第6章橡胶弹性
第六章橡胶弹性

6、1、1 应力与应变
(1) 简单拉伸(drawing)
材料受到一对垂直于材料截面、大小相等、方向相反并在 同一直线上得外力作用。
材料在拉伸作用下产生得形变称为拉伸应变,也称相对伸长率(e)。
拉伸应力(张应力) = F / A0 (A0为材料得起始截面积)
6、2 橡胶弹性得热力学方程
橡胶弹性得热力学分析
实验:
天然橡胶试样测定在恒定伸长 l 下外力 f 与温度 T 得关系。
结果:
f-T曲线,当伸长率大于10%,直 线得斜率为正;当伸长率小于10 %,直线得斜率为负——热弹转 变。
原因:橡胶得热膨胀。
f
38%
3.0
22% 2.0
13%
1.0
6%
3%
0.0 0 20
交联橡胶得溶胀包括两部分:
溶剂力图渗入聚合物内部使其体积膨胀; 由于交联聚合物体积膨胀导致网状分子链向三度空间伸展, 使分子网受到应力产生弹性收缩能,力图使分子网收缩。 当膨胀与收缩能相互抵消时,达到了溶胀平衡。
溶胀过程自由能变化包括两部分:
溶剂分子与大分子链混合时得混合自由能DGM,混合过程 熵增,有利于溶胀;
2=3/(2zb2)
z – 链段数目 b – 链段长度
根据Boltzmann 定律,体系得熵值与体系得构象数得关系:
S k ln
由于构象数正比于概率密度, W (x, y, z)
S C k 2 (x 2 y 2 z 2 )
6、3 橡胶弹性得统计理论
1 1 σ1
σ3
z
σ2
λ1
λ2
弹性模量=应力/应变 对于不同得受力方式、也有不同得模量。
第六章橡胶弹性

简单剪切实验能把高聚物宏观力学性能与它们内部 分子运动相联系,建立高聚物力学行为的分子理论。
(iii)均匀压缩(pressurizing,compress) 材料受到均匀压力压缩时发生的体积形变称压缩
应变(Δ)。
材料经压缩以后,体积由V0缩小为V,则 压缩应变: Δ = (V0 - V)/ V0 = DV / V0
2. 在恒定外力下,橡皮筋加热时是膨胀还是收缩? 为什么?
熵弹性
由于高分子链的特点,橡皮筋将收缩。
橡胶在张力(拉力)的作用下产生形变,主要 是熵变化,即蜷曲的大分子链在张力的作用下 变得伸展,构象数减少。熵减少是不稳定的状 态,当加热时,有利于单键的内旋转,使之因 构象数增加而卷曲,所以在保持外界条件不变 时,升温会发生回缩现象。
➢形变量大(WHY?长链,柔性) 弹性形变量可高达1000%
➢弹性模量小,高弹模量约105N/m2 一般聚合物109N/m2,金属1010-11 N/m2
➢弹性模量随温度升高而增大 晶体材料的弹性模量随温度升高而减小。
➢形变有热效应——快速拉伸放热,形变回复吸热 金属材料与此相反。
晶体材料的弹性模量随着温度的升高而减小。 温度的升高导致原子间距由于热膨胀而增大, 由于原子间距增大,所以模量下降。
Rubber Products
具有橡胶弹性的条件:
柔性长链
使其卷曲分子在外力作用下通过链段 运动改变构象而舒展开来,除去外力 又恢复到卷曲状态
适度交联
可以阻止分子链间质心发生位移的 粘性流动,使其充分显示高弹性
Molecular movements
具有橡胶弹性的条件: 长链 足够柔性 交联
高分子物理课后习题名词解释

以下为1~6章的名词解释,资料来源为高分子物理(第四版)材料科学基础(国外引进教材),化工大词典,百度百科,维基百科等。
第一章高分子链的结构全同立构:高分子链全部由一种旋光异构单元键接而成间同立构:高分子链由两种旋光异构单元交替键接而成构型:分子中由化学键所固定的原子在空间的几何排列,这种排列就是热力学稳定的,要改变构型必需经过化学键的断裂与重组分子构造(Architecture):指聚合物分子的各种形状,一般高分子链的形状为线形,还有支化或交联结构的高分子链,支化高分子根据支链的长短可以分为短支链支化与长支链支化两种类型共聚物的序列结构:就是指共聚物根据单体的连接方式不同所形成的结构,共聚物的序列结构分为四类:无规共聚物、嵌段共聚物、交替共聚物、接枝共聚物接枝共聚物:由两种或多种单体经接枝共聚而成的产物,兼有主链与支链的性能。
嵌段共聚物(block copolymer):又称镶嵌共聚物,就是将两种或两种以上性质不同的聚合物链段连在一起制备而成的一种特殊聚合物。
环形聚合物:它的所有结构单元在物理性质与化学性质上都就是等同的超支化聚合物:就是在聚合物科学领域引起人们广泛兴趣的一种具有特殊大分子结构的聚合物构象:由于σ单键内旋转而产生的分子在空间的不同形态。
链段: 高分子链上划分出的可以任意取向的最小单元或高分子链上能够独立运动的最小单元称为链段。
链柔性:就是指高分子链在绕单键内旋转自由度,内旋转可导致高分子链构象的变化,因为伴随着状态熵增大,自发地趋向于蜷曲状态的特性。
近程相互作用:就是指同一条链上的原子或基团之间,沿着链的方向,因为距离相近而产生相互作用远程相互作用:因柔性高分子链弯曲所导致的沿分子链远距离的原子或基团之间的空间相互作用。
远程相互作用可表现为斥力或引力,无论就是斥力还就是引力都使内旋转受阻,构想数减少,柔性下降,末端距变大。
自由连接链:假定分子就是由足够多的不占体积的化学键自由结合而成,内旋转时没有键角限制与位垒障碍,其中每个键在任何方向取向的几率都相同。
高分子物理第六章

一、橡胶
Rubber products
3
What is rubber?
Nature rubber-PI Synthesize rubber
CH2 C CH CH3 n CH3
•Polybutadiene •Polyisobutylene •Polychloroprene
4
The definition of rubber
12
第一节
形变类型及描述力学行为的基本物理量
13
6.1.1 基本概念
应变:当材料受到外力作用而所处的条件却使其不能产生惯性位 移,材料的几何形状和尺寸将发生变化,这种变化就称为~~
附加内力:材料发生宏观变形时,其内部分子以及分子内各原子间 的相对位置和距离发生变化,致使原子间或分子间的原有引力平衡 受到破坏,因而将产生一种恢复平衡的力,这种力简称~~
8
(2)高聚物的黏弹性
指高聚物材料不但具有弹性材料的一 般特性,同时还具有粘性流体的一些 特性。弹性和粘性在高聚物材料身上 同时呈现得特别明显。
9
三、橡胶的交联
PB cross-linked
Crosslinking is when individual polymer chains are linked together by covalent bonds to form one giant molecule. 10
dU =TdS-PdV+fdl
fdl =-TdS
dQ=TdS
fdl =-dQ
拉伸 dl>0, dS<0
dQ<0 拉伸放热
回缩 dl<0, dS>0
dQ>0 回缩吸热
42
第六章 橡胶弹性

上式的物理意义:外力作用在橡胶上,使橡胶的内能和熵随着 伸长而变化。或者说,橡胶的张力是由变形时内能和熵发生变 化引起的。
Company Logo
Logo
讨论
U S f T l T ,V l T ,V
T (6-12)
Company Logo
Logo
常见材料的泊松比 泊松比数值 解 释
0.5 0.0
不可压缩或拉伸中无体积变化
没有横向收缩
0.49~0.499
0.20~0.40
橡胶的典型数值
塑料的典型数值
Company Logo
U l T ,V
直线的截距为:
结果:各直线外推到T=0K时, U 0 几乎都通过坐标的原点 l T ,V
Company Logo
Logo
外力作用引起熵变
说明橡胶拉伸时,内能几乎不变,而主要引起熵的变化。 就是说,在外力作用下,橡胶的分子链由原来的蜷曲状 态变为伸展状态,甚至结晶,熵值由大变小,终态是一 种不稳定的体系,当外力除去后就会自发地回复到初态。 这就说明了为什么橡胶高弹形变是可回复的。
Logo
三、 橡胶的使用温度范围
Tg是橡胶使用温度下限,分解温度Td是使用温度上限。 (一)改善高温耐老化性能,提高耐热性 橡胶主链结构上常含有大量双键,橡胶在高温下,易 发生臭氧龟裂、氧化裂解、交联或其它因素的破坏, 不耐热,很少能在120℃以上长期使用。 1、改变主链结构 (1)使主链上不含或无双键,因双键最易被臭氧破 坏断裂;而双键旁的次甲基上的氢易被氧化,导 致裂解或交联。如乙丙橡胶、丁基橡胶或硅橡胶等 均有较好的耐热性。 (2)主链由非碳原子组成,如由Si-O组成,硅橡胶 可在200 ℃以上长期使用。
6橡胶弹性

能弹性
晶体材料变形时,原处于平衡结点上的原子沿 应力方向伸长,原子间的引力加大,内能增加。载 荷去除后内能自发减小的过程将使变形回复。由于 晶体材料变形时微观有序度基本不变,则熵值基本 不变。
熵弹性的特点(与能弹性相反):
1)应力和应变之间不保持单值、唯一的关系,与加载 路径有关;
2)弹性形变与时间有关,即弹性形变不是瞬时达到的; 3)弹性变形量大,一般在100%~1000%之间; 4)弹性模量较小; 5)绝热伸长时变热(放热),回复时吸热。
泊松比 0.21
0.25~0.33 0.31~0.34 0.32~0.36
0.45 0.5
材料名称 玻璃 石料
聚苯乙烯
低密度聚乙烯
赛璐珞 橡胶类
泊松比 0.25
0.16~0.34 0.33 0.38 0.39
0.49~0.5
泊松比数值
解释
0.5 0.0 0.49~0.499 0.20~0.40
缠结点 缠结点受聚合物分子量和温度的限制!!!!
缠结点??????
1)缠结点如何通过限制分子链的滑移起到临时交联点的作用? 2)缠结点为什么只能在一定的温度范围内限制分子链的滑移? 3)缠结点为什么只能在一定的时间范围内限制分子链的滑移? 4)不同结构的聚合物的橡胶态温度与时间范围有何不同? 5)不同分子量的聚合物的橡胶态范围有何不同? 6)临时橡胶的运动特征和“永久”橡胶有何不同?
Dunlop Tire
Michelin Tire
中文定义
THE DEFINITION OF RUBBER
施加外力时发生大的形变、外力除 去后可以恢复的弹性材料称为橡胶
Rubber is a polymer which exhibits rubber elastic properties, i.e. a material which can be stretched to several times its original length without breaking and
06 1 第六章 力学性能 高弹性 TPE 11918
第六章高聚物的力学性能(1)6.1 概述6.1.1 高聚物力学性能的特点(形变性能、断裂性能)高弹形变:平衡高弹形变:瞬时、平衡、可逆的高弹形变;非平衡高弹形变:瞬时粘弹性,与时间有关高弹性:准平衡态高弹形变,由高分子构象熵的改变引起,处于链段无规自由热运动橡胶(弹性体)→外力作用(拉伸力)→ 链段运动对外响应→可逆的弹性形变(伸长数倍)普弹性:内能的改变引起粘弹性:呈粘性流体的性质、弹性和粘性同时出现。
表现在力学松弛现象(蠕变、应力松弛)及动态力学行为。
高聚物的力学行为:依赖于时间、温度。
必须同时考虑应力、应变、时间和温度来描述。
研究目的:(1)力学性能宏观描述和测试合理化;(2)宏观力学性能与微观各个层次的结构因素的关系。
6.1.2 形变类型和描述力学行为的基本物理量(1)简单剪切(形状改变,体积不变)剪切应力:σ = F/A,剪切应变:γ= tgθ,剪切模量(刚度):G = σ/γ,剪切柔量:J = 1/G = γ/σ(2)本体(体积)压缩(形状不变,体积改变)本体应变:Δ= ΔV / V,本体模量:K = P/Δ = P / (- ΔV / V),本体柔量(可压缩度):B = 1 / K(3)单向拉伸(形状和体积同时改变)拉伸应力:σ = F/A0(张应力,工程应力),拉伸应变:ε1 = (l-10)/10=Δl/10(张应力,工程应变,习用应变),杨氏模量:E = σ / ε1 (高聚物 E = 0.1MPa~500MPa),拉伸柔量:D = 1 / E横向应变:ε2 =(b - b0)/ b0,ε3 =(d - d0)/ d0)泊松比:γ = -ε2 / ε1= -ε3 / ε1 (拉伸试验中横向应变与纵向应变的比值的负数)对于大多数高聚物:橡胶,γ = 0.5,体积几乎不变,没有横向收缩。
塑料,γ = 0.2~0.4。
对各向同性的理想材料:G = E /(1+γ),K = E(1 - 2γ),E = 9KG /(3K + G),若体积几乎不变,即γ = 1/2, 则 E = 3G;对于各向异性材料情况比较复杂,不止有两个的独立弹性模量,通常至少有5或6个。
第六章 橡胶弹性
第六章 橡胶弹性 第七章 聚合物的粘弹性 第八章 聚合物的流变性 第九章 聚合物表面与界面 第十章 聚合物的电、热和光学性能 第十一章 聚合物的屈服和断裂 讲座 高分子物理在PPR开发中的应用 总复习 6学时 6学时 3学时 4学时 5学时 6学时 3学时 3学时 共36学时
第六章 橡胶弹性
橡胶弹性的特点:
(3) 弹性模量小 橡胶 一般聚合物 金属
H H H H H H H H H
105N/m2 109 N/m2 1010-1011 N/m2
H
~2 kcal
~0.5 kcal
室温下分子动能(RT=8.31300J/mol=2.5kJ/mol)
(4) 弹性模量随温度升高而升高
W
热
冷
橡胶示例3
H C=C CH2
H CH2
Cl C=C
n
CH2 H
CH2
n
顺丁橡胶
氯丁橡胶
顺丁橡胶的线形结构规整度高,分子量高且分布 宽,具有优良的物理机械性能和加工性能。在拉 伸状态下具有高定向熵和高结晶性,有提高强度 的作用。玻璃化温度 (Tg) 为 -100℃ ,能在较 低温度下仍保持分子链的运动,具有理想的耐寒。 顺丁橡胶耐磨性优异,动弯曲时生热低,有较高 的动态模量及较好的耐氧化性能,与天然橡胶和 丁苯橡胶相比,弹性高,耐屈挠性和动态性能等 综合性能,但顺丁橡胶抗湿滑性差,撕裂强度和 拉伸强度较低,冷流性大,加工性能较差。 顺丁橡胶主要用于轮胎业,用于制造轮胎、胎面、 胎侧等,以其高弹性,尤在汽车中用量最大,与 丁苯橡胶并用生产车胎胎面。
Hard
SBS
交联密度的描述方法
(1)网链密度(N1=N/V):单位体积内所含网链数
高分子物理6 橡胶弹性
dV≈0
由 H=U+pV
H U l T ,P l T ,P
dH=dU+pdV
≈dU
(8)
再按照热力学定义
G H TS U PV TS
dG dU PdV VdPTdS SdT
将 dU TdS PdV fdl
dG fdl VdP SdT
所以
G f l T ,P
G S T l,P
上式的物理意义:外力作用在橡胶上,一方面使橡胶的
焓随伸长变化而变化,另一方面则引起橡胶的熵随伸长变
化而变化
这里需要说明一点,大多数参考书 张开/ 复旦大学 何
曼君 / 华东理工大学等书上都是:
f U T S
l T ,P
l T , p
上述两式实际上是一回事,因为橡胶在拉伸时,υ=0.5,
模量。 ②在不太大的外力作用下,橡胶可产生
很大的形变,可高达1000%以上,去除 外力后几乎能完全回复,给人以柔软而 富有弹性的感觉
③ 形变时有明显的热效应,绝热拉伸时 高聚物放热使温度升高,回缩时温度降 低(吸热)拉伸过程从高聚物中吸收热 量,使高聚物温度降低。
此外,拉伸的橡胶试样具有负的膨胀系 数,即拉伸的橡胶试样在受热时缩短 (定拉伸比)。
温度升高,分子链内各种运动单元
的热运动愈趋激烈,回缩力就愈大,因 此橡胶类物质的弹性模量随温度升高而 增高。
2)橡胶弹性与大分子结构的关系
① 链柔性:好 橡胶高分子链柔顺性好,内旋转容易。 如:硅橡胶(硅氧键) -Si-O- 顺丁橡胶(孤立双键)-C-C=C-C-
② 分子间作用力:小
如果聚合物分子链上极性基团过多,极 性过强,大分子间存在强烈的范德华力 或氢键,降低弹性。橡胶一般都是分子 间作用力较小或不含极性基团的化合物, 如天然橡胶、顺丁橡胶等。
7第六章橡胶弹性
(3)物理量的相互关系
对于各向同性材料
对于弹性体,理想不可压缩物体变 形时,体积为零,υ=0.5
6.2 橡胶与橡胶弹性的概念
橡胶 ASTM标准:20~70 C下,1min可拉伸2倍的试样,当 ASTM标准: 20~ 1min可拉伸 外力除去后1min内至少回缩到原长的1.5倍以下者,或 1min内至少回缩到原长的 1.5倍以下者,或 6 7 者在使用条件下,具有10 ~10 Pa的杨氏模量者 Pa的杨氏模量者 橡胶弹性(高弹性) 橡胶弹性是指以天然橡胶为代表的一类高分子材料表 现出的大幅度可逆形变的性质 橡胶、塑料、生物高分子在Tg~Tf间都可表现出一定的高弹性 高分子材料力学性能的最大特点:高弹性和粘弹性
(2)三种不同模式下的应力和应变
A. 拉伸应变
Ⅰ拉 伸
拉伸作用力产生的应变,叫做“拉伸应变”,用单位长 度的伸长来表示 小伸长时:用材料的起始尺寸作为标准,应变关系式 如下,叫做“工程应变”、“习用应变”
大形变时:其关系式为δ= ㏑(l/l0),叫做“真应变”。
B. 拉伸应力:
材料受到的外力是垂直于截面积的、大小相等 而方向相反的、作用于同一直线的两个力,这 种外力叫做“拉伸力”,所对应的应力叫做“拉 伸应力”。 小形变时:又叫“习用应力”或“工程应力”,截面积用 起始截面积表示,关系式为;
弹性模量小的原因长链有卷曲到伸展长链有卷曲到伸展链柔性好分子间吸引力小受力时分子链就易变形橡胶在伸长时会放热回缩时会吸热橡胶发生形变需要时间时间依赖性这是因为链橡胶发生形变需要时间时间依赖性这是因为链段的运动需要克服分子间的内摩擦力达到平衡位置段的运动需要克服分子间的内摩擦力达到平衡位置需要一定的时间需要一定的时间橡胶具有热弹效应橡胶具有热弹效应具有明显的松弛特征具有明显的松弛特征6565高弹性的高分子结构特征高弹性的高分子结构特征1分子链的柔性分子链的柔性橡胶类聚合物都是内旋转比较容易位垒低的柔性高分橡胶类聚合物都是内旋转比较容易位垒低的柔性高分子橡胶类聚合物的内聚能密度一般在子橡胶类聚合物的内聚能密度一般在290kjcm3290kjcm3比塑料比塑料和纤维类聚合物的内聚能密度低得多和纤维类聚合物的内聚能密度低得多2分子间的相互作用分子间的相互作用分子间作用力较小的非极性聚合物分子间作用力较小的非极性聚合物材料之所以呈现高弹性是由于链段运动能比较迅速的适应所受外力而改变分子链的构象
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
剪切模量 体积模量
P PV0 B= = V
三种弹性模量间的关系
各向同性材料
ν : Poisson’s ratio 泊松比
E = 2G (1 + ν ) = 3B (1 2ν )
泊松比: 在拉伸实验中,材料横向应变 泊松比 在拉伸实验中, 与纵向应变之比值的负数
m v= l
m0 l0
εT = ε
长链
足够柔性
交联
6.1 受力方式与形变类型
单轴拉伸
基 本 的 形 变
拉伸 Tensile
Uniaxial elongation 双轴拉伸 biaxial elongation 等轴 非等轴
简单剪切 Shear
本体压缩( 本体压缩(或 本体膨胀) 本体膨胀)
形状改变而体 积不变 体积改变而形 状不变
焓是一种热力学函数,对任何系统来说,焓的定义为: 焓是一种热力学函数,对任何系统来说,焓的定义为:
H=U+PV
U为系统的内能;P为系统 为系统的内能; 为系统 为系统的内能 的压力, 为系统的体积 的压力,V为系统的体积
G=U+PV-TS
Making derivation 求导数
dG=dU+PdV+VdP-TdS-SdT
内能变化 熵变化
难以测量, 难以测量, 要变换成实 验中可以测 量的物理量
According to Gibbs function ——吉布斯函数
Josiah Willard Gibbs (1839~1903)
G=H-TS
H、T、S分别为系统的焓 、 、 分别为系统的焓 分别为系统的焓Enthalpy、热 、 力学温度Temperature和熵 和熵Entropy 力学温度 和熵
4.橡胶的弹性模量随温度的升高而增高,而一般 固体材料的模量是随温度的升高而下降(定拉伸比)。 橡胶在拉伸时,体积几乎不变 υ=0.5 先用分子热运动的观点,定性说明橡胶弹性特征。 具有橡胶弹性的高聚物,室温下已处于玻璃化温度以 上,加之分子链柔顺性好,自发处于卷曲状态,在外 力作用下,大分子线团容易伸展开来。
U l T ,V
T /K
结果:各直线外推到T=0K时, 结果:各直线外推到 时 几乎都通过坐标的原点
U ≈0 l T ,V
外力作用引起熵变
橡胶弹性是熵弹性 橡胶弹性是熵弹性 回弹动力是熵增 回弹动力是熵增
橡胶拉伸过程中的热量变化 dU=0 dV=0 dU =TdS-PdV+fdl =0
Discussion
பைடு நூலகம்
U S f = T l T ,V l T ,V
G G S f = = = l T ,V l T P ,l T ,V T l T , P l ,V T l ,V
G S = T P ,l
Rubber Products
The definition of rubber
施加外力时发生大的形变, 施加外力时发生大的形变,外力除去后 可以回复的弹性材料 高分子材料力学 性能的最大特点 性能的最大特点
高弹性 粘弹性
Crosslinking
Molecular movements
具有橡胶弹性的条件: 具有橡胶弹性的条件:
NR,加1~5% S 弹性体 NR,加10~30% S 硬质橡胶
4.结晶度:愈少较好 PE、PP结晶成塑料。 EPR无规共聚破坏结晶形成橡胶。 5.分子量 从热机械曲线可知,显示高弹态温度范围是在Tg~ Tf 之间,而Tg~ Tf 的温度范围随分子量的增加而逐步加 宽。因此需要一定的分子量。 塑料 几万~十几万 橡胶 几十万~几百万 分子量大,加工过程会比较困难,所以一般橡胶很少 采用注射成型。
常见材料的泊松比
泊松比数值 解 释
不可压缩或拉伸中无体积变化
0.5 0.0 0.49~0.499 0.20~0.40
没有横向收缩 橡胶的典型数值 塑料的典型数值
E, G, B and ν
E = 2G (1 + ν )
E = 3B (1 2ν )
Only two independent variables
聚氯乙烯分子中含有极性的氯原子,极性较大,为塑 料,但PVC中加入较多的增塑剂后,降低分子间作用 力使其具有弹性特征。 3.交联:轻度交联 分子间作用力小的聚合物,在形变过程中,大分子间 发生相对滑移,产生永久变形,为了防止出现这种永 久形变(irreversible deformation),橡胶往往需要硫化 (vulcanize),使大分子链之间相互交联。因此交联密 度决定了可能发生高弹形变的大小,交联密度提高, 聚合物逐渐变硬。
第6章 橡胶弹性
Rubber Elasticity
What is rubber?
Nature rubber-PIP
Polybutadiene
Synthesize rubber
Polyisobutylene Polychloroprene
Rubber is also called elastomer(弹性体). It is defined as a cross-linked amorphous polymer above its glass transition temperature.
6.2 橡胶弹性
一、橡胶弹性特征:
1.弹性模量小,高弹模量大大低于金属模量。 2.在不太大的外力作用下,橡胶可产生很大的形变, 可高达1000%以上,去除外力后几乎能完全回复, 给人以柔软而富有弹性的感觉 3.形变时有明显的热效应,绝热拉伸时高聚物放热 使温度升高,回缩时温度降低(吸热)拉伸过程 从高聚物中吸收热量,使高聚物温度降低。 此外,拉伸的橡胶试样具有负的膨胀系数,即拉 伸的橡胶试样在受热时缩短(定拉伸比)。
(1) 简单拉伸
l0
F F 应变 应力 F
l = l0 + l A
A0
F
l l0 l ε= = l0 l0 F σ= A0
dl l 真应变 δ = ∫l0 l = ln l0 F 真应力 σ ' = A
l
(2) 简单剪切
剪切位移 剪切角
A0 F 切应变 切应力
F
d
θ
S
A0
S γ = = tan θ d F τ = σs = A0
原因:①分子量大;②η
T
不敏感,③η
γ
.
敏感。
6.3 橡胶弹性的热力学分析
Thermodynamical analysis of rubber elasticity
l0
f
l = l0 + dl
f
l0 – Original length f – tensile force
dl – extended length
(3) 均匀压缩
P
V0
V0 - V
均匀压缩应变
V = V0
弹性模量 Modulus
弹性模量是表征材料抵抗变形能力的大 小, 其值的大小等于发生单位应变时的 F 应力 A0 σ 简单拉伸 E = 拉伸模量, 拉伸模量 或杨氏模量 = ε l
简单剪切 均匀压缩
l0 τ F G= = γ A0 tan θ
宏观上拉伸时发生的高弹形变就是在这种微观上大分子 线团沿外力作用方向伸展的结果。由于大分子线团的尺 寸比其分子链长度要小得多,因而高弹形变可以发展到 很大程度。外力去除后,热运动使分子趋向于无序化。 大分子要回到稳定的卷曲状态,因而形变是可逆的,并 且形成回缩力。 高弹形变的微观过程与普通固体的形变过程显然不同。 前者是大分子被拉长,外力所克服的是链段热运动回到 最可几构象的力。后者是键长的扩张、价键的伸长,它 需要的能量比之大分子链的伸长要大得多。因此,橡胶 的模量比普通固体的模量低4~5数量级。 温度升高,分子链内各种运动单元的热运动愈趋激烈, 回缩力就愈大,因此橡胶类物质的弹性模量随温度升高 而增高。
P—所处大气压 dV—体积变化 所处大气压 体积变化
热力学第一定律
First law of thermodynamics f f
dU =δQ -δW
δW – 体系对外所做功 fdl
dU – 体系内能 体系内能Internal energy变化 变化 δQ – 体系吸收的热量 膨胀功 PdV 拉伸功
交联点由四个有效链组成
网 链
高斯链 Gaussian chain
对孤立柔性高分子链, 对孤立柔性高分子链,若将其一端固定在坐标的原 点(0,0,0),那么其另一端出现在坐标 ,那么其另一端出现在坐标(x,y,z)处小体积 处小体积 dxdydz内的几率: 内的几率: 内的几率
应力和应变
当材料受到外力作用而所处的条件却使其不能 产生惯性位移, 产生惯性位移,材料的几何形状和尺寸将发生 变化,这种变化就称为应变 (strain)。 变化, 。 平衡时,附加内力和外力相等, 平衡时,附加内力和外力相等,单位面积上的 附加内力(外力) 附加内力(外力)称为应力 (stress)。 。
δW = PdV - fdl
假设过程可逆
热力学第二定律
δQ=TdS
dU =TdS - PdV+fdl
橡胶在等温拉伸中体积不变, 橡胶在等温拉伸中体积不变, 即 dV=0
dU = TdS + fdl
U S 对l求偏导 求偏导 =T + f l T,V l T,V
U S f = -T l T,V l T,V
G f = l T , P
U f Therefore f = +T l T ,V T l ,V
——橡胶的热力学方程 橡胶的热力学方程
f - T Curve
U f f = +T l T,V T l,V
f
将橡皮在等温下拉伸一定长度l, 然后测 将橡皮在等温下拉伸一定长度 定不同温度下的张力f, 由张力f 定不同温度下的张力 由张力 对绝对温 做图, 度T做图 在形变不太大的时候得到一条 做图 直线. 直线 (dV=0) f 直线的斜率为: 直线的斜率为 T V , l 直线的截距为: 直线的截距为