沪科版七年级数学下期末试卷

合集下载

【沪科版】七年级数学下期末试题含答案

【沪科版】七年级数学下期末试题含答案

一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( ) A .a <3B .a ≥3C .a >3D .a ≤3 2.已知2x 2y 3a 与﹣4x 2a y 1+b 是同类项,则a b 的值为( )A .1B .﹣1C .2D .﹣2 3.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a ,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是( )(用a 的代数式表示)A .﹣aB .aC .12aD .﹣12a 4.已知:关于x 、y 的方程组2423x y a x y a +=-+⎧⎨+=-⎩,则x-y 的值为( ) A .-1B .a-1C .0D .1 5.二元一次方程组7317x y x y +=⎧⎨+=⎩的解是( ) A .52x y =⎧⎨=⎩ B .25x y =⎧⎨=⎩ C .61x y =⎧⎨=⎩ D .16x y =⎧⎨=⎩6.已知点()121M m m --,在第四象限,则m 的取值范围在数轴上表示正确的是( ) A .B .C .D .7.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上8.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是( )A .A 处B .B 处C .C 处D .D 处9.下列各数中比3-( )A .2-B .1-C .12-D .010.下列命题中,属于真命题的是( )A .相等的角是对顶角B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b 11.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( ) A .5<m <6 B .5<m ≤6C .5≤m ≤6D .6<m ≤7 12.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<--二、填空题13.方程27x y +=在正整数范围内的解有_________________.14.已知方程组2237x ay x y +=⎧⎨+=⎩的解是二元一次方程1x y -=的一个解,则a =________________.15.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,蚂蚁甲和蚂蚁乙都由点E (3,0)出发,同时沿正方形ABCD 的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.16.如图,若棋盘中“帅”的坐标是(0,1),“卒”的坐标是(2,2),则“马”的坐标是________.17.已知(2m ﹣1)2=9,(n+1)3=27.求出2m+n 的算术平方根.18.如图,直线////a b c ,直角三角板的直角顶点落在直线b 上,若135∠=︒,则2∠等于_______.19.把方程组2123x y m x y +=+⎧⎨+=⎩中,若未知数x y 、满足0x y +>,则m 的取值范围是_________.20.不等式组210360x x ->⎧⎨-<⎩的解集为_______. 三、解答题21.计划对河道进行改造,现有甲乙两个工程队参加改造施工,受条件限制,每天只能由一个工程队施工.若甲工程队先单独施工3天,再由乙工程队单独施工5天,则可以完成550米施工任务:若甲工程队先单独施工2天,再由乙工程对单独施工4天,则可以完成420米的施工任务.(1)求甲、乙两个工程队平均每天分别能完成多少米施工任务?(2)该河道全长6000米,若两队合作工期不能超过90天,乙工程队至少施工多少天? 22.某市出租车的计费标准如下:行程3km 以内(含3km ),收费7元.行程超过3km ,如果往返乘同一出租车并且中间等候时间不超过3min ,超过3km 的部分按每千米1.6元计费,另加收1.6元等候费;如果返程时不再乘坐此车,超过3km 的部分按每千米2.4元计费.小文等4人从A 处到B 处办事,在B 处停留时间在3min 之内,然后返回A 处.现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元); 方案二:4人乘同一辆出租车往返.(1)若A ,B 两地相距1.2km ,方案一付费_____元,方案二付费______元;(2)若A ,B 两地相距2.5km ,方案一付费_____元,方案二付费______元;(3)设A ,B 两地相距x km (x <12),请问选择那种方案更省钱?23.解方程(本题共有2道小题)(1)34528a b a b -=⎧⎨+=⎩(2)11233210x y x y +⎧-=⎪⎨⎪+=⎩ 24.若点(1m -,32m -)在第二象限内,求m 的取值范围25.“*”是规定的一种运算法则:a*b=a 2-3b . (1)求2*5的值为 ;(2)若(-3)*x=6,求x 的值;26.如图,已知∠1+∠2=180°,∠B =∠DEF ,求证:DE ∥BC .请将下面的推理过程补充完整.证明:∵∠1+∠2=180(已知)∠2=∠3( 对顶角相等 )∴∠1+∠3=180°∴AB ∥EF ( ),∴∠B =∠EFC ( )∵∠B =∠DEF ( ),∴∠DEF = ( )∴DE ∥BC ( )【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先解不等式,然后根据不等式组无解确定a 的范围.【详解】解:5210x x a -≥-⎧⎨->⎩①② 解不等式①,得3x ≤;解不等式②,得x a >;∵不等式组无解,∴3a ≥;故选:B .【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.A解析:A【分析】根据同类项的定义列出二元一次方程组求出a 、b 的值,最后代入运算即可.【详解】解:∵2x 2y 3a 与﹣4x 2a y 1+b 是同类项∴2231a a b =⎧⎨=+⎩ ,即12a b =⎧⎨=⎩∴a b =12=1.故答案为A .【点睛】本题主要考查了同类项的定义、乘方运算以及解二元一次方程组,根据同类项的定义列方程组求出a 、b 的值是解答本题的关键.3.A解析:A【分析】设图③小长方形的长为m ,宽为n ,则由已知可以求得m 、n 关于a 的表达式,从而可以用a 表示出图①阴影部分周长与图②阴影部分周长,然后即可算得二者之差.【详解】解:设图③小长方形的长为m ,宽为n ,则由图①得m=2n ,m+2n=2a , ∴2a m a n ==,, ∴图①阴影部分周长=22245a n a a a ⨯+=+=,图②阴影部分周长=()2322126n n n n a ++==,∴图①阴影部分周长与图②阴影部分周长的差是:5a-6a=-a ,故选A .【点睛】本题考查二元一次方程组的几何应用,设图③小长方形的长为m ,宽为n ,并用a 表示出m 和n 是解题关键.4.D解析:D【解析】分析:由x 、y 系数的特点和所求式子的关系,可确定让①-②即可求解.详解:2423x y a x y a +=-+⎧⎨+=-⎩①②, ①−②,得x−y=−a+4−3+a=1.故选:D.点睛:此题考查了解二元一次方程组,一般解法是用含有a 的代数式表示x 、y ,再计算,但也要注意能简便的则简便.此题中注意整体思想的渗透.5.A解析:A【分析】方程组利用加减消元法求出解即可.【详解】解:7317x y x y +=⎧⎨+=⎩①②, ②﹣①得:2x =10,解得:x =5,把x =5代入①得:y =2,则方程组的解为52x y =⎧⎨=⎩. 故选:A .【点睛】本题考查了二元一次方程组的解法以及二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.本题还可以利用代入法求解. 6.B解析:B【分析】由点()121M m m --,在第四象限,可得出关于m 的一元一次不等式组,解不等式组即可得出m 的取值范围,再对照四个选项即可得出结论.【详解】解:由点()121M m m --,在第四象限,得1-2010m m >⎧⎨-<⎩, ∴0.51m m <⎧⎨<⎩即不等式组的解集为:0.5m <,在数轴上表示为:故选:B .【点睛】此题考查了象限及点的坐标的有关性质、在数轴上表示不等式的解集、解一元一次不等式组,需要综合掌握其性质7.B解析:B【解析】分析:首先根据勾股定理得出公园A 到超市B 的距离为500m ,再计算出∠AOC 的度数,进而得到∠AOD 的度数.本题∵∠AOB=90°,∴3002+4002=5002,∴公园A 到超市B 的距离为500m∵超市在医院的南偏东25°的方向,∴∠COB=90°−25°=65°,∴∠AOC=90°−65°=25°,∴∠AOD=90°−25°=65°,故选B.8.B解析:B【分析】直接利用已知点坐标得出原点位置进而得出答案.【详解】解:如图所示:敌军指挥部的位置大约是B 处.故选:B .【点睛】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.9.A解析:A【分析】根据实数比较大小的方法分析得出答案即可.【详解】A .|2|2-=,|33-= ∴23>23∴-<-B .|1|1-=,|33-= ∴13<,13∴->C .1122-=,|33=, 13∴->-2D .03>故选:A .【点睛】此题主要考查了实数的大小比较,正确掌握比较方法是解题的关键.10.C解析:C【分析】根据对顶角、补角、绝对值的定义与性质逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、一个角的补角不一定大于这个角,如这个角为130︒,其补角为50︒,小于这个角,此项是假命题;C 、由绝对值的非负性得:绝对值最小的数是0,此项是真命题;D 、如果a b =,那么a b =或=-a b ,此项是假命题;故选:C .【点睛】本题考查了对顶角、补角、绝对值、真命题与假命题,熟练掌握各定义与性质是解题关键.11.B解析:B【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围.【详解】解不等式x ﹣m <0,得:x <m ,解不等式7﹣2x ≤2,得:x ≥52, 因为不等式组有解, 所以不等式组的解集为52≤x <m , 因为不等式组的整数解有3个, 所以不等式组的整数解为3、4、5,所以5<m ≤6.故选:B .【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.12.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.二、填空题13.【分析】将看做已知数求出即可确定出正整数解【详解】方程解得:要使都是正整数则合适的的值只能是23相应的的值为31∴方程的正整数解有故答案为:【点睛】本题考查了解二元一次方程解题的关键是将看做已知数求出 解析:15x y =⎧⎨=⎩,23x y =⎧⎨=⎩,31x y =⎧⎨=⎩【分析】将x 看做已知数求出y ,即可确定出正整数解.【详解】方程27x y +=,解得:27y x =-+,要使x ,y 都是正整数,则合适的x 的值只能是1x =,2,3,相应的y 的值为5y =,3,1.∴方程的正整数解有15x y =⎧⎨=⎩,23x y =⎧⎨=⎩,31x y =⎧⎨=⎩, 故答案为:15x y =⎧⎨=⎩,23x y =⎧⎨=⎩,31x y =⎧⎨=⎩. 【点睛】本题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .14.【分析】由题意建立关于xy 的新的方程组求得xy 的值再代入求解即可;【详解】由得:由得:将代入得:方程组的解为又方程组的解是的一个解经检验是的解【点睛】本题主要考查了二元一次方程组的解准确分析计算是解解析:0【分析】由题意建立关于x ,y 的新的方程组,求得x ,y 的值,再代入求解即可;【详解】2237x ay x y +=⎧⎨+=⎩①②, 由2①×得:224x ay +=③,由②-③得:()323a y -=,332y a=-, 将332y a=-代入②得: 92372a x =--, 1214232a x a -=-, 6732a x a--=, 方程组的解为6732332a x a y a -⎧=⎪⎪-⎨⎪=⎪-⎩, 又方程组的解是1x y -=的一个解,36173322a a a∴---=-, 13732a a--=, 3732,a a -=-0,a =经检验,0a =是13732a a--=的解, 0a ∴=.【点睛】本题主要考查了二元一次方程组的解,准确分析计算是解题的关键.15.(﹣10)【分析】由图可知正方形的边长为4故正方形的周长为16因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位所以用正方形的周长除以(3−1)可得蚂蚁甲第1次追上蚂蚁乙时间从而算出蚂蚁乙所走过的路程则第解析:(﹣1,0).【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位,所以用正方形的周长除以(3−1),可得蚂蚁甲第1次追上蚂蚁乙时间,从而算出蚂蚁乙所走过的路程,则第二次和第三次相遇过程中蚂蚁乙所走过的路程和第一次是相同的,从而结合图形可求得蚂蚁甲第3次追上蚂蚁乙的坐标.【详解】解:由图可知,正方形的边长为4,故正方形的周长为16∴蚂蚁甲第1次追上蚂蚁乙时间:16÷(3﹣1)=8(秒)蚂蚁乙走的路程为:1×8=8,∴此时相遇点的坐标为:(﹣1,0),因为蚂蚁甲和蚂蚁乙的速度比为3:1,∴再经过16秒蚂蚁甲和蚂蚁乙第三次相遇,相遇点坐标为:(﹣1,0),故答案为:(﹣1,0).【点睛】本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.16.(-22)【分析】根据帅和卒的坐标得出原点的位置即可求得马的坐标【详解】如图所示:马的坐标是:(-22)故答案为(-22)【点睛】本题考查了坐标确定位置正确得出原点的位置是解题关键解析:(-2,2)【分析】根据“帅”和“卒”的坐标得出原点的位置,即可求得“马”的坐标.【详解】如图所示:“马”的坐标是:(-2,2).故答案为(-2,2).【点睛】本题考查了坐标确定位置,正确得出原点的位置是解题关键.17.0或【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3然后再解方程即可;最后分别代入计算即可【详解】解:(2m-1)2=92m-1=±=±32m-1=3或2m-1解析:0或6.【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3,然后再解方程即可;最后分别代入计算即可.【详解】解:(2m-1)2=9,2m-1=±9=±3,2m-1=3或2m-1=-3,∴m=-1或m=2,(n+1)3=27,n+1=3,∴n=2,当m=-1,n=2时,2m+n=-2+2=0,∴2m+n的算术平方根是0;当m=2,n=2时,2m+n=4+2=6,∴2m+n的算术平方根是6;故2m+n的算术平方根是0或6.【点睛】此题考查了立方根与平方根的定义,此题难度不大,注意掌握方程思想的应用,不要丢解.18.【分析】如图利用平行线的性质得出∠3=35°然后进一步得出∠4的度数从而再次利用平行线性质得出答案即可【详解】如图所示∵∴∴∠4=90°−∠3=55°∵∴∠2=∠4=55°故答案为:55°【点睛】本解析:55【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵//a b ,135∠=︒,∴335∠=︒,∴∠4=90°−∠3=55°,∵////a b c ,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.19.【分析】先将方程组中的两个方程相加化简得出的值再根据可得关于m 的一元一次不等式然后解不等式即可得【详解】由①②得:即解得故答案为:【点睛】本题考查了二元一次方程组的解解一元一次不等式根据二元一次方程 解析:4m >-【分析】先将方程组中的两个方程相加化简得出x y +的值,再根据0x y +>可得关于m 的一元一次不等式,然后解不等式即可得.【详解】2123x y m x y +=+⎧⎨+=⎩①②, 由①+②得:334x y m +=+, 即43m x y ++=, 0x y +>,403m +∴>, 解得4m >-,故答案为:4m >-.【点睛】本题考查了二元一次方程组的解、解一元一次不等式,根据二元一次方程组得出x y +的值是解题关键.20.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键 解析:122x << 【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <, 则不等式组的解集为122x <<, 故答案为:122x <<. 【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键. 三、解答题21.(1)甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米;(2)乙工程队至少施工50天【分析】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据等量关系列出二元一次方程组,即可求解;(2)设乙工程队施工a 天,根据不等量关系,列出一元一次不等式,即可求解.【详解】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据题意得:3555024420x y x y +=⎧⎨+=⎩,解得:5080x y =⎧⎨=⎩, 答:甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米; (2)设乙工程队施工a 天,根据题意得:80a+50(90-a )≥6000,解得:a≥50,答:乙工程队至少施工50天【点睛】本题主要考查二元一次方程组与一元一次不等式的实际应用,找出等量关系和不等量关系,列出方程组和不等式,是解题的关键.22.(1)15,8.6;(2)15,11.8;(3)当0<x <5时,方案二更省; 当x=5时,方案一、二一样; 当5<x <12时,方案一更省.【分析】(1)根据题意分别列出表示两种方案费用的代数式,进行计算即可得到答案; (2)根据题意分别列出表示两种方案费用的代数式,进行计算即可得到答案;(3)当0<x≤1.5时,得到方案一:15元;方案二:8.6元,于是得到方案二更省钱;当1.5<x≤3时,求得方案一:15元;方案二:()7 1.623 1.6 3.2 3.8x x +-+=+,即当x=3,有最大费用13.4元,13.4<15,于是得到方案二更省钱;当x >3时;求得方案一:7+2.4(x-3)+8=2.4x+7.8;方案二:7+1.6(2x-3)+1.6=3.2x+3.8;列方程或不等式,再讨论即可得到结论.【详解】解:(1) 1.2<3,∴ 方案一:7+42=7+8=15⨯(元),方案二:7+1.6=8.6(元),故答案为:15,8.6.(2)∵2.5<3,∴方案一付费:7+4×2=15元,方案二付费:()7+53 1.6 1.611.8-⨯+=,故答案为:15,11.8.(3)当0<x≤1.5时,方案一:7+42=7+8=15⨯元;方案二:7+1.6=8.6元,∴方案二更省钱;当1.5<x≤3时,方案一:7+42=7+8=15⨯元;方案二:()7 1.623 1.6 3.2 3.8x x +-+=+,即当x=3,最大费用为:13.4元, 方案二:13.4<15∴方案二更省钱;当x >3时;方案一:()7 2.438 2.47.8x x +-+=+;方案二:()7 1.623 1.6 3.2 3.8x x +-+=+;当2.47.8 3.2 3.8x x +=+时,解得:5x =;∴当x=5时,两者均可,当2.47.8x +<3.2 3.8x +时,0.8x ∴-<4-,∴x >5,所以x >5时方案一更省,当2.47.8x +>3.2 3.8x +时,0.8x ∴->4-,∴x <5,所以x <5时,方案二更省;综上可得:当0<x <5时,方案二更省; 当x=5时,方案一、二一样; 当5<x <12 时,方案一更省.【点睛】本题考查了列代数式,一元一次方程的应用,一元一次不等式的应用,最优化选择问题,解答本题的关键是根据题目所示的收费标准,列出x 的关系式,再计算与比较.23.(1)35a b =⎧⎨=⎩;(2)312x y =⎧⎪⎨=⎪⎩. 【分析】(1)根据代入法解二元一次方程组即可;(2)方程组整理后,根据加减法解二元一次方程组即可.【详解】(1)34528a b a b -=⎧⎨+=⎩①②, 由①可得:34b a =-③,把③代入②得:()53428a a +-=,解得:3a =,把3a =代入③得:5b =,所以方程组的解为35a b =⎧⎨=⎩; (2)方程组整理得3283210x y x y -=⎧⎨+=⎩①②, 由①+②得:3x =, 把3x =代入①得:12y =, 所以方程组的解为312x y =⎧⎪⎨=⎪⎩. 【点睛】本题考查了解二元一次方程组,解决本题的关键是掌握加减消元法和代入消元法解二元一次方程组.24.m <1【分析】根据点在第二象限的条件是:横坐标是负数,纵坐标是正数,得出不等式组,即可解答.【详解】∵点(1m -,32m -)在第二象限,∴10320m m -<⎧⎨->⎩,∴132m m <⎧⎪⎨<⎪⎩, 解得:1m <,∴m 的取值范围是:1m <.【点睛】本题考查了点所在的象限,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限()++,,第二象限()-+,,第三象限()--,,第四象限()+-,. 25.(1)-11;(2)x=1.【分析】(1)根据新运算的规则,把新运算转化成普通有理数的计算,再按有理数相关计算法则计算即可;(2)根据新运算的规则,把等式左边的新运算转化成普通有理数运算,从而把等式转化成一元一次方程,再解一元一次方程即可.【详解】(1)∵ a ∗b= 23a b -,∴ 2∗5=223541511-⨯=-=- ;(2)∵ a ∗b=23a b -,∴ (−3)∗x=()23393x x --=- 即936x -=解此方程得:1x =.【点睛】本题考察有关新运算的问题,首先要弄清把新运算转化为普通运算的规则,然后根据规则把新运算部分转化为普通运算,再按普通运算的相关计算法则计算即可.26.见解析【分析】根据平行的性质和判定定理填空.【详解】解:证明:∵∠1+∠2=180(已知),∠2=∠3(对顶角相等),∴∠1+∠3=180°,∴AB ∥EF (同旁内角互补,两直线平行),∴∠B =∠EFC (两直线平行,同位角相等),∵∠B =∠DEF (已知),∴∠DEF =∠EFC (等量代换),∴DE ∥BC (内错角相等,两直线平行).【点睛】本题考查平行的性质和判定,解题的关键是掌握平行的性质和判定定理.。

沪科版七年级下册数学期末考试试题及答案精选全文完整版

沪科版七年级下册数学期末考试试题及答案精选全文完整版

可编辑修改精选全文完整版沪科版七年级下册数学期末考试试卷一、选择题(本大题共有10小题,每小题4分,满分40分)1.(4分)下列实数中,是无理数的为()A.3.14 B.C.D.2.(4分)下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与23.(4分)生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA分子直径约为0.0000002cm,这个数量用科学记数法可表示为()A.0.2×10﹣6cm B.2×10﹣6cm C.0.2×10﹣7cm D.2×10﹣7cm4.(4分)如右图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°5.(4分)把多项式x3﹣2x2+x分解因式结果正确的是()A.x(x2﹣2x)B.x2(x﹣2)C.x(x+1)(x﹣1)D.x(x﹣1)26.(4分)若分式的值为0,则b的值是()A.1B.﹣1 C.±1 D.27.(4分)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.8.(4分)如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°9.(4分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b210.(4分)定义运算a⊗b=a(1﹣b),下面给出了关于这种运算的几个结论:11.①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+(b⊗b)=2ab;④若a⊗b=0,则a=0.其中正确结论的个数()A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)化简:=.12.(5分)如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是.13.(5分)若代数式x2﹣6x+b可化为(x﹣a)2﹣1,则b﹣a的值是.14.(5分)观察下列算式:31=3,32=9,33=27,34=81,35=243,…,根据上述算式中的规律,你认为32014的末位数字是.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:.16.(8分)解方程:.四、(本大题共2小题,每小题8分,满分16分)17.(8分)解不等式组:并把解集在数轴上表示出来.18.(8分)先化简,再求值:(1+)+,其中x=2.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,已知DE∥BC,BE平分∠ABNC,∠C=55°,∠ABC=70°.①求∠BED的度数(要有说理过程).②试说明BE⊥EC.20.(10分)描述并说明:海宝在研究数学问题时发现了一个有趣的现象:请根据海宝对现象的描述,用数学式子填空,并说明结论成立的理由.如果(其中a>0,b>0).那么(结论).理由∴,∴则.六、(本题满分12分)21.(12分)画图并填空:(1)画出△ABC先向右平移6格,再向下平移2格得到的△A1B1C1.(2)线段AA1与线段BB1的关系是:平行且相等.(3)△ABC的面积是 3.5平方单位.七、(本题满分12分)22.(12分)列分式方程解应用题巴蜀中学小卖部经营某款畅销饮料,3月份的销售额为20000元,为扩大销量,4月份小卖部对这种饮料打9折销售,结果销售量增加了1000瓶,销售额增加了1600元.(1)求3月份每瓶饮料的销售单价是多少元?(2)若3月份销售这种饮料获利8000元,5月份小卖部打算在3月售价的基础上促销打8折销售,若该饮料的进价不变,则销量至少为多少瓶,才能保证5月的利润比3月的利润增长25%以上?八、(本题满分14分)23.(14分)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表11 2 3 ﹣7﹣2 ﹣1 0 1(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值.表2a a2﹣1 ﹣a ﹣a22﹣a 1﹣a2a﹣2 a2参考答案与解析1、考点:无理数.专题:应用题.分析:A、B、C、D根据无理数的概念“无理数是无限不循环小数,其中有开方开不尽的数”即可判定选择项.解答:解:A、B、D中3.14,,=3是有理数,C中是无理数.故选:C.点评:此题主要考查了无理数的定义,其中:(1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数.(2)无理数是无限不循环小数,其中有开方开不尽的数.(3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不循环小数不能化为分数,它是无理数.2、考点:实数的性质.分析:根据相反数的概念、性质及根式的性质化简即可判定选择项.解答:解:A、=2,﹣2+2=0,故选项正确;B、=﹣2,﹣2﹣2=﹣4,故选项错误;C、﹣2+()=﹣,故选项错误;D、|﹣2|=2,2+2=4,故选项错误.故选A.点评:本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.3、考点:科学记数法—表示较小的数.专题:应用题.分析:小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 2=2×10﹣7cm.故选D.点评:本题考查用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、考点:平行线的判定.分析:根据平行线的判定分别进行分析可得答案.解答:解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.点评:此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5、考点:提公因式法与公式法的综合运用.分析:这个多项式含有公因式x,应先提取公因式,然后再按完全平分公式进行二次分解.解答:解:原式=x(x2﹣2x+1)=x(x﹣1)2.故选D.点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.6、考点:分式的值为零的条件.专题:计算题.分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:由题意,得:b2﹣1=0,且b2﹣2b﹣3≠0;解得:b=1;故选A.点评:由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.7、考点:由实际问题抽象出分式方程.专题:应用题;压轴题.分析:题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解答:解:根据题意,得.故选C.点评:理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.8、考点:翻折变换(折叠问题).专题:压轴题.分析:根据折叠的性质,对折前后角相等.解答:解:根据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.故选B.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.9、考点:平方差公式的几何背景.分析:第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.解答:解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.10、考点:整式的混合运算.专题:新定义.分析:先认真审题.理解新运算,根据新运算展开,求出后再判断即可.解答:解:∵2⊗(﹣2)=2×[1﹣(﹣2)]=6,∴①正确;∵a⊗b=a(1﹣b)=a﹣ab,b⊗a=b(1﹣a)=b﹣ab,∴②错误;∵a+b=0,∴b=﹣a,∴(a⊗a)+(b⊗b)=a(1﹣a)+b(1﹣b)=a﹣a2+b﹣b2=0﹣a2﹣a2=﹣2a2,2ab=2a(﹣a)=﹣2a2,∴③在正确;∵a⊗b=0,∴a(1﹣b)=0,a=0或1﹣b=0,∴④错误;即正确的有2个,故选B.点评:本题考查了整式的混合运算的应用,解此题的关键是能理解新运算的意义,题目比较好,难度适中.11、考点:二次根式的性质与化简.分析:根据二次根式的性质解答.解答:解:原式===4.点评:解答此题,要根据二次根式的性质:=|a|解题.12、考点:平行线的性质.专题:计算题.分析:由AB与CD平行,利用两直线平行内错角相等求出∠D的度数,在三角形COD中,利用内角和定理即可求出所求角的度数.解答:解:∵AB∥CD,∠A=20°,∴∠D=∠A=20°,在△COD中,∠D=20°,∠COD=100°,∴∠C=60°.故答案为:60°点评:此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.13、考点:配方法的应用.分析:先将代数式配成完全平方式,然后再判断a、b的值.解答:解:x2﹣6x+b=x2﹣6x+9﹣9+b=(x﹣3)2+b﹣9=(x﹣a)2﹣1,∴a=3,b﹣9=﹣1,即a=3,b=8,故b﹣a=5.故答案为:5.点评:能够熟练运用完全平方公式,是解答此类题的关键.14、考点:尾数特征;规律型:数字的变化类.分析:由31=3,32=9,33=27,34=813,35=243,36=729,37=2187,38=6561…,可知末位数字以3、9、7、1四个数字为一循环,用32014的指数2014除以4得到的余数是几就与第几个数字相同,由此解答即可.解答:解:末位数字以3、9、7、1四个数字为一循环,2014÷4=503…2,所以32014的末位数字与32的末位数字相同是9.故答案为9.点评:此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.15、考点:实数的运算.分析:本题涉及零指数幂、负指数幂、二次根式化简、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式===2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.16、考点:解分式方程.专题:计算题.分析:观察可得2﹣x=﹣(x﹣2),所以可确定方程最简公分母为:(x﹣2),然后去分母将分式方程化成整式方程求解.注意检验.解答:解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时有常数项的不要漏乘常数项.17、考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,并在数轴上表示出来即可.解答:解:解不等式①得:x≤3,由②得:3(x﹣1)﹣2(2x﹣1)>6,化简得:﹣x>7,解得:x<﹣7,在数轴上表示为:,故原不等式组的解集为:x<﹣7.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18、考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=•=,当x=2时,原式==1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19、考点:平行线的性质;垂线.专题:计算题.分析:①由BE为角平分线,求出∠EBC的度数,再由DE与BC平行,利用两直线平行内错角相等求出∠DEB度数即可;②由DE与BC平行,得到一对同旁内角互补,求出∠DEC度数,在三角形BEC中,利用内角和定理求出∠BEC为90°,即可得证.解答:解:①∵∠ABC=70°,BE平分∠ABC,∴∠EBC=∠ABC=70°×=35°,又∵DE∥BC,∴∠BED=∠EBC=35°;②∵DE∥BC,∴∠C+∠DEC=180°,∴∠DEC=180°﹣55°=125°,又∵∠BED+∠BEC=∠DEC,∴∠DCE=125°,∵∠BED=35°,∴∠BEC=90°,则BE⊥EC.点评:此题考查了平行线的判定,以及垂直定义,熟练掌握平行线的判定方法是解本题的关键.20、考点:分式的混合运算.专题:图表型.分析:根据题意列出关系式,猜想得到结论,利用分式的加减法则计算,再利用完全平方公式变形即可得证.解答:解:如果++2=ab(其中a>0,b>0),那么a+b=ab;理由:∵++2=ab,∴=ab,∴a2+b2+2ab=(ab)2,即(a+b)2=(ab)2,则a+b=ab.故答案为:++2=ab;a+b=ab;∵++2=ab,∴=ab,∴a2+b2+2ab=(ab)2,即(a+b)2=(ab)2,则a+b=ab.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21、考点:作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质,对应点的连线平行且相等;(3)利用△ABC所在的正方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.解答:解:(1)△A1B1C1如图所示;(2)AA1与线段BB1平行且相等;(3)△ABC的面积=3×3﹣×2×3﹣×3×1﹣×2×1=9﹣3﹣1.5﹣1=3.5.故答案为:平行且相等;3.5.点评:本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22、考点:分式方程的应用.分析:(1)设3月份每瓶饮料的销售单价为x元,表示出4月份的销售量,根据4月份销量量增加1000瓶可得出方程,解出即可;(2)利用(1)中所求得出每瓶饮料的进价,再由5月的利润比3月的利润至少增长25%,可得出不等式,解出即可.解答:解:(1)设3月份每瓶饮料的销售单价为x元,由题意得,﹣=1000解得:x=4经检验x=4是原分式方程的解答:3月份每瓶饮料的销售单价是4元.(2)饮料的进价为(20000﹣8000)÷(20000÷4)=2.4元,设销量为y瓶,由题意得,(4×0.8﹣2.4)y≥8000×(1+25%)解得y≥12500答:销量至少为12500瓶,才能保证5月的利润比3月的利润增长25%以上.点评:本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是设出未知数,表示出3月份及4月份的销售量.23、考点:一元一次不等式组的应用.分析:(1)根据某一行(或某一列)各数之和为负数,则改变改行(或该列)中所有数的符号,称为一次“操作”,先改变表1的第4列,再改变第2行即可;(2)根据每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,然后分别根据如果操作第三列或第一行,根据每行的各数之和与每列的各数之和均为非负整数,列出不等式组,求出不等式组的解集,即可得出答案.解答:解:(1)根据题意得:原数表改变第4列得:1 2 3 7﹣2 ﹣1 0 ﹣1再改变第2行得:1 2 3 72 1 0 1(2)∵每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,则:①如果操作第三列,a a2﹣1 a ﹣a22﹣a 1﹣a22﹣a a2第一行之和为2a﹣1,第二行之和为5﹣2a,,解得:≤a,又∵a为整数,∴a=1或a=2,②如果操作第一行,﹣a 1﹣a2 a a22﹣a 1﹣a2a﹣2 a2则每一列之和分别为2﹣2a,2﹣2a2,2a﹣2,2a2,已知2a2≥0,则:,解得a=1,验证当a=1时,满足不等式,综上可知:a=1.点评:此题考查了一元一次不等式组的应用,关键是读懂题意,根据题目中的操作要求,列出不等式组,注意a为整数。

沪科版数学七年级下册期末测试题及答案.docx

沪科版数学七年级下册期末测试题及答案.docx

【本文档由书林工作坊整理发布,谢谢你的下载和关注!】期末检测卷1.16的平方根是( )A .4B .±4C .2D .±2 2.下列运算正确的是( )A .a 3+a 3=a 6B .(a 3)2=a 5C .-2a 2·a =-2a 3D .(a +3)2=a 2+93.已知a >b ,下列关系式中一定正确的是( )A .a 2<b 2B .-a <-bC .a +2<b +2D .2a <2b4.如果分式x 2-9x +3的值为零,则x 的值为( )A .3B .-3C .±3D .05.已知x 2+kx +16是一个完全平方式,则k 的值为( ) A .4 B .8 C .-8 D .±86.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x <m 的解集是x <5,则m 的取值范围是( )A .m ≥5B .m >5C .m ≤5D .m <57.若关于x 的分式方程3x -4+x +m 4-x=1有增根,则m 的值是( ) A .0或3 B .3 C .0 D .-1 8.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOD =70°,则∠BOD 的度数为( ) A .25° B .35° C .45° D .55°第8题图 第9题图9.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1的度数为( ) A .132° B .134° C .136° D .138°10.在直线AB 上任取一点O ,过点O 作射线OC ,OD ,使OC ⊥OD ,当∠AOC =30°时,∠BOD 的度数是( )A .60°B .120°C .60°或90°D .60°或120°二、填空题(本大题共4小题,每小题5分,满分20分)11.1纳米=0.000000001米,则3纳米=________米(用科学记数法表示).12.分解因式:a 3-2a 2b +ab 2=____________. 13.分式3m 2-4与54-2m的最简公分母是__________. 14.下列说法:①5的小数部分是5-2;②若a <0,则关于x 的不等式ax <-1的解集为x >1;③同位角相等;④若∠1与∠2的两边分别垂直,且∠1比∠2的2倍少30°,则∠1=30°或110°;⑤平移只改变图形的位置,不改变图形的形状和大小.其中正确的说法是________(填序号).三、(本大题共2小题,每小题8分,满分16分)15.计算:(1)|1-2|+(3-1)0-⎝ ⎛⎭⎪⎫12-2;(2)(x -2y )2-x (x +3y )-4y 2.16.解下列不等式或分式方程: (1)4-2x -13<x +42;(2)x +1x -1+4x 2-1=1.四、(本大题共2小题,每小题8分,满分16分)17.解不等式组⎩⎪⎨⎪⎧x -1>-2①,5x -13-x ≤1②,并把它的解集在数轴上表示出来.18.化简⎝⎛⎭⎪⎫1+4a 2-4÷aa -2,并从-2,0,2,4中选取一个你最喜欢的数代入求值.五、(本大题共2小题,每小题10分,满分20分)19.如图,直线AB ,CD ,EF 相交于点O .(1)分别写出∠COE 的补角和∠BOD 的对顶角;(2)如果∠BOD =60°,∠BOF =90°,求∠AOF 和∠FOC 的度数.20.如图,在三角形ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥AB ,垂足为F . (1)CD 与EF 平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB 的度数.六、(本题满分12分)21.阅读材料,并完成下列问题:不难求得方程x +1x =2+12的解为x 1=2,x 2=12;方程x +1x =3+13的解为x 1=3,x 2=13;方程x +1x =4+14的解为x 1=4,x 2=14;……(1)观察上述方程的解,猜想关于x 的方程x +1x =5+15的解为________________;(2)根据上面的规律,猜想关于x 的方程x +1x =a +1a的解为________________;(3)利用你猜想的结论,解关于y 的方程:y +y +2y +1=103.七、(本题满分12分)22.某水果店的老板用1200元购进一批杨梅,很快售完,老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销.要使第二批杨梅的销售利润不少于320元且全部售完,剩余的杨梅每件至多打几折?八、(本题满分14分)23.问题背景:一次数学实践活动课,图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀将其平均分成四块小长方形,然后按图b所示围成一个正方形.(1)发现问题:图b中大正方形的边长为________,小正方形(阴影部分)的边长为________;(2)提出问题:观察图b,利用图b中存在的面积关系,直接写出三个代数式(m+n)2,(m-n)2,4mn 之间的等量关系;(3)解决问题:利用(2)题中的等量关系,若m+n=7,mn=6,计算m-n的值;(4)拓展应用:①实际上有许多代数恒等式可以用图形的面积来表示,如图c,它表示的等量关系为____________________________;②试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2(在图中标出相应的长度).参考答案:1.D 2.C 3.B 4.A 5.D 6.A 7.D 8.D 9.B 10.D11.3×10-9 12.a (a -b )2 13.2m 2-814.①④⑤ 解析:因为2<5<3,所以5的小数部分是5-2,①正确;若a <0,则关于x 的不等式ax <-1的解集为x >-1a,②错误;当两直线平行时,同位角相等,③错误;若∠1与∠2的两边分别垂直,有两种情况,如图a 和图b.由题意得∠1=2∠2-30°.由图a 可得∠1=∠2,则2∠2-30°=∠2,所以∠2=30°,所以∠1=30°.由图b 可得90°+90°-∠2=∠1,则90°+90°-∠2=2∠2-30°,所以∠2=70°,所以∠1=110°.所以∠1=30°或110°,④正确;根据平移的性质可知⑤是正确的.故答案为①④⑤.15.解:(1)原式=2-1+1-4=2-4.(4分)(2)原式=x 2-4xy +4y 2-x 2-3xy -4y 2=-7xy .(8分)16.解:(1)去分母,得24-2(2x -1)<3(x +4),去括号,得24-4x +2<3x +12,移项、合并同类项,得-7x <-14,x 系数化成1,得x >2.(4分)(2)方程两边同时乘以最简公分母x 2-1,得(x +1)2+4=x 2-1,展开,得x 2+2x +1+4=x 2-1,解得x =-3.(7分)经检验,x =-3是原分式方程的解.(8分)17.解:解不等式①,得x >-1,(2分)解不等式②,得x ≤2.(4分)所以原不等式组的解集为-1<x ≤2.(6分)在数轴上表示不等式组的解集如下图所示.(8分)18.解:原式=⎝⎛⎭⎪⎫a 2-4a 2-4+4a 2-4÷a a -2=a 2a 2-4·a -2a=a 2(a +2)(a -2)·a -2a =a a +2.(4分)因为当a =-2,0,2时,原代数式无意义,所以只能取a =4.当a =4时,原式=44+2=23.(8分) 19.解:(1)∠COE 的补角为∠COF 和∠EOD .(2分)∠BOD 的对顶角为∠AOC .(4分) (2)因为AB ,EF ,CD 交于点O ,∠BOF =90°,所以∠AOF =180°-∠BOF =90°.(6分)因为∠BOD =60°,所以∠AOC =60°,所以∠FOC =∠AOF +∠AOC =90°+60°=150°.(10分)20.解:(1)CD 与EF 平行.(2分)理由如下:因为CD ⊥AB ,所以∠CDA =90°.因为EF ⊥AB ,所以∠EFA =90°,所以∠EFA =∠CDA ,所以EF ∥CD (同位角相等,两直线平行).(5分)(2)由(1)知EF ∥CD ,所以∠2=∠BCD .又因为∠1=∠2,所以∠1=∠BCD ,所以DG ∥BC ,(8分)所以∠ACB =∠3.因为∠3=115°,所以∠ACB =115°.(10分)21.解:(1)x 1=5,x 2=15(2分)(2)x 1=a ,x 2=1a(4分)(3)y +y +2y +1=103,y +y +1+1y +1=3+13,y +1+1y +1=3+13,(8分)所以y +1=3或y +1=13,所以y =2或y =-23.(12分) 22.解:(1)设第一批杨梅每件进价为x 元,根据题意得1200x ×2=2500x +5,解得x =120.经检验,x =120是原分式方程的解.(5分)答:第一批杨梅每件进价120元.(6分)(2)设剩余的杨梅每件打a 折.由(1)可知第二批杨梅每件的进价为120+5=125(元),则由题意可得2500125×80%×(150-125)+2500125×(1-80%)×⎝ ⎛⎭⎪⎫150×a 10-125≥320,解得a ≥7.(11分)答:剩余的杨梅每件至多打7折.(12分) 23.解:(1)m +n m -n (2分)(2)(m +n )2-(m -n )2=4mn .(4分)(3)因为m +n =7,mn =6,所以(m +n )2=49,4mn =24,所以(m -n )2=(m +n )2-4mn =49-24=25.又因为m -n 的值为正数,所以m -n =5.(8分)(4)①(2m+n)(m+n)=2m2+n2+3mn(10分)②如图所示(答案不唯一).(14分)初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

沪科版七年级下册数学期末试题试卷含答案

沪科版七年级下册数学期末试题试卷含答案

沪科版七年级下册数学期末考试试卷一、选择题(每小题4分,共40分)1.(4分)实数、﹣、0.1010010001、、π、中,无理数的个数是()A.1 B.2 C.3 D.42.(4分)估计+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间3.(4分)若a<b,则下列各式中,错误的是()A.a﹣3<b﹣3 B.﹣a<﹣b C.﹣2a>﹣2b D.a<b4.(4分)计算(﹣3a2)2的结果是()A.3a4B.﹣3a4C.9a4D.﹣9a45.(4分)下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n26.(4分)不等式4﹣x≤2(3﹣x)的正整数解有()A.1个 B.2个 C.3个 D.无数个7.(4分)若a2=9,=﹣2,则a+b=()A.﹣5 B.﹣11 C.﹣5或﹣11 D.±5或±118.(4分)把分式中的x和y都扩大3倍,分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍9.(4分)多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abc C.2ab2 D.4ab10.(4分)若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0 D.q+2p=0二、填空题(每小题5分,共20分)11.(5分)分解因式:4a2﹣25b2=.12.(5分)分式的值为0,那么x的值为.13.(5分)把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为°.14.(5分)若关于x的分式方程+=1有增根,则m=.三、解答题(每小题8分,共16分)15.(8分)解不等式组:.16.(8分)解分式方程:.四、(每小题8分,共16分)17.(8分)先化简,再求值:(a+1)2﹣(a+3)(a﹣3),其中a=﹣3.18.(8分)如图:在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1.(1)在网格中画出三角形A1B1C1.(2)三角形A1B1C1的面积为.五、(每小题10分,共20分)19.(10分)已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.20.(10分)2017年,长清区政府提出了倡导绿色出行的口号,为了响应区政府的号召,杨老师上班由驾车改为骑自行车.已知杨老师家距离学校10千米,他驾车速度是骑自行车速度的4倍,他从家出发到学校,骑自行车所用时间比驾车所用时间多30分钟.那么杨老师骑自行车平均每小时行驶多少千米?21.(12分)某超市规定:凡一次购买大米160kg以上可以按原价打折出售,购买160kg(包括160kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要600元;若多买40kg,则按打折价格付款,恰巧需要也是600元.(1)求小明家原计划购买大米数量x(千克)的范围;(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?22.(12分)用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:原料甲种原料乙种原料原料维生素C含量(单位/千克)50080原料价格(元/千克)164现配制这种饮料10千克,要求至少含有2900单位的维生素C,且费用不超过136元,试写出所需甲种原料的质量x(kg)应满足的不等式,并求出x的范围.23.(14分)如图,已知∠A=∠AGE,∠D=∠DGC.(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠B的度数.参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)(2017春•全椒县期末)实数、﹣、0.1010010001、、π、中,无理数的个数是()A.1 B.2 C.3 D.4【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:﹣、0.1010010001、是有理数,、、π是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(4分)(2017春•全椒县期末)估计+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【分析】先求出的范围,即可得出选项.【解答】解:∵2<<3,∴3<+1<4,即+1在3和4之间,故选B.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.3.(4分)(2017•资中县二模)若a<b,则下列各式中,错误的是()A.a﹣3<b﹣3 B.﹣a<﹣b C.﹣2a>﹣2b D.a<b【分析】根据不等式的性质,可得答案.【解答】解:A、两边都减3,不等号的方向不变,故A不符合题意;B、两边都乘以﹣1,不等号的方向改变,故B符合题意;C、两边都乘以﹣2,不等号的方向改变,故C不符合题意;D、两边都除以3,不等号的方向不变,故D不符合题意;故选:B.【点评】本题考查了不等式的性质,不等式两边乘(或除以)同一个负数,不等号的方向改变.4.(4分)(2017春•全椒县期末)计算(﹣3a2)2的结果是()A.3a4B.﹣3a4C.9a4D.﹣9a4【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘计算即可.【解答】解:(﹣3a2)2=32a4=9a4.故选C.【点评】本题考查了积的乘方的运算法则.应注意运算过程中的符号.5.(4分)(2017•安庆一模)下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n2【分析】分别利用完全平方公式以及平方差公式和提取公因式法分解因式得出即可.【解答】解:A、x3+2x=x(x2+2),故此选项错误;B、a2+b2无法分解因式,故此选项正确.C、=(y+)2,故此选项错误;D、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;故选:B.【点评】此题主要考查了公式法分解因式,熟练利用公式法分解因式是解题关键.6.(4分)(2016•双柏县二模)不等式4﹣x≤2(3﹣x)的正整数解有()A.1个 B.2个 C.3个 D.无数个【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项可得不等式解集,即可得知其正整数解情况.【解答】解:去括号得:4﹣x≤6﹣2x,移项得:﹣x+2x≤6﹣4,合并同类项得:x≤2,∴不等式的正整数解是:2、1,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,根据不等式基本性质求出不等式解集是关键.7.(4分)(2017春•全椒县期末)若a2=9,=﹣2,则a+b=()A.﹣5 B.﹣11 C.﹣5或﹣11 D.±5或±11【分析】利用平方根及立方根定义求出a与b的值,即可求出a+b的值.【解答】解:∵a2=9,=﹣2,∴a=3或﹣3,b=﹣8,则a+b=﹣5或﹣11,故选C【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8.(4分)(2017春•全椒县期末)把分式中的x和y都扩大3倍,分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍【分析】分别用3x和3y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:分别用3x和3y去代换原分式中的x和y,得==3×,故选B.【点评】本题考查了分式的基本性质,解题的关键是注意把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.9.(4分)(2017春•全椒县期末)多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abc C.2ab2 D.4ab【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【解答】解:12ab3c+8a3b=4ab(3b2+2a2),4ab是公因式,故选:D.【点评】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.10.(4分)(2017春•全椒县期末)若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0 D.q+2p=0【分析】利用多项式乘多项式法则计算,令一次项系数为0求出p与q的关系式即可.【解答】解:(x2+px+q)(x﹣2)=x2﹣2x2+px2﹣2px+qx﹣2q=(p﹣1)x2+(q﹣2p)x﹣2q,∵结果不含x的一次项,∴q﹣2p=0,即q=2p.故选B【点评】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.二、填空题(每小题5分,共20分)11.(5分)(2017•大石桥市校级模拟)分解因式:4a2﹣25b2=(2a+5b)(2a ﹣5b).【分析】原式利用平方差公式分解即可.【解答】解:原式=(2a+5b)(2a﹣5b),故答案为:(2a+5b)(2a﹣5b)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(5分)(2017•新化县二模)分式的值为0,那么x的值为3.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:x2﹣9=0且x+3≠0,解得x=3.故答案为:3.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.13.(5分)(2017春•全椒县期末)把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为135°.【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【解答】解:∵∠1=45°,∴∠3=90°﹣∠1=90°﹣45°=45°,∴∠4=180°﹣45°=135°,∵直尺的两边互相平行,∴∠2=∠4=135°.故答案为:135.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质,邻补角的定义,是基础题,准确识图是解题的关键.14.(5分)(2017春•全椒县期末)若关于x的分式方程+=1有增根,则m=2.【分析】根据方程有增根求出x=1,把原方程去分母得出整式方程,把x=1代入整式方程,即可求出m.【解答】解:∵关于x的分式方程+=1有增根,∴x﹣1=0,解得:x=1,方程+=1去分母得:3x﹣1﹣m=x﹣1①,把x=1代入方程①得:3﹣1﹣m=1﹣1,解得:m=2,故答案为:2.【点评】本题考查了分式方程的增根的应用,能求出方程的增根是解此题的关键.三、解答题(每小题8分,共16分)15.(8分)(2015•思茅区校级模拟)解不等式组:.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,x>﹣1,由②得,x≤2,所以,原不等式组的解集是﹣1<x≤2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16.(8分)(2007•孝感)解分式方程:.【分析】因为1﹣3x=﹣(3x﹣1),所以可确定最简公分母为2(3x﹣1),然后把分式方程转化成整式方程,进行解答.【解答】解:方程两边同乘以2(3x﹣1),去分母,得:﹣2﹣3(3x﹣1)=4,解这个整式方程,得x=﹣,检验:把x=﹣代入最简公分母2(3x﹣1)=2(﹣1﹣1)=﹣4≠0,∴原方程的解是x=﹣(6分)【点评】解分式方程的关键是确定最简公分母,去分母,将分式方程转化为整式方程,本题易错点是忽视验根,丢掉验根这一环节.四、(每小题8分,共16分)17.(8分)(2017春•全椒县期末)先化简,再求值:(a+1)2﹣(a+3)(a﹣3),其中a=﹣3.【分析】原式利用完全平方公式,以及平方差公式化简,去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=a2+2a+1﹣a2+9=2a+10,当a=﹣3时,原式=﹣6+10=4.【点评】此题考查了整式的混合运算﹣化简求值,平方根公式及完全平方公式,熟练掌握运算法则及公式是解本题的关键.18.(8分)(2017春•全椒县期末)如图:在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1.(1)在网格中画出三角形A1B1C1.(2)三角形A1B1C1的面积为.【分析】(1)根据图形平移的性质画出A1B1C1即可;(2)直接根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示;=×3×3=.(2)S△A1B1C1故答案为:.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.五、(每小题10分,共20分)19.(10分)(2017春•全椒县期末)已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.【分析】解不等式求得不等式的解集,然后把最小的整数代入方程,解方程即可求得.【解答】解:解不等式5﹣3x≤1,得x≥,所以不等式的最小整数解是2.把x=2代入方程(a+9)x=4(x+1)得,(a+9)×2=4×(2+1),解得a=﹣3.【点评】本题考查了一元一次不等式的整数解,解方程,关键是根据题意求得x 的最小整数.20.(10分)(2017•长清区一模)2017年,长清区政府提出了倡导绿色出行的口号,为了响应区政府的号召,杨老师上班由驾车改为骑自行车.已知杨老师家距离学校10千米,他驾车速度是骑自行车速度的4倍,他从家出发到学校,骑自行车所用时间比驾车所用时间多30分钟.那么杨老师骑自行车平均每小时行驶多少千米?【分析】根据题目中的关键语句“他从家出发到学校,骑自行车所用时间比驾车所用时间多30分钟”,找到等量关系列出分式方程求解即可.【解答】解:设杨老师骑自行车平均每小时行驶x千米,则驾车每小时行驶4x 千米,由题意得﹣=,解得x=15.经检验x=15是原方程的解且符合题意.答:杨老师骑自行车平均每小时行驶15千米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.21.(12分)(2017春•全椒县期末)某超市规定:凡一次购买大米160kg以上可以按原价打折出售,购买160kg(包括160kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要600元;若多买40kg,则按打折价格付款,恰巧需要也是600元.(1)求小明家原计划购买大米数量x(千克)的范围;(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?【分析】(1)小明家买的大米没有打折,所以一定没有超过160kg,再添40千克就能打折了,那么一定超过了120千克;(2)设小明家原来准备买大米x千克,根据原价购买4kg与打折价购买5kg的款相同,相对应的等量关系为:原价千克数:打折千克数=4:5,列出算式,求解即可.【解答】解:(1)由题意可得:120<x≤160,即小明家原计划购买大米的数量范围是120<x≤160;(2)设小明家原来准备买大米x千克,原价为元,折扣价为元.据题意列方程为:4×=5×,解得:x=160,经检验x=160是方程的解;答:小明家原来准备买160千克大米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题的等量关系为:原价千克数:打折千克数=4:5.22.(12分)(2017春•全椒县期末)用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:原料甲种原料乙种原料原料维生素C含量(单位/千克)50080原料价格(元/千克)164现配制这种饮料10千克,要求至少含有2900单位的维生素C,且费用不超过136元,试写出所需甲种原料的质量x(kg)应满足的不等式,并求出x的范围.【分析】直接利用表格中数据结合至少含有2900单位的维生素C,且费用不超过136元,分别得出不等式求出答案.【解答】解:设所需甲种原料的质量xkg,由题意得:,解得:5<x≤8,答:x的范围是5<x≤8.【点评】此题主要考查了一元一次不等式组的应用,正确得出不等关系是解题关键.23.(14分)(2017春•全椒县期末)如图,已知∠A=∠AGE,∠D=∠DGC.(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠B的度数.【分析】(1)欲证明AB∥CD,只需推知∠A=∠D即可;(2)利用平行线的判定定理推知CE∥FB,然后由平行线的性质即可得到结论.【解答】证明:(1)∵∠A=∠AGE,∠D=∠DGC,又∵∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD;(2)∵∠1+∠2=180°,又∵∠CGD+∠2=180°,∴∠CGD=∠1,∴CE∥FB,∴∠C=∠BFD,∠CEB+∠B=180°.又∵∠BEC=2∠B+30°,∴2∠B+30°+∠B=180°,∴∠B=50°.【点评】本题考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角附赠材料:考试做题技巧会学习,还要会考试时间分配法:决定考场胜利的重要因素科学分配答题时间,是决定考场能否胜利的重要因素。

(完整版)沪科版七年级(下)期末数学试卷含答案.doc

(完整版)沪科版七年级(下)期末数学试卷含答案.doc

七年级期末数学试卷题号一二三总分得分姓名一选择题 (每小题 3 分)1. 已知,如右图 AB∥CD,可以得到A()A. ∠1=∠ 2B. ∠2=∠ 3 2 D14C. ∠1=∠ 4D.∠3=∠ 4B3C2.223, 16, 这五个数中,无理数的个数是()在 3.14, ,7A. 1 个B. 2 个C. 3 个D. 4 个3. 已知 a b 则下列各式正确的是()A. a bB. a 3 b 3C. a 2 b2D. 3a 3b班 4. 下列计算中,正确的个数是()级① x3 x4 x7 ② y 2 y 3 y ③ a2 3 a5 ④ (ab) 2 a2 b2A. 1 个B.2 个C.3 个D. 4 个5. 2 3与 23 的关系是()A. 互为倒数B. 绝对值相等C. 互为相反数D. 和为零考6. 下列各式中,正确的是()号 2 2 2 2A. a b a bB. a b 1C. a b 1D. a b a ba b a b a b a b7. 下列多项式能用完全平方公式分解因式的有()A.x2 2x y2 B. 4x2 9 C. x2 y2 D. a2 2ab b28.如图,下列不能判定 a ∥ b 条件是()1 2aA. ∠1=∠3B.∠ 2+∠3=180°C. ∠ 2=∠ 3D.∠2=∠ 4 4 b39.为了考察某班学生的身高情况,从中抽出 20 名学生进行身高测量,下列说法中正确的是()1A. 这个班级的学生是总体B. 抽取的 20 名学生是样本C. 抽取的每一名学生是个体D.样本容量是 2010. 下列图形中,是由①仅通过平移得到的是 ( )①A. B. C. D.二 填空题(每题 3 分,共 27 分)11.16 的平方根是.12. 一种病毒的直径是 0.00 12m , 用科学计数法表示为 m.13. 比较大小: 12 0 .14. 关于 x 的某个不等式组的解集在数轴上表示为: (如下图)则原不等式组的解集是.-2-1 01234x 1 0.15. 不等式组2 的整数解是x 316. 若∠ 1 和∠ 2 是对顶角,∠ 1=25°, 则∠ 2 是 ° .17. 分解因式: 4m 3 m =.18. 如右下图,直线 a 、b 被直线 c 所截,且 a ∥ b ,若∠ 2=38°,则∠ 1的度数是°.c1xa19. 当 x时,分式有意义 .24x 2b三 解答题( 43 分)20. 计算2x 1 (6 分)x 12x 2221.先化解,再求值( 8 分)( 1 x 3 ) 1 ,其中 x 1x 1 x2 1 x 122.已知,AB//CD, B 360 , D 240 , 求BED.(8分)23. 推理填空:(8分)如图, EF∥AD,∠ 1=∠ 2, ∠BAC=70° . 将求∠ AGD的过程填写完整 .因为 EF∥ AD,C 所以∠ 2=____(____________________________)又因为∠ 1=∠ 2D 1所以∠ 1=∠ 3(______________) G 所以 AB∥ _____(_____________________________) F所以∠ BAC+______=180° 2 3 (___________________________) B E A 因为∠ BAC=70°所以∠ AGD=_______。

(完美版)沪科版七年级下册数学期末测试卷及含答案(配有卷)

(完美版)沪科版七年级下册数学期末测试卷及含答案(配有卷)

沪科版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,过E作EG⊥EF于点E,交CD于点G.若∠CFE=120°,则∠BEG的大小为()A.20°B.30°C.60°D.120°2、下列运算正确的是()A.5a 2+3a 2=8a 4B.a 3•a 4=a 12C.(a+2b)2=a 2+4b 2D.(a-b)(-a-b)=b 2-a 23、下列计算正确的是()A.x 2+x 2=x 5B.x 2•x 3=x 6C.x 3÷x 2=xD.(2x 2)3=6x 64、已知成立,则k的值为()A.3B.-3C.-6D.65、如图,点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B. (-,)C.(,-)D. (,- )6、若分式有意义,则应满足的条件是()A. B. C. D.7、下列说法中,不正确的是()。

A.0的平方根是0B.-4的平方根是-2C.1的立方根是1D.-8的立方根是-28、(3a+2)(4a2-a-1)的结果中二次项系数是( )A.-3B.8C.5D.-59、将展开后,项的系数为()A.1B.2C.3D.410、下列运算正确的是()A. B.|﹣3|=3 C. D.11、下列运算不正确的是()A.x 6÷x3=x 3B.(﹣x 3)4=x 12C.x 2•x 3=x 5D.x 3+x 3=x 612、若,则等于()A. B. C. D.13、不改变分式的值,把它的分子与分母中各项的系数化为整数,其结果正确的是( )A. B. C. D.14、下列各数中,最小的数是()A.-lB.0C.1D.15、李刚同学在黑板上做了四个简单的分式题:①(﹣3)0=1;②a2÷a2=a;③(﹣a5)÷(﹣a)3=a2;④4m﹣2=.其中做对的题的个数有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,一副三角板GEF和HEF按如图所示放置,过E的直线AB与过F的直线CD相互平行,若∠CFG=72°,则∠BEH=________°.17、比较大小:________ .18、分解因式:m2+2m=________.19、已知x=m时,多项式x2+2x+n2的值为﹣1,则x=﹣m时,该多项式的值为________.20、方程x²=2x的根为________。

沪科版数学七年级下册期末考试试卷及答案

沪科版数学七年级下册期末考试试卷及答案

沪科版数学七年级下册期末考试试卷评卷人得分一、单选题1.已知a b >,则下列不等式一定成立的是()A .23a b +>+B .22a b ->-C .22a b ->-D .22ab<2.如图所示:若m ∥n ,∠1=105°,则∠2=()A .55°B .60°C .65°D .75°3.下列从左到右的运算,哪一个是正确的分解因式()A .2(2)(3)56x x x x ++=++B .268(6)8x x x x ++=++C .2222()x xy y x y ++=+D .2224(2)x y x y +=+4.如果一个数的平方为64,则这个数的立方根是()A .2B .-2C .4D .±25.下列各式中,哪项可以使用平方差公式分解因式()A .22a b --B .2(2)9a -++C .22()p q --D .23a b -6.当2x =时,下列各项中哪个无意义()A .214x -B .1x x +C .2224x x ++D .24x x -+7.下列现象中不属于平移的是()A .飞机起飞时在跑道上滑行B .拧开水龙头的过程C .运输带运输货物的过程D .电梯上下运动8.下列各项是分式方程213933xx x x =--+-的解的是()A .6x =-B .3x =C .无解D .4x =-9.如图,已知两条直线被第三条直线所截,则下列说法正确的是()A .∠1与∠2是对顶角B .∠2与∠5是内错角C .∠3与∠6是同位角D .∠3与∠6是同旁内角10.在0.1、π、117数中,有理数的个数是()A .4B .5C .3D .2评卷人得分二、填空题11.因式分解481x -=_________________.12.如果a 的平方根是±16____________.13.不等式135x x +>-的解集是____________.14.当x _________时,分式236xx -无意义15.比较722-__________1216.0.0000000202-用科学记数法表示为___________.17.已知∠1与∠2是对顶角,且∠1=40 ,则∠2的补角为___________.18.满足不等式组2153142x x x +≤⎧⎨+<+⎩的正整数解有____________.19.如图,已知直线a 、b 被直线c 所截,且a ∥b ,∠1=60 ,则∠2=__________.20.有一组数据如下:10、12、11、12、10、14、10、11、11、10.则10的频数为____________频率为___________.评卷人得分三、解答题21.先化简,再求值。

沪科版七年级下册数学期末试题试卷含答案精选全文

沪科版七年级下册数学期末试题试卷含答案精选全文

可编辑修改精选全文完整版沪科版七年级下册数学期末试题试卷含答案上海科技版七年级下册数学期末考试试卷一、选择题(每小题4分,共40分)1.实数中,无理数的个数是()。

A。

1 B。

2 C。

3 D。

42.估计√2+1的值在()之间。

A。

2到3之间 B。

3到4之间 C。

4到5之间 D。

5到6之间3.若a<b,则下列各式中,错误的是()。

A。

a-3<b-3 B。

-a<-b C。

-2a>-2b D。

a<b4.计算(-3a^2)^2的结果是()。

A。

3a^4 B。

-3a^4 C。

9a^4 D。

-9a^45.下列多项式在实数范围内不能因式分解的是()。

A。

x^3+2x B。

a^2+b^2 C。

D。

m^2-4n^26.不等式4-x≤2(3-x)的正整数解有()个。

A。

1个 B。

2个 C。

3个 D。

无数个7.若a^2=9,则a的值为()。

A。

-5 B。

-11 C。

-3或3 D。

±3或±58.把分式中的x和y都扩大3倍,分式的值()。

A。

不变 B。

扩大3倍 C。

缩小3倍 D。

扩大9倍9.多项式12ab^3c+8a^3b的各项公因式是()。

A。

4ab^2 B。

4abc C。

2ab^2 D。

4ab10.若(x^2+px+q)(x-2)展开后不含x的一次项,则p 与q的关系是()。

A。

p=2q B。

q=2p C。

p+2q=0 D。

q+2p=0二、填空题(每小题5分,共20分)11.分解因式:4a^2-25b^2=()。

12.分式的值为1/3,那么x的值为()。

13.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()°。

14.若关于x的分式方程(x+1)/(x-2)+1=1有增根,则m=()。

三、解答题(每小题8分,共16分)15.解不等式组:(略)16.解分式方程:(略)四、计算题(每小题8分,共16分)17.先化简,再求值:(a+1)^2-(a+3)(a-3),其中a=-3.(略)18.如图:在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1.1)在网格中画出三角形A1B1C1.2)三角形A1B1C1的面积为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学试卷下学期期末练习题(5)
一、选择题
1、下列命题中:①有理数是有限小数;②有限小数是有理数;③无理数都是无限小数;
④无限小数都是无理数。

正确的是()
A、①②B①③C、②③D ③④
2、下列各组数中互为相反数的是()
A、—2 与(2)2
B、—2 与3—8
C、—2 与2“ 2 与2
x 2
3、把不等式组的解集表示在数轴上,正确的是()
x 1
ABCD
4、在数轴上与原点的距离小于8的点对应的x满足()
A、x v 8
B、x >8
C、x v —8 或x >8
D、一8v x v 8
5、现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若
每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()
(4x 19) 6(x 1) 1 (4x 19) 6(x 1) 1
A、B、
(4x 19) 6(x 1) 6 (4x 19) 6(x 1) 6
C、(4x 19) 6(x 1) 1
D、(4x 19) 6( x 1) 1
(4x 19) 6(x 1) 5 (4x 19) 6( x 1) 5
6、下面是某同学在一次作业中的计算摘录:
① 3a 2b 5ab :②4m3n 5mn3m3n 二③ 4x3( 2x2) 6x5;
④ 4a3b ( 2a2b) 2a 二⑤(a3)2 a5;® ( a)3( a) a2
其中正确的个数有()
A 1个B、2个C、3个D 4个
7、下列运算正确的是().
A、(a+b)2=a2+b2
B、(a- b)2=a2- b2C> (a+m)(b+n)=ab+mnD、(m+n)(-m+n)=-m2+n2
&代数式的家中来了几位客人:?、、—、亠、—,其中属于分式家族成
x 5 2 a 1 2x 1
员的有()
A、1个
B、2个
C、3个
D、4个
9、下列等式:①血卫=-心;②
③ a b =_ a b ;④ m n =_ m n 中,
c
c
mm
成立的是()
A 、①②
B ③④
C 、①③
D ②④ 10、如图,/ AD
E 和/ CED 是 ()
、填空题
A 、同位角
B 、内错角
C 同旁内角
D 互为补角 11、
大于一2小于,5的整数是; 12、 若 y . F3 ,1—X ,贝卩 X 2008 2008y =;
13、 不等式ax b 的解集是X -,则a 的取值范围是。

a
a b
17、 已知a+b=3, ab=1,则a + -的值等于 _________ .
b a
18、 如图,要从小河a 引水到村庄A ,请设计并作出一最佳路线, 理由是: 三、解答题 19、计算与化简:
第⑸题
20、 因式分解
(2)
X 3
2X 4
3x(a b) 2y(b a) ; (2) 4X 2 9y 2
21、 解方程或不等式组
2x 1 (2) 3
5X 1 5X 1
2
3(X 1)
22、已知 X y 2,xy
1 3
2
2,求 Xy 2X
y 2 xy 3的值
第(11 )题
已知(2X 2)(3X 2 ax 6) 则a
14、
2,那么
边长是
3X 3 x 2中不含X 的三次项,
(1) (1)1 (2)2 (1)0
23.先化简x —
x x2 4x 4
x 4x 4,若2x2,请你选择一个恰当的x值(x是整数)代x
入求值.
24. 化简求值:[(x+y)2—(x+y)(x-y)]宁2y,其中x二一2, y=1
25、读句画图。

如图,直线CD与直线AB相交于C,根据下列语句画图
(1)过点P作PQ/ CD,交AB于点Q ( 2分)
(2)过点P作PR! CD,垂足为R( 2分)
(3)若/ DCB=12®,猜想/ PQC是多少度?
并说明理由。

(4分)
26. 某厂在生产一批新型电子产品时,需要一种芯片。

若请电脑公司提供,每张芯片需要
80元;若工厂自己生产,除了租用相关设备需要1200元外,每张芯片还需成本40元。

问: 你认为这批芯片应由电脑公司提供,还是该厂自己生产?请说明理由。

27. 如图,EF// AD /仁/2,Z BAC=70 .将求/ AGD勺过程填写完整.
因为EF// AD所以/ 2= ______ .
又因为/仁/2,所以/仁/3.
所以AB// ___ .所以/ BAC+ ______ =180 .
又因为/ BAC=70,所以/ AGD= ______
12.已知三角形ABC点D为点B平移后的对应点,过点D作三角形ABC平移后的图形
28. 推理填空:
如图①若/ 1 = / 2
则//()
若/ DAB+ / ABC=180°
则//()
②当//时
贝U/ C+Z ABC=180°()
当//时
则Z 3=Z C ()
29. 若a2+(m-3)a+4是一个完全平方式,则m的值应是().
A. 1 或5
B. -1 或7
C. 1
D. -1
x 3
30. 如果分式丄亠的值为1,则x的取值范围为
x 3
31 .若m n 7,mn 11,则m2 mn n2的值是________________
32.化简: x2 4x 4 x
x2 4 x 2
33.人体中成熟红细胞的平均直径为 0.0000077米,用科学记数法表示为..当x
时,
分式£有意义.
34.观察给定的分式:1,彳二,―1!, ,猜想并探索规律,
XXX XX
那么第9个分式是. 一、 选择题:
1 〜5CADDD6 〜10ADCAB 二、 填空题:
3
11、-1、0、1、2; 12、2; 13、a<0;14 —
2
3 2 6X 6
4'解不等式②得X 2 ..................... 6'
解得X -
6原不等式组的解集为X 1……8'
6
经检验X 7是原方程的根
8
6
22、原式= xy(x 2 2xy y 2) ........................ 2'24、(1)A= a 2b 2 a 2 b 2 1 4ab
2 2 2 2 2
=xy (X y) 4xy ........................ 5'= (a b 2ab 1) (a b 2ab) = ;(2 4
) = (ab 1) (a b) .................. 5'
2 2
ab 1
0 …口
=1 ............ 8'(2)
,解得 a b 1 ……10'
a b 0
23、略
25、( 1)略(2) 7.8%、频率;(3) 0.334;( 4)六
15、2 一2 2 ; 16、X 7; 17、7; 18、垂线段最短
三、解答题:
2
19、( 1)原式 3 4 1
3
4( 2)
原式= 2(X
X 3_
2)
2(X 2) X 2
(X 3)(X 3)
20、( 1)原式=(a b)(3x 2y) 1 2(X 3)
5' (2)原式= (2x 3y)(2x 3y) 5'
21、 (1)两边同乘以2(X
1),得(2)解不等式①得X 3'。

相关文档
最新文档