第6章橡胶弹性(PPT37页)
合集下载
第六章橡胶弹性 PPT资料共98页

硅橡胶防噪音耳塞:佩戴舒适,能很好的阻隔噪音,保护耳 膜。
硅橡胶人造血管:具有特殊的生理机能,能做到与人体 “ 亲密无间 ” ,人的机体也不排斥它,经过一定时间, 就会与人体组织完全结合起来,稳定性极为良好。
硅橡胶鼓膜修补片:其片薄而柔软,光洁度和韧性都良好。 是修补耳膜的理想材料,且操作简便,效果颇佳。
橡胶示例4
-- -
- -- -- --
H HH -C-C=C-C
H
H
CH3
0.6~3%
异戊二烯
CH2 H C C- CH2
异丁烯
H
丁基橡胶
丁基橡胶的性能主要由聚异丁烯主链及其不饱和度极底的 结构所决定,其不饱和度仅为0.5%∽3.3%(mol)约为天然橡 胶的1/50,因此丁基橡胶具有一系列的优良特性;透气率低, 热稳定性好,耐臭氧和耐天候老化性好,减震性能好,耐化 学腐蚀和耐水气侵蚀性能好等。
气体:均为熵弹性,模量随温度升高而增加, 与木材、金属相反。
橡胶弹性的特点:
(3) 弹性模量小
橡胶 一般聚合物 金属
105N/m2 109 N/m2 1010-1011 N/m2
H H
H H
H H
H H
~2 kcal
H
H
~0.5 kcal
室温下分子动能(RT=8.31300J/mol=2.5kJ/mol)
橡胶示例3
H
H
C=C
CH2
CH2 n
顺丁橡胶
Cl
CH2
C=C
CH2
H
n
氯丁橡胶
顺丁橡胶的线形结构规整度高,分子量高且分布 宽,具有优良的物理机械性能和加工性能。在拉 伸状态下具有高定向熵和高结晶性,有提高强度 的作用。玻璃化温度 (Tg) 为 -100℃ ,能在较 低温度下仍保持分子链的运动,具有理想的耐寒。 顺丁橡胶耐磨性优异,动弯曲时生热低,有较高 的动态模量及较好的耐氧化性能,与天然橡胶和 丁苯橡胶相比,弹性高,耐屈挠性和动态性能等 综合性能,但顺丁橡胶抗湿滑性差,撕裂强度和 拉伸强度较低,冷流性大,加工性能较差。 顺丁橡胶主要用于轮胎业,用于制造轮胎、胎面、 胎侧等,以其高弹性,尤在汽车中用量最大,与 丁苯橡胶并用生产车胎胎面。
硅橡胶人造血管:具有特殊的生理机能,能做到与人体 “ 亲密无间 ” ,人的机体也不排斥它,经过一定时间, 就会与人体组织完全结合起来,稳定性极为良好。
硅橡胶鼓膜修补片:其片薄而柔软,光洁度和韧性都良好。 是修补耳膜的理想材料,且操作简便,效果颇佳。
橡胶示例4
-- -
- -- -- --
H HH -C-C=C-C
H
H
CH3
0.6~3%
异戊二烯
CH2 H C C- CH2
异丁烯
H
丁基橡胶
丁基橡胶的性能主要由聚异丁烯主链及其不饱和度极底的 结构所决定,其不饱和度仅为0.5%∽3.3%(mol)约为天然橡 胶的1/50,因此丁基橡胶具有一系列的优良特性;透气率低, 热稳定性好,耐臭氧和耐天候老化性好,减震性能好,耐化 学腐蚀和耐水气侵蚀性能好等。
气体:均为熵弹性,模量随温度升高而增加, 与木材、金属相反。
橡胶弹性的特点:
(3) 弹性模量小
橡胶 一般聚合物 金属
105N/m2 109 N/m2 1010-1011 N/m2
H H
H H
H H
H H
~2 kcal
H
H
~0.5 kcal
室温下分子动能(RT=8.31300J/mol=2.5kJ/mol)
橡胶示例3
H
H
C=C
CH2
CH2 n
顺丁橡胶
Cl
CH2
C=C
CH2
H
n
氯丁橡胶
顺丁橡胶的线形结构规整度高,分子量高且分布 宽,具有优良的物理机械性能和加工性能。在拉 伸状态下具有高定向熵和高结晶性,有提高强度 的作用。玻璃化温度 (Tg) 为 -100℃ ,能在较 低温度下仍保持分子链的运动,具有理想的耐寒。 顺丁橡胶耐磨性优异,动弯曲时生热低,有较高 的动态模量及较好的耐氧化性能,与天然橡胶和 丁苯橡胶相比,弹性高,耐屈挠性和动态性能等 综合性能,但顺丁橡胶抗湿滑性差,撕裂强度和 拉伸强度较低,冷流性大,加工性能较差。 顺丁橡胶主要用于轮胎业,用于制造轮胎、胎面、 胎侧等,以其高弹性,尤在汽车中用量最大,与 丁苯橡胶并用生产车胎胎面。
第六章橡胶弹性 ppt课件

热力学第二定律dQ=TdS
PPT课件
11
dU=dQ+dW
dQ=TdS
dW=fdl-pdV
dU=TdS+fdl-pdV, dV≈0 ,
dU=TdS+fdl
f
( Ul )PPTT课,件V
T ( S ) l T,V
12
等温等容条件的热力学方程:
f ( U ) T ( S )
试样的总熵变
假设3:交联网的构象数是各个单独网链的构象数的乘积
N
Ω =∏ Ωi
i=1
S = k lnΩ
S
=
N
∑
Si
i=1
N
△S = ∑ △ Si
i=1
N
S k i2[(12 - 1)xi2 (22 - 1)y i2 (23 - 1)zi2 ]
剪切应力
F Ao
剪切模量
F1
G
A0 tan
切变柔量
J=P1PT课/G件
6
均匀压缩
静压力:P
材料均匀压缩应变△
P
V0
- V0 △V
V V0
体积模量
B P PV0 V V V0
可压缩度
1/B
PPT课件
7
各向同性材料三种模量的关系:
E 2G(1) 3B(1 2)
4个参数2个独立
:泊松比(法国数学家 Simeom Denis Poisson 为名 )
m m0 l
t
l0
横向应变 纵向应变
也叫横向变性系数,它是反映材料横向变形的弹性常数。
PPT课件
8Leabharlann 橡胶高弹态橡胶 施加外力发生大的形变,外力除去后形 变可以恢复的弹性材料。
PPT课件
11
dU=dQ+dW
dQ=TdS
dW=fdl-pdV
dU=TdS+fdl-pdV, dV≈0 ,
dU=TdS+fdl
f
( Ul )PPTT课,件V
T ( S ) l T,V
12
等温等容条件的热力学方程:
f ( U ) T ( S )
试样的总熵变
假设3:交联网的构象数是各个单独网链的构象数的乘积
N
Ω =∏ Ωi
i=1
S = k lnΩ
S
=
N
∑
Si
i=1
N
△S = ∑ △ Si
i=1
N
S k i2[(12 - 1)xi2 (22 - 1)y i2 (23 - 1)zi2 ]
剪切应力
F Ao
剪切模量
F1
G
A0 tan
切变柔量
J=P1PT课/G件
6
均匀压缩
静压力:P
材料均匀压缩应变△
P
V0
- V0 △V
V V0
体积模量
B P PV0 V V V0
可压缩度
1/B
PPT课件
7
各向同性材料三种模量的关系:
E 2G(1) 3B(1 2)
4个参数2个独立
:泊松比(法国数学家 Simeom Denis Poisson 为名 )
m m0 l
t
l0
横向应变 纵向应变
也叫横向变性系数,它是反映材料横向变形的弹性常数。
PPT课件
8Leabharlann 橡胶高弹态橡胶 施加外力发生大的形变,外力除去后形 变可以恢复的弹性材料。
《橡胶弹性理论》ppt课件

在推导橡胶弹性统计实际公式时,需进展以下假设 ① 系统的内能与各个链的构象无关; ② 每个交联点由四个有效链组成,交联点是无规
分布的;
③ 两交联点之间的链,即网链为高斯链,其末 端矩符合高斯分布;
④ 这些高斯链组成的各向同性网络的构象总数 是各个网络链构象数目的乘积〔网络的熵是各个 网络链的熵之和〕;
相应的应力、应变称为剪切 应力(shear stress)、切应变 (shear strain)。
F
A0
S tg
d
s 为剪切位移量; d 为剪切
面之间距离; 为剪切角。
3. 围压(compression)力作用
均匀压缩应变(compressive strain)
V V0
二、弹性模量
弹性模量(modulus of elasticity):应力与应变的比值,表征材料抵抗变 形能力的大小。模量大,刚性大,愈不易变形
橡胶 几十万~几百万
分子量大,加工过程会比较困难,所以普通橡胶 很少采用注射成型。
原 因 : ① 分 子 量 大 ; ② T 不 敏 感 , ③
.
Hale Waihona Puke 敏 感 。第四节 橡胶弹性的热力学分析
一、热力学分析
这里主要采用热力学的方法来分析橡胶的拉 伸过程,阐明作用力、长度,温度和热力 学量之间的关系,亦即从微观解释宏观景 象。
No Image
为简化计算,令橡胶试样在形变前在x、y、z轴 方向长度分别为1,1,1,在形变后分别为λ1, λ2,λ3,
λ称为主轴伸长比率。
对于一个孤立的柔性高分子链,若将其一端固定在
坐标系原点(0,0,0),则另一端出现在坐标点几率 W 可用高斯函数表示
W(x, y, z)=
分布的;
③ 两交联点之间的链,即网链为高斯链,其末 端矩符合高斯分布;
④ 这些高斯链组成的各向同性网络的构象总数 是各个网络链构象数目的乘积〔网络的熵是各个 网络链的熵之和〕;
相应的应力、应变称为剪切 应力(shear stress)、切应变 (shear strain)。
F
A0
S tg
d
s 为剪切位移量; d 为剪切
面之间距离; 为剪切角。
3. 围压(compression)力作用
均匀压缩应变(compressive strain)
V V0
二、弹性模量
弹性模量(modulus of elasticity):应力与应变的比值,表征材料抵抗变 形能力的大小。模量大,刚性大,愈不易变形
橡胶 几十万~几百万
分子量大,加工过程会比较困难,所以普通橡胶 很少采用注射成型。
原 因 : ① 分 子 量 大 ; ② T 不 敏 感 , ③
.
Hale Waihona Puke 敏 感 。第四节 橡胶弹性的热力学分析
一、热力学分析
这里主要采用热力学的方法来分析橡胶的拉 伸过程,阐明作用力、长度,温度和热力 学量之间的关系,亦即从微观解释宏观景 象。
No Image
为简化计算,令橡胶试样在形变前在x、y、z轴 方向长度分别为1,1,1,在形变后分别为λ1, λ2,λ3,
λ称为主轴伸长比率。
对于一个孤立的柔性高分子链,若将其一端固定在
坐标系原点(0,0,0),则另一端出现在坐标点几率 W 可用高斯函数表示
W(x, y, z)=
第六章 橡胶弹性

上式的物理意义:外力作用在橡胶上,使橡胶的内能和熵随着 伸长而变化。或者说,橡胶的张力是由变形时内能和熵发生变 化引起的。
Company Logo
Logo
讨论
U S f T l T ,V l T ,V
T (6-12)
Company Logo
Logo
常见材料的泊松比 泊松比数值 解 释
0.5 0.0
不可压缩或拉伸中无体积变化
没有横向收缩
0.49~0.499
0.20~0.40
橡胶的典型数值
塑料的典型数值
Company Logo
U l T ,V
直线的截距为:
结果:各直线外推到T=0K时, U 0 几乎都通过坐标的原点 l T ,V
Company Logo
Logo
外力作用引起熵变
说明橡胶拉伸时,内能几乎不变,而主要引起熵的变化。 就是说,在外力作用下,橡胶的分子链由原来的蜷曲状 态变为伸展状态,甚至结晶,熵值由大变小,终态是一 种不稳定的体系,当外力除去后就会自发地回复到初态。 这就说明了为什么橡胶高弹形变是可回复的。
Logo
三、 橡胶的使用温度范围
Tg是橡胶使用温度下限,分解温度Td是使用温度上限。 (一)改善高温耐老化性能,提高耐热性 橡胶主链结构上常含有大量双键,橡胶在高温下,易 发生臭氧龟裂、氧化裂解、交联或其它因素的破坏, 不耐热,很少能在120℃以上长期使用。 1、改变主链结构 (1)使主链上不含或无双键,因双键最易被臭氧破 坏断裂;而双键旁的次甲基上的氢易被氧化,导 致裂解或交联。如乙丙橡胶、丁基橡胶或硅橡胶等 均有较好的耐热性。 (2)主链由非碳原子组成,如由Si-O组成,硅橡胶 可在200 ℃以上长期使用。
橡胶弹性的统计理论.ppt

10
设单轴拉伸时:dV=0,则λ1λ2λ3=1
取1
2 3
Incompressible 123 1 condition
2 3
1
W
F
1 2
NkT (12
22
32
3)
W 1 NkT (2 2 3)
2
11
橡胶的张力(拉伸力) f
(32
2
1)z ]
S
1 2
Nk (12
22
32
3)
9
交联状态方程 F
F U TS 忽略内能变化
1 2
NkT(12
22
32
3)
恒温过程中,体系Helmholtz自由能F的减少等于 对外界所做的功 W。
F W
Store-energy function F
生 聚合方法 - 嵌段共聚物, TPE
产
方 机械共混法 - 共混物
法
Ethylene propylene rubber/PP
30
聚氨酯弹性体
由长链二醇、二异氰酸酯、短链二醇或二胺合成
软段 硬段 软段和硬段发生微相分离
31
SBS Styrene-Butadiene-Styrene
Soft Hard
形变前: (xi, yi, zi) 形变后: (1xi, 2yi, 3zi)
形变前 构象熵
形变后 构象熵
Si,u z C ki2 (xi2 yi2 zi2 ) (xi, yi, zi)
S C k ( x y z ) 2(1x2i, 22yi, 3zi)2 2
设单轴拉伸时:dV=0,则λ1λ2λ3=1
取1
2 3
Incompressible 123 1 condition
2 3
1
W
F
1 2
NkT (12
22
32
3)
W 1 NkT (2 2 3)
2
11
橡胶的张力(拉伸力) f
(32
2
1)z ]
S
1 2
Nk (12
22
32
3)
9
交联状态方程 F
F U TS 忽略内能变化
1 2
NkT(12
22
32
3)
恒温过程中,体系Helmholtz自由能F的减少等于 对外界所做的功 W。
F W
Store-energy function F
生 聚合方法 - 嵌段共聚物, TPE
产
方 机械共混法 - 共混物
法
Ethylene propylene rubber/PP
30
聚氨酯弹性体
由长链二醇、二异氰酸酯、短链二醇或二胺合成
软段 硬段 软段和硬段发生微相分离
31
SBS Styrene-Butadiene-Styrene
Soft Hard
形变前: (xi, yi, zi) 形变后: (1xi, 2yi, 3zi)
形变前 构象熵
形变后 构象熵
Si,u z C ki2 (xi2 yi2 zi2 ) (xi, yi, zi)
S C k ( x y z ) 2(1x2i, 22yi, 3zi)2 2
非线性弹性橡胶弹性.ppt

将(2),(3)代入(1)得到dU TdS PdV fdl (4)
由泊松比知,橡胶在伸长过程中体积几乎不变,dV 0 dU TdS fdl或者fdl dU TdS
f
U l
T ,V
S l
T
,V
(5)
上式表明f 的作用可分为两部分 : 一部分用于体系内能的
4.0
=1.42
3.0
300
320
340
TK
图5 天然橡胶在不同拉伸比下的张力-温度关系
由图可得到如下的结果:
(1)不同拉伸比的直线的斜率并不相同,拉伸比增大时,斜
率也增大.表明形变增大时,张力的温度敏感性变大.同时
由于
f S T l,V l T ,V
顺丁橡胶 天然橡胶 丁苯橡胶 丁基橡胶 乙丙橡胶 丁腈橡胶 氯丁橡胶
其他还有氟橡胶, 聚氨酯橡胶属于弹性体
Rubber Products
The definition of rubber
• 施加外力时发生大的形变,外力除去后可以回复的
弹性材料
• 橡胶、塑料、生物高分子在Tg~Tf间都可表现出一定
的高弹性
所以在形变增大时,单位长度增加所引起的熵下降也变大.
(2)不同拉伸比所得到的直线外推至0K时,截距几乎都为0.
U l
T ,V
0
即 U 0 l T,V
有f T f T S (8)
T l,V
l T,V
这就是说在外力作用下,橡胶的分子链由原来的蜷曲状 态(S1)变为伸展状态(S2),熵值由大变小 △ S = S1- S2 > 0 说明形变终态是个不稳定的体系,当外力除去后,就会 自发的回复到初态,这说明为什么橡胶的高弹形变可恢 复。同时说明高弹性主要是由橡胶内熵的贡献
6橡胶弹性
能弹性
晶体材料变形时,原处于平衡结点上的原子沿 应力方向伸长,原子间的引力加大,内能增加。载 荷去除后内能自发减小的过程将使变形回复。由于 晶体材料变形时微观有序度基本不变,则熵值基本 不变。
熵弹性的特点(与能弹性相反):
1)应力和应变之间不保持单值、唯一的关系,与加载 路径有关;
2)弹性形变与时间有关,即弹性形变不是瞬时达到的; 3)弹性变形量大,一般在100%~1000%之间; 4)弹性模量较小; 5)绝热伸长时变热(放热),回复时吸热。
泊松比 0.21
0.25~0.33 0.31~0.34 0.32~0.36
0.45 0.5
材料名称 玻璃 石料
聚苯乙烯
低密度聚乙烯
赛璐珞 橡胶类
泊松比 0.25
0.16~0.34 0.33 0.38 0.39
0.49~0.5
泊松比数值
解释
0.5 0.0 0.49~0.499 0.20~0.40
缠结点 缠结点受聚合物分子量和温度的限制!!!!
缠结点??????
1)缠结点如何通过限制分子链的滑移起到临时交联点的作用? 2)缠结点为什么只能在一定的温度范围内限制分子链的滑移? 3)缠结点为什么只能在一定的时间范围内限制分子链的滑移? 4)不同结构的聚合物的橡胶态温度与时间范围有何不同? 5)不同分子量的聚合物的橡胶态范围有何不同? 6)临时橡胶的运动特征和“永久”橡胶有何不同?
Dunlop Tire
Michelin Tire
中文定义
THE DEFINITION OF RUBBER
施加外力时发生大的形变、外力除 去后可以恢复的弹性材料称为橡胶
Rubber is a polymer which exhibits rubber elastic properties, i.e. a material which can be stretched to several times its original length without breaking and
高分子物理课件6橡胶弹性
B P
B PV0 V
6 橡胶弹性
对于各向同性的材料,通过弹性力学的数学 推导可得出上述三种模量之间的关系
E 2G(1 ) 3B(1 2 )
泊松比 :
定义为拉伸实验中 材料横向应变与纵 向应变的比值之负
m / m0
l / l0
T
数。反映材料性质
的重要参数。
6 橡胶弹性
泊松比数值
橡胶拉伸形变时外力的作用主要只引起体系构象熵的变化 而内能几乎不变──熵弹性
橡胶弹性热力学的本质:熵弹性
6 橡胶弹性
橡胶弹性热力学的本质:熵弹性
拉伸橡胶时外力所做的功 主要转为高分子链构象熵的减小
体系为热力学不稳定状态 去除外力体系回复到初始状态
6 橡胶弹性
熵弹性本质的热效应分析
热 dU=0
dV=0
6 橡胶弹性
重点及要求:
橡胶状态方程及一般修正;一般了解“幻影网络” 理论和唯象理论;熟习橡胶和热塑性弹性体结构 与性能关系
教学目的:橡胶是高分子材料的最大种类之一,
研究其力学行为与分子结构和分子运动之间关系 具有重要的理论和实际意义 。通过本讲的学习, 可以全面理解和掌握橡胶弹性产生的理论原因及 在实际中的应用。
6 橡胶弹性
Similar to which type of materials?
橡胶弹性与 弹性相似,都是 弹性,弹性 模量随温度升高而 。
气体 液体 固体
6 橡胶弹性
橡胶弹性的统计理论和唯象理论
本讲内容: ➢橡胶弹性的统计理论 ➢橡胶状态方程 ➢橡胶状态方程的一般修正 ➢“幻象网络”理论 ➢唯象理论 ➢影响因素 ➢热塑性弹性体
平衡时,附加内力和外力相等,单位面积上的附加内力 (外力)称为应力。
第六章 橡胶弹性
dG=VdP-SdT+fdl
恒温恒压下:
当dT=0 dP=0时,
恒形变恒压下:
当dL=0 dP=0时,
所以恒温恒容下:
u S u f f ( )T .V T ( )T .V ( )T .V T ( )l .V l l l T
热力学方程之二
二、熵弹性的分析
将NR拉伸到一定拉伸比或伸长率在保持λ不变下 测定不同温度(T)下的张力(f)作f—T图 f/Mpa
高弹形变时分子运动需要时间
6、形变过程有明显的热效应
橡胶:急速拉伸——放热 ; 任其回缩——吸热
原因:a.蜷曲→伸展,熵减小,放热,b.分子摩擦放热,c.拉伸结晶,放热
6.1 形变类型及描述力学行为 的基本物理量
单轴拉伸
拉伸 Tensile 剪切 Shear
Uniaxial elongation
双轴拉伸
内能变化 熵变化
热力学方程之一
物理意义:外力作用在橡胶上
使橡胶的内能随伸长变化 使橡胶的熵变随伸长变化
u S f ( )T .V T ( )T .V l l
变换如下: 根据吉布斯自由能 G=H-TS
等式右边都是不易测定的量, 能否作些变通?
H=U+PV
G=U+PV-TS 对微小变化: dG=dU+PdV+VdP-TdS-SdT dU=TdS-PdV+fdl dG=VdP-SdT+fdl
2 2 2 2 第i个网链形变前熵 Si C K ( xi yi zi )
形变后熵
Si C K 2 ( 21 xi 2 2 2 yi 2 32 zi 2 )
第i个网链形变的熵变为:
高分子物理6 橡胶弹性
dV≈0
由 H=U+pV
H U l T ,P l T ,P
dH=dU+pdV
≈dU
(8)
再按照热力学定义
G H TS U PV TS
dG dU PdV VdPTdS SdT
将 dU TdS PdV fdl
dG fdl VdP SdT
所以
G f l T ,P
G S T l,P
上式的物理意义:外力作用在橡胶上,一方面使橡胶的
焓随伸长变化而变化,另一方面则引起橡胶的熵随伸长变
化而变化
这里需要说明一点,大多数参考书 张开/ 复旦大学 何
曼君 / 华东理工大学等书上都是:
f U T S
l T ,P
l T , p
上述两式实际上是一回事,因为橡胶在拉伸时,υ=0.5,
模量。 ②在不太大的外力作用下,橡胶可产生
很大的形变,可高达1000%以上,去除 外力后几乎能完全回复,给人以柔软而 富有弹性的感觉
③ 形变时有明显的热效应,绝热拉伸时 高聚物放热使温度升高,回缩时温度降 低(吸热)拉伸过程从高聚物中吸收热 量,使高聚物温度降低。
此外,拉伸的橡胶试样具有负的膨胀系 数,即拉伸的橡胶试样在受热时缩短 (定拉伸比)。
温度升高,分子链内各种运动单元
的热运动愈趋激烈,回缩力就愈大,因 此橡胶类物质的弹性模量随温度升高而 增高。
2)橡胶弹性与大分子结构的关系
① 链柔性:好 橡胶高分子链柔顺性好,内旋转容易。 如:硅橡胶(硅氧键) -Si-O- 顺丁橡胶(孤立双键)-C-C=C-C-
② 分子间作用力:小
如果聚合物分子链上极性基团过多,极 性过强,大分子间存在强烈的范德华力 或氢键,降低弹性。橡胶一般都是分子 间作用力较小或不含极性基团的化合物, 如天然橡胶、顺丁橡胶等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉伸应变(相对伸长率)e = (l - l0)/l0 = Dl / l0
F
A0
•当材料发生较大形变时,
A
其截面积将发生较大变化,
这时工程应力就会与材料
l0
的真实应力发生较大的偏
l
差。正确计算应力应该以
真实截面积A 代替A0,得
到的应力称为真应力σ′。
F
σ′=F/A
•相应地,提出了真应变δ 的定义。 δ=ln(L/L0)
• 单就力学性能而言,橡胶弹性具有如下特点。
•
①弹性形变大,可高达1000%。而一般金属材料的弹性形变不超过
1%,典型的是0.2%以下。
•
②弹性模量小。高弹模量约为105N/m2,而一般金属材料弹性模量
可达1010~1011N/m2。
•
⑤弹性模量随绝对温度的升高正比地增加,而金属材料的弹性模量
随温度的升高而减小。
第6章 橡胶弹性
橡胶的通俗概念是:“施加外力时发生大的形变,外力除去后形变 可以恢复的弹性材料”。
• 橡胶的柔性、长链结构使其卷曲分子在外力作用下通过链段运动改变构 象而舒展开来,除去外力又恢复到卷曲状态。橡胶的适度交联可以阻止 分子链间质心发生位移的粘性流动,使其充分显示高弹性。交联可以通 过交联剂硫磺、过氧化物等与橡胶反应来完成。对于热塑性弹性体,则 是一种物理交联。
材料受到均匀压力压缩时发生的体积形变称压缩应变△ 。
P
材料经压缩以后,体积由V0缩小为V,则压缩应变: △ = (V0 - V)/ V0 = DV / V0
(2)弹性模量 对于理想的弹性固体,应力与应变关系服从虎克定
律,即应力与应变成正比,比例常数称为弹性模量。
弹性模量=应力/应变 可见,弹性模量是发生单位应变时的应力,它表征材料抵抗变形能力
材料受力方式不同,发生形变的方式亦不同,材料受力方式主 要有以下三种基本类型:
① 简单拉伸(drawing):
材料受到一对垂直于材料截面、大小相等、方向相反并在同 一直线上的外力作用。
简单拉伸示意图
材料在拉伸作用下产生的形变称为拉伸应变,也称相对伸长率(e)。
拉伸应力 = F / A0 (A0为材料的起始截面积)
6.l 形变类型及描述力学行为的基本物理量
②简单剪切(shearing)
材料受到与截面平行、大小相等、方向相反,但不在一条直 线上的两个外力作用,使材料发生偏斜。其偏斜角的正切值定 义为剪切应变()。
S
A0
F
d F
简单剪切示意图
剪切应变 = S/d=tg
剪切应力s = F / A0
6.l 形变类型及描述力学行为的基本物理量 ③ 均匀压缩(pressurizing)
结果:
f ~ T 的关系为一直线 在相当宽的温度范围内,
各直线外推到T=0K时, 几乎都通过坐标原点 即直线的截距 = 0
•
④形变时有明显的热效应。当把橡胶试样快速拉伸(绝热过程),温
度升高(放热);回缩时,温度降低(吸热)。而金属材料与此相反。
6.l 形变类型及描述力学行为的基本物理量
(1)应变与应力
材料在外力作用下,其几何形状和尺寸所发生的变化称应变或 形变,通常以单位长度(面积、体积)所发生的变化来表征。
材料在外力作用下发生形变的同时,在其内部还会产生对抗外 力的附加内力,以使材料保持原状,当外力消除后,内力就会使材 料回复原状并自行逐步消除。当外力与内力达到平衡时,内力与外 力大小相等,方向相反。单位面积上的内力定义为应力。
6.2 橡胶弹性的热力学分析
第二定律: dQ = TdS dS:形变过程体系的熵变
∴dU = TdS – PdV + fdl (橡胶材料形变过程体积基本不发生变化,即有dV→0)
∴dU = TdS + fdl
即:f =(dU/dl)T,V - T(dS/dl)T,V
f =(dU/dl)T,V + T(df/dT)l,V
目的:深入理解橡胶高弹性的本质 对于平衡态高弹形变可利用 热力学第一定律、第二定律进行分析
第一定律: dU = dQ — dW dU:形变过程体系内能变化 dQ:形变过程体系的热效应 dW:形变过程体系对外所做的功, dW = PdV +(- fdl)。
PdV为材料体积变化作的功, fdl为长度变化作的拉伸功, 负号表示外界对体系做功
* 高弹形变——链段运动——构象发生变化
拉伸——分子链构象从卷曲 小的构象改变能即能产生很大的形变 。
伸展,外力只需克服很 E小、 ε大
* 卷曲(热力学稳定)
伸展(热力学不稳定)
可逆
橡胶高弹性的分子机制
• 温度提高——高弹模量增大 * 温度 分子热运动激烈 对于可逆过程:弹性回缩的作用力 即维持相同形变所需的作用力 则 高弹性模量E
6.2 橡胶弹性的热力学分析
T>Tg高聚物处于高弹性
高聚物高弹性的特点:
• 弹性模量 E 很小;形变ε很大;可逆 • 弹性模量 E 随温度↑而↑ • 弹性形变的过程是一个松弛过程形变总是随着时间逐渐发展的 即形变
需要一定的时间 • 形变过程具有明显的热效应,拉伸——放热;
回缩——吸热(与金属材料相反) • 弹性形变模量 E 小、形变ε很大、可逆
的大小,模量愈大,愈不容易变形,材料刚性愈大。
对于不同的受力方式、也有不同的模量。
弹性模量是指在弹性形变范围内单位应变所需应力的大小。 是材料刚性的一种表征。分别对应于以上三种材料受力和 形变的基本类型的模量如下:
拉伸模量(杨氏模量)E:E = / e
剪切模量(刚性模量)G:G = s / 体积模量(本体模量)B:B = p / △
橡胶弹性热力学方程
6.2 橡胶弹性的热力学分析
橡胶弹性热力学方程物理意义: 外力作用在橡胶材料上
• 一方面使橡胶的内能随伸长而变化 (内能变化)
• 另一方面使橡胶的构象熵随伸长而 变化(熵变化)
6.2 橡胶弹性的热力学分析
橡胶弹性热力学的本质:熵弹性
实验:
天然橡胶试样 测定在衡定形变下 外力 f 与温度 T 的关系
• 松弛特性 链段运动单元比小分子大, 所以其运动受到的阻碍较大 运动需要时间较长——松弛特性
• 高弹形变的热效应 原因——高弹形变的本质——熵弹性
• 松弛特性 链段运动单元比小分子大, 所以其运动受到的阻碍较大 运动需要时间较长——松弛特性
• 高弹形变的热效应 原因——高弹形变的本质——熵弹性
6.2 橡胶弹性的热力学分析