角函数知识:同角三角函数基本关系⒈同角三角函数的基本关系式倒数关系:tanα•cotα=1sinα•cscα=1cosα•secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)两角和差公式⒉两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα•tanβtanα-tanβtan(α-β)=——————1+tanα•tanβ倍角公式⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2tanαtan2α=—————1-tan^2(α)半角公式⒋半角的正弦、余弦和正切公式(降幂扩角公式)1-cosαsin^2(α/2)=—————21+cosαcos^2(α/2)=—————1-cosαtan^2(α/2)=—————1+cosα万能公式⒌万能公式2tan(α/2)sinα=——————1+tan^2(α/2)1-tan^2(α/2)cosα=——————1+tan^2(α/2)2tan(α/2)tanα=——————1-tan^2(α/2)和差化积公式⒎三角函数的和差化积公式α+βα-βsinα+sinβ=2sin—----•cos—---2 2α+βα-βsinα-sinβ=2cos—----•sin—----2 2α+βα-βcosα+cosβ=2cos—-----•cos—----- 2 2α+βα-βcosα-cosβ=-2sin—-----•sin—----- 2 2积化和差公式⒏三角函数的积化和差公式sinα•cosβ=0.5[sin(α+β)+sin(α-β)]cosα•sinβ=0.5[sin(α+β)-sin(α-β)]cosα•cosβ=0.5[cos(α+β)+cos(α-β)]sinα•sinβ=-0.5[cos(α+β)-cos(α-β)]5平面解析几何初步两点距离公式:根号[(x1-x2)^2+(y1-y2)^2]中点公式:X=(X1+X2)/2 Y=(Y1+Y2)/2直线的斜率倾斜角不是90°的直线`,它的倾斜角的正切,叫做这条直线的斜率.通常用k来表示,记作:k=tga(0°≤a<180°且a≠90°)倾斜角是90°的直线斜率不存在,倾斜角不是90°的直线都有斜率并且是确定的.点斜式:y-y1=k(x-x1);斜截式:y=kx+b;截距式:x/a+y/b=1直线的标准方程:Ax+Bx+C=0圆的一般方程:x2+y2+Dx+Ey+F=0圆的标准方程(x-a)2+(y-b)2=r2 《2表示平方》圆与圆的位置关系:1 点在圆上(点到半径的距离等于半径)点在圆外(点到半径的距离大于半径)点在圆内(点到半径的距离小于半径)2 (1)相切:圆心到直线的距离等于半径(2)相交:圆心到直线的距离小于半径(3)相离:圆心到直线的距离大于半径3 圆的切线是指垂直于半径,直线到圆心距离等于半径的直线,垂足叫切点4 圆心距为Q 大圆半径为R 小圆半径为r两圆外切Q=R+r两圆内切Q=R-r (用大减小)两圆相交Q<R-r两圆外离Q>R+r两圆内含Q<R-r直线与圆的位置关系有三种:相离,相交,相切.有如下关系相离则d>r,反之d>r则相离,相切则d=r,反之d=r则相切,相交则d<r,反之d<r则相交.空间直角坐标系的定义ABCD –A′B′C′O是长方体,以O为原点,分别以射线OB、OA’、OB’为正方向,以线段OB、OA’、OB’建立三条坐标轴:x轴、y轴、z轴,这样就建立了一个空间直角坐标系O –xyz,点O叫做坐标原点,x、y、z轴叫做坐标轴,由两条坐标轴组成的平面叫做坐标平面,分别叫做xOy平面、yOz平zOx平面,这种坐标系叫做右手直角坐标空间直角坐标系内点的坐标表示方法设点M为空间的一个定点,过点M分别作垂直于x、y、z轴的平面,依次交x、y、z轴于点P、Q、R设点P、Q、R在x、y、z轴上的坐标分别为x、y、z,那么就得到与点M对应惟一确定的有序实数组(x,y,z),有序实数组(x,y,z)叫做点M的坐标,记作M(x,y,z),其中x、y、z分别叫做点M的横坐标、纵坐标、竖坐标。

相关文档
最新文档