材料力学重点公式复习

合集下载

材料力学 -公式汇总-全要点

材料力学 -公式汇总-全要点

材料力学公式汇总一、应力与强度条件 1、拉压σmax N=A≤[σ]max4、平面弯曲①σmax=②σtmax=σcmaxMWz≤[σ]max2、剪切τmax=Q≤[τ] A挤压σ挤压=P挤压A≤σ挤压[]Mmaxytmax≤[σtmax] IzM=maxycmax≤[σcnax]IzIz⋅b*③τmax=QmaxSz max≤[τ]3、圆轴扭转τmax=5、斜弯曲σmax= T≤[τ] Wt≤[σ]maxMzMy+WzWy6、拉(压)弯组合σmax=σtmax=NM+AWz≤[σ]maxMzNMzN+ytmax≤[σt] σcmax=ycmax-≤[σc] AIzIzA注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论σr3=②第四强度理论σr4=二、变形及刚度条件 NL1、拉压∆L==EANiLi=EAN(x)dxEA2w2+4τn==22Mw+MnWzWz≤[σ]≤[σ]2w2+3τn22Mw+0.75Mn∑⎰LTiLiT(x)dxTLΦT1800=∑=⋅2、扭转Φ= φ== ( /m)GIpGIpGIpLGIpπ⎰3、弯曲(1)积分法:EIy''(x)=M(x) EIy'(x)=EIθ(x)=⎰M(x)dx+C EIy(x)=[M(x)dx]dx+Cx+D (2)叠加法:f(P1,P2)…=f(P1)+f(P2)+…,θ(P1,P2)=θ(P1)+θ(P2)+…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)MALq⎰⎰PALBBALBMLPL2qL3θB= θB= θB=EI2EI6EIqL4ML2PL3fB= fB= fB=8EI3EI2EIMLMLqL3PL2,θA= θB=θA= θB=θA= θB=6EI3EI24EI16EIqL4ML2PL3fc= fc= fc= 16EI48EI384EI(4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)Mi2LiM2LM2(x)dx=∑= U=2EIi2EI2EI⎰(5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)∆i=M(x)∂M(x)∂U=∑dx EI∂Pi∂Pi⎰三、应力状态与强度理论1、二向应力状态斜截面应力σx+σyσx-σyσx-σyσα=+cos2α-τxysin2α τα=sin2α+τxyco2sα 2222、二向应力状态极值正应力及所在截面方位角σx-σy2-2τxyσmaxσx+σy2=±()+τxy tg2α0= σminσx-σy223、二向应力状态的极值剪应力τmax=(σx-σy22)2+τxy0注:极值正应力所在截面与极值剪应力所在截面夹角为454、三向应力状态的主应力:σ1≥σ2≥σ3σ-σ3最大剪应力:τmax=1 25、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变)τxy11μεx=(σx-μσy) εy=(σy-μσx) εz=-(σx+σy) γxy= EEEG(2)、表达形式之二(用应变表示应力)σx=E1-μ2(εx+μεy) σy=E1-μ2(εy+μεx) σz=0 τxy=Gγxy6、三向应力状态的广义胡克定律εx=τxy1σx-μσy+σz (x,y,z) γxy= (xy,yz,zx) EG[()]27、强度理论(1)σr1=σ1≤[σ1] σr2=σ1-μ(σ2+σ3)≤[σ] [σ]=(2)σr3=σ1-σ3≤[σ] σr4=σbnb1(σ1-σ2)2+(σ2-σ3)2+(σ3-σ1)2≤[σ] [σ]=σsns28、平面应力状态下的应变分析εx+εyεx-εy⎛γxy⎫⎪sin2α (1)εα=+cos2α- - ⎪22222⎛εx-εy⎫⎛γxy⎫εmaxεx+εy⎪+ ⎪ =±(2)⎪⎪εmin2⎝2⎭⎝2⎭⎛γxy⎛γα⎫εx-εysin2α+ -⎪= -22⎝2⎭⎝⎫⎪co2sα ⎪⎭γxytg2α0=εx-εy四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)π2EIminπ2E①细长受压杆λ≥λp Pcr= σcr=2 2λ(μL)②中长受压杆λp≥λ≥λs σcr=a-bλ ③短粗受压杆λ≤λs “σcr”=σs 或σba-σsπ2E2、关于柔度的几个公式λ= λp= λs=iσpbμL3、惯性半径公式i=Izd(圆截面 iz=,矩形截面iminA4=b(b为短边长度))五、动载荷(只给出冲击问题的有关公式)能量方程∆T+∆V=∆U 2h冲击系数 Kd=1++(自由落体冲击) Kd=∆st2v0(水平冲击)g∆st六、截面几何性质1、惯性矩(以下只给出公式,不注明截面的形状)dπd4πD42IP=ρdA= 1-α4 α=D3232⎰()bh3hb3Iz=ydA=1-α 64641212Izπd3πD3hb2bh24Wz== 1-αymax326326⎰2πd4πD4((4))2、惯性矩平移轴公式Iz=Izc+a2A。

材料力学公式汇总

材料力学公式汇总

材料力学公式汇总材料力学是研究物质在受力作用下的变形和破坏规律的科学。

在材料力学中,有一些重要的公式常被用来描述材料的力学性能。

下面是一些常见的材料力学公式的汇总。

1. 应力(Stress)的公式:应力是单位面积上的力,通常用σ表示。

常见的应力公式有:①弹性应力公式:σ=Eε其中,σ为应力,E为杨氏模量,ε为材料的应变(strain)。

②纵向应力公式:σ=P/A其中,σ为纵向应力,P为作用在材料上的纵向力,A为材料的受力面积。

③剪切应力公式:τ=F/A其中,τ为剪切应力,F为作用在材料上的剪切力,A为材料的受力面积。

2. 应变(Strain)的公式:应变是物体的变形程度,通常用ε表示。

常见的应变公式有:①纵向应变公式:ε=δL/L其中,ε为纵向应变,δL为物体的纵向位移,L为物体的原始长度。

②剪切应变公式:γ=δθ其中,γ为剪切应变,δθ为物体的剪切角。

③ 体积变形(Poisson's Ratio)公式:ν = -ε_lat / ε_long其中,ν为体积变形,ε_lat为横向应变,ε_long为纵向应变。

3. 弹性模量(Elastic Modulus)的公式:弹性模量是衡量材料抵抗应变的能力,常见的弹性模量公式有:① 杨氏模量(Young's Modulus):E=σ/ε其中,E为杨氏模量,σ为应力,ε为应变。

② 剪切模量(Shear Modulus):G=τ/γ其中,G为剪切模量,τ为剪切应力,γ为剪切应变。

③ 体积模量(Bulk Modulus):K=-∆V/V/∆p其中,K为体积模量,∆V为体积的变化量,V为原始体积,∆p为压力的变化量。

4. 破坏强度(Ultimate Strength)的公式:破坏强度是材料能够承受的最大应力,常见的破坏强度公式有:① 抗拉强度(Tensile Strength):σ_max = F_max / A其中,σ_max为抗拉强度,F_max为材料所能承受的最大拉力,A为受力面积。

材料力学公式总结

材料力学公式总结

材料力学公式总结材料力学是研究材料在外力作用下的力学性能和变形规律的学科,它是材料科学的基础和核心。

在材料力学中,有许多重要的公式,它们可以帮助我们理解材料的性能和行为。

本文将对材料力学中的一些重要公式进行总结,希望能对大家的学习和工作有所帮助。

1. 应力和应变的关系公式。

在材料力学中,应力和应变是两个非常重要的概念。

应力是单位面积上的力,通常用σ表示,而应变是材料单位长度的变形量,通常用ε表示。

它们之间的关系可以用胡克定律来描述,即σ = Eε,其中E为杨氏模量,是描述材料抵抗变形能力的一个重要参数。

2. 弹性模量的计算公式。

弹性模量是描述材料在受力后能够恢复原状的能力的一个重要参数。

对于各向同性材料,弹性模量E可以用杨氏模量和泊松比来表示,即E = 2G(1+μ),其中G 为剪切模量,μ为泊松比。

3. 应力-应变曲线的公式。

材料在受力时,应力和应变之间的关系通常通过应力-应变曲线来描述。

对于线弹性材料来说,应力-应变曲线是一条直线,其斜率就是杨氏模量E。

而对于非线性材料来说,应力-应变曲线通常是一条曲线,可以用一些复杂的数学公式来描述。

4. 塑性变形的公式。

当材料受到超过其屈服强度的应力时,就会发生塑性变形。

塑性变形的特点是应力和应变不再呈线性关系,而是出现了一定的变形硬化。

塑性变形的公式通常比较复杂,需要根据具体的材料和加载条件来确定。

5. 断裂力学的公式。

材料在受到过大的应力时会发生断裂,断裂力学是研究材料断裂行为的学科。

在断裂力学中,有许多重要的公式,如格里菲斯断裂准则、弗兰克-雷迪公式等,它们可以帮助我们预测材料的断裂行为。

总结。

材料力学中的公式是我们理解材料性能和行为的重要工具,通过对这些公式的学习和掌握,我们可以更好地应用材料力学知识,解决工程实际问题。

希望本文对大家有所帮助,也希望大家能够深入学习材料力学,为材料科学的发展做出贡献。

材料力学公式完全版

材料力学公式完全版

材料力学公式完全版材料力学是研究材料在外力作用下的力学性质和变形行为的一门学科。

在材料力学中,有很多的公式被广泛应用于计算和分析材料的力学行为。

下面是一些常见的材料力学公式:1. 应力(Stress):应力是单位面积上的力,通常用σ 表示,计算公式为:σ = F / A,其中 F 是力的大小,A 是面积。

2. 应变(Strain):应变是物体在受力作用下发生变形的程度,通常用ε 表示,计算公式为:ε = ΔL / L,其中ΔL 是长度的变化量,L 是初始长度。

3. 弹性模量(Young's modulus):弹性模量是衡量材料抵抗变形的能力的物理量,通常用 E 表示,计算公式为:E = σ / ε。

4. 剪切应力(Shear stress):剪切应力是垂直方向上的切应力,通常用τ 表示,计算公式为:τ = F / A,其中 F 是切力的大小,A 是垂直于切力方向的面积。

5. 剪切应变(Shear strain):剪切应变是物体在受剪切力作用下的变形程度,通常用γ 表示,计算公式为:γ = tanθ,其中θ 是切变角度。

6. 泊松比(Poisson's ratio):泊松比是衡量材料横向收缩相对于纵向伸长的程度的物理量,通常用ν 表示,计算公式为:ν = -ε横 /ε纵。

7. 屈服强度(Yield strength):屈服强度是材料开始产生塑性变形的临界点,通常用σy 表示。

8. 极限强度(Ultimate strength):极限强度是材料在破坏前能承受的最大应力,通常用σu 表示。

9. 可延性(Elonagation):可延性是材料在断裂前的拉伸变形量,通常用δ 表示,计算公式为:δ = (L - L0) / L0。

10. 硬度(Hardness):硬度是材料抵抗划伤或压痕的能力,常用的硬度测量方法有布氏硬度、维氏硬度等。

11. 柯尔摩根关系(Hooke's law):柯尔摩根关系是描述弹性固体在小应变下的力学行为的线性关系,计算公式为:σ = Eε,其中 E 是杨氏模量,σ 是应力,ε 是应变。

材料力学公式大全

材料力学公式大全

材料力学公式大全材料力学是研究材料在外力作用下的变形、破坏和稳定性等力学性能的学科。

在工程实践中,材料力学公式是工程师们进行材料设计、分析和计算的重要工具。

本文将为大家介绍一些常用的材料力学公式,希望能对大家有所帮助。

1. 应力和应变。

在材料力学中,应力和应变是最基本的概念。

应力是单位面积上的内力,通常用σ表示,其公式为:σ = F/A。

其中,F为受力,A为受力面积。

应变是材料单位长度的变形量,通常用ε表示,其公式为:ε = ΔL/L。

其中,ΔL为长度变化量,L为原始长度。

2. 弹性模量。

弹性模量是材料在弹性阶段的应力和应变关系的比例系数,通常用E表示,其公式为:E = σ/ε。

3. 餐极限。

屈服极限是材料在受力作用下开始发生塑性变形的应力值,通常用σy表示。

4. 断裂韧性。

断裂韧性是材料在破坏前所能吸收的能量,通常用K表示,其公式为:K = σ√πc。

其中,σ为应力,c为裂纹长度。

5. 疲劳强度。

疲劳强度是材料在交变应力作用下能够承受的最大应力值,通常用σf表示。

6. 塑性体积变形。

塑性体积变形是材料在塑性变形过程中体积的变化,通常用ΔV表示,其公式为:ΔV = V(ε1-ε2+ε3)。

其中,V为原始体积,ε1、ε2、ε3分别为三个主应变。

7. 岛壳理论。

岛壳理论是用于计算薄壁结构的强度和稳定性的理论,通常用T表示,其公式为:T = P/A。

其中,P为受力,A为受力面积。

8. 塑性流动理论。

塑性流动理论是用于描述金属材料在塑性变形过程中的流动规律的理论,通常用ε表示,其公式为:ε = ln(ε0/εf)。

其中,ε0为初始应变,εf为终止应变。

以上就是一些常用的材料力学公式,希望对大家有所帮助。

在工程实践中,我们可以根据具体情况选择合适的公式进行分析和计算,以保证工程设计的安全可靠性。

材料力学是一个复杂而又有趣的领域,希望大家能够在学习和工作中不断深入研究,提升自己的专业能力。

材料力学公式整理

材料力学公式整理

拉伸、压缩应力:N F A σ=斜截面的正应力:2cos ασσα= 斜截面切应力:sin 22αστα= (α为截面与横截面的夹角) 应变:l l ε∆= 弹性模量:E σε= 轴向拉伸、压缩应变能:2122F l V F l EA ε=∆= 221222E v E εεσσε===温度应力:·T l l l T l αα∆=∆(其中为材料的线胀系数)剪切应力:=S F Aτ 挤压应力:=bs bs FA σ(↓ϕ为两端面相对扭转角)扭转 外力偶矩:{}{}{}·m /min=9549kW e N r P M n 薄壁圆筒切应力:22e M r τπδ=其中δ为壁厚 关系:2(1)EG μ=+(μ泊松比)切应变:r lϕγ=(l 为圆筒长度)切变模量:G τγ= 剪切应变能:221222G v G εγττγ===切应力:p T I ρρτ= (其中2p AI dA ρ=⎰) 最大切应力:max p TR I τ= 引用记号p t I W R = 则max t T W τ=圆筒()4432p I D d π=- ()4416p t I W D d RDπ==- p TlGI ϕ=⇒m a x m a x 'pT GI ϕ=单位长度的扭转角 弹簧丝最大切应力修正公式:max 38FD k d τπ= (先求得Dc d=,查表得到k )总伸长或压缩量348FD n Gd λ=(n 为有效圈数) 惯性矩:222~~~~y z p y z AAAI z dA I y dA I dA I I ρ====+⎰⎰⎰,惯性积:yz AI yzdA =⎰ 平行移轴:对形心矩+yzdA转轴公式:1cos 2sin 2(22y zy zy yz I I I I I I ααα+-=+-其中为逆时针角),1cos 2sin 222y zy z z yz I I I I I I αα+-=-+ 11sin 2cos22y zy z yz I I I I αα-=+,02tan 2yz y zI I I α=--,y 0+2z y I I I =y 0+2z z I I I = 弯曲:纯弯y=y E σρρ(为到中性面距离,曲率半径)1z M EI ρ=,My =z I σ,故max max max M y =z I σ弯曲变形:22d =dx M EI ω应力状态:cos 2sin 222x y x y xy ασσσσσατα+-=+-, sin 2cos22x yxy ασστατα-=+主平面(切应力零)02tan 2xy x y τασσ=--max,min 2x yσσσ+=±广义胡克定律:1[()]x x y z E εσμσσ=-+ 体应变12312()xE μεεεε-=++ 强度理论 1.最大拉应力理论:[]σσ≤,2.最大伸长线应变理论:123()[]σμσσσ-+≤,3.最大切应力理论:13[]σσσ-≤4.[]σ 偏心压缩,截面核心:00221F F z yy y z z i i +=-[]W σ≤ 压杆稳定:222()n EI F l πμ= 两端铰支:μ=1;一端固定,一端自由:μ=2;两端固定:12μ= ;一端固定,一端铰支:欧拉公式适用范围:l i μλ=,1λπ=1λλ≥,不然则采取经验公式:直线型cr a b σλ=-或抛物型:211cr a b σλ=- 压杆稳定校核:cr st F n n F=≥,1.选择合理截面形状 2.改变压杆约束条件 3.合理选择材料 (a, b 查表可得)动载荷:11d d st K ∆==+=+∆交变应力:循环特征min max r σσ= 1n N i N i i i i F F l EA =∆=∑ ()()l p T x T x dx GI ∆=⎰ 能量方法:拉压22F l V EAε= 扭转22pT l V GI ε= 弯曲22e M l V EIε= 互等定理(略),卡氏定理i iV F εδ∂=∂莫尔积分()()l M x M x dx EI∆=⎰22e M x EI ω-=2(3)6Fx l x EI-- 2(3)6Fx a x EI --222(46)24qx x lx l EI --+ e B M l EIθ-=22Fl EI - 22Fa EI - 36ql EI - 22e B M l w EI -= 33Fl EI - 2(3)6Fa l a EI -- 48ql EI-。

材料力学公式总复习gszfx

材料力学公式总复习gszfx

FN ,max A
M max [ ] W
4、弯曲与扭转
M 2 T 2 r3 [ ] W
r4
M 2 0.75T 2 [ ] W
统一形式:
Mr r [ ] W
2 M r 3 M z2 M y T 2 2 M r 4 M z2 M y 0.75T 2
5、连接件的强度条件
FS [ ] AS
剪切的强度条件:
挤压强度条件:
Fbs bs [ bs ] Abs
四、压杆稳定
1、压杆稳定的概念 2、细长压杆临界力的欧拉公式
2 EI Fcr ( l ) 2
L
i

2E cr 2
— —杆的柔度(或长细比)
Tl GI P
max
Tmax 180 [ ] GI P
, [ ] max [ ] max
1、积分法 2、叠加法
FN l l EA
wmax [ w], max [ ]
二、应力状态分析.强度理论
1、一点处的应力状态 2、平面应力状态分析
r4
r3 1 3
1 1 2 2 2 3 2 1 3 2 2


三、组合变形
1、组合变形解题步骤
①外力分析:外力向形心简化并沿主惯性轴分解; ②内力分析:求每个外力分量对应的内力图,确定危险面; ③应力分析:画危险面应力分布图,叠加; ④强度计算:建立危险点的强度条件,进行强度计算。
4、莫尔积分:

l
N ( x)N ( x) T ( x )T ( x ) dx dx l EA GI p
l

材料力学公式大全

材料力学公式大全

材料力学公式大全材料力学是研究材料在外力作用下的力学性能和变形规律的学科,是材料科学的重要组成部分。

在工程实践中,材料力学公式是工程师们设计和分析结构、零部件等工程问题时必不可少的工具。

本文将为大家介绍一些常用的材料力学公式,希望能对大家的工程实践有所帮助。

1. 应力公式。

在材料力学中,应力是指单位面积上的力的大小,通常用σ表示,其公式为:\[ \sigma = \frac{F}{A} \]其中,F为受力,A为受力面积。

2. 应变公式。

应变是指材料在受力作用下产生的变形程度,通常用ε表示,其公式为:\[ \varepsilon = \frac{\Delta L}{L} \]其中,ΔL为长度变化量,L为原始长度。

3. 弹性模量公式。

弹性模量是材料抵抗形变的能力,通常用E表示,其公式为:\[ E = \frac{\sigma}{\varepsilon} \]4. 剪切应力公式。

在材料力学中,剪切应力是指垂直于受力方向的力,通常用τ表示,其公式为:\[ \tau = \frac{F}{A} \]其中,F为受力,A为受力面积。

5. 剪切应变公式。

剪切应变是指材料在受剪切力作用下产生的变形程度,通常用γ表示,其公式为:\[ \gamma = \frac{\Delta x}{h} \]其中,Δx为位移,h为原始长度。

6. 泊松比公式。

泊松比是材料在拉伸或压缩时,在垂直方向上的收缩或膨胀程度的比值,通常用ν表示,其公式为:\[ \nu = -\frac{\varepsilon_{y}}{\varepsilon_{x}} \]其中,εy为垂直方向的应变,εx为拉伸或压缩方向的应变。

7. 弯曲应力公式。

在材料力学中,弯曲应力是指材料在受弯曲力作用下的应力,其公式为:\[ \sigma = \frac{M \cdot c}{I} \]其中,M为弯矩,c为截面到中性轴的距离,I为惯性矩。

8. 弯曲应变公式。

弯曲应变是指材料在受弯曲力作用下产生的变形程度,其公式为:\[ \varepsilon = \frac{M \cdot c}{E \cdot I} \]其中,M为弯矩,c为截面到中性轴的距离,E为弹性模量,I为惯性矩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学重点公式复习 Final approval draft on November 22, 20201、应力 全应力正应力切应力线应变 量的大小。

外力偶矩当功率P 当功率拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N FA σ= (3-1)式中N F 为该横截面的轴力,A 为横截面面积。

正负号规定 拉应力为正,压应力为负。

公式(3-1)的适用条件:(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件; (2)适用于离杆件受力区域稍远处的横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;(4)截面连续变化的直杆,杆件两侧棱边的夹角020α≤时 拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为全应力 cos p ασα= (3-2) 正应力 2cos ασσα=(3-3)切应力1sin 22ατα= (3-4)式中σ为横截面上的应力。

正负号规定:α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。

ασ 拉应力为正,压应力为负。

ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。

两点结论:(1)当00α=时,即横截面上,ασ达到最大值,即()max ασσ=。

当α=090时,即纵截面上,ασ=090=0。

(2)当045α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αατ=1.2 拉(压)杆的应变和胡克定律 (1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。

如图3-2。

图3-2轴向变形 1l l l ∆=- 轴向线应变 llε∆= 横向变形 1b b b ∆=-横向线应变 bbε∆'= 正负号规定 伸长为正,缩短为负。

(2)胡克定律当应力不超过材料的比例极限时,应力与应变成正比。

即 E σε= (3-5)或用轴力及杆件的变形量表示为 N F ll EA∆= (3-6)式中EA 称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。

公式(3-6)的适用条件:(a)材料在线弹性范围内工作,即p σσ〈;(b)在计算l ∆时,l 长度内其N 、E 、A 均应为常量。

如杆件上各段不同,则应分段计算,求其代数和得总变形。

即1ni ii i iN l l E A =∆=∑(3-7) (3)泊松比 当应力不超过材料的比例极限时,横向应变与轴向应变之比的绝对值。

即 ενε'=(3-8)强度计算许用应力 材料正常工作容许采用的最高应力,由极限应力除以安全系数求得。

塑性材料 [σ]=s s n σ ; 脆性材料 [σ]=b bn σ 其中,s b n n 称为安全系数,且大于1。

强度条件:构件工作时的最大工作应力不得超过材料的许用应力。

对轴向拉伸(压缩)杆件[]NAσσ=≤ (3-9)按式(1-4)可进行强度校核、截面设计、确定许克载荷等三类强度计算。

切应力互等定理受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小相等,方向同时垂直指向或者背离两截面交线,且与截面上存在正应力与否无关。

纯剪切单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态。

切应变切应力作用下,单元体两相互垂直边的直角改变量称为切应变或切应变,用τ表示。

剪切胡克定律在材料的比例极限范围内,切应力与切应变成正比,即 G τγ= (3-10)式中G 为材料的切变模量,为材料的又一弹性常数(另两个弹性常数为弹性模量E 及泊松比ν),其数值由实验决定。

对各向同性材料,E 、 ν、G 有下列关系 2(1)EG ν=+ (3-11)切应力计算公式横截面上某一点切应力大小为 p pT I ρτ=(3-12) 式中p I 为该截面对圆心的极惯性矩,ρ为欲求的点至圆心的距离。

圆截面周边上的切应力为 max tTW τ=(3-13) 式中p t I W R=称为扭转截面系数,R 为圆截面半径。

切应力公式讨论(1) 切应力公式(3-12)和式(3-13)适用于材料在线弹性范围内、小变形时的等圆截面直杆;对小锥度圆截面直杆以及阶梯形圆轴亦可近似应用,其误差在工程允许范围内。

(2) 极惯性矩p I 和扭转截面系数t W 是截面几何特征量,计算公式见表3-3。

在面积不变情况下,材料离散程度高,其值愈大;反映出轴抵抗扭转破坏和变形的能力愈强。

因此,设计空心轴比实心轴更为合理。

强度条件圆轴扭转时,全轴中最大切应力不得超过材料允许极限值,否则将发生破坏。

因此,强度条件为[]max maxt T W ττ⎛⎫=≤⎪⎝⎭ (3-14) 对等圆截面直杆 []maxmaxt T W ττ=≤ (3-15)式中[]τ为材料的许用切应力。

中性层的曲率与弯矩的关系1zMEI ρ=(3-16) 式中,ρ是变形后梁轴线的曲率半径;E 是材料的弹性模量;E I 是横截面对中性轴Z 轴的惯性矩。

横截面上各点弯曲正应力计算公式 ZMy I σ=(3-17) 式中,M 是横截面上的弯矩;Z I 的意义同上;y 是欲求正应力的点到中性轴的距离最大正应力出现在距中性轴最远点处 max max max max z zM My I W σ=•= (3-18) 式中,max z z I W y =称为抗弯截面系数。

对于h b ⨯的矩形截面,216z W bh =;对于直径为D 的圆形截面,332z W D π=;对于内外径之比为d a D =的环形截面,34(1)32z W D a π=-。

若中性轴是横截面的对称轴,则最大拉应力与最大压应力数值相等,若不是对称轴,则最大拉应力与最大压应力数值不相等。

梁的正应力强度条件梁的最大工作应力不得超过材料的容许应力,其表达式为 []maxmax zM W σσ=≤ (3-19)对于由拉、压强度不等的材料制成的上下不对称截面梁(如T 字形截面、上下不等边的工字形截面等),其强度条件应表达为[]maxmax 1l t z M y I σσ=≤ (3-20a ) []maxmax 2y c zM y I σσ=≤ (3-20b ) 式中,[][],t c σσ分别是材料的容许拉应力和容许压应力;12,y y 分别是最大拉应力点和最大压应力点距中性轴的距离。

梁的切应力 z z QS I bτ*= (3-21)式中,Q 是横截面上的剪力;z S *是距中性轴为y 的横线与外边界所围面积对中性轴的静矩;z I 是整个横截面对中性轴的惯性矩;b 是距中性轴为y 处的横截面宽度。

矩形截面梁切应力方向与剪力平行,大小沿截面宽度不变,沿高度呈抛物线分布。

切应力计算公式 22364Q h y bh τ⎛⎫=- ⎪⎝⎭ (3-22)工字形截面梁切应力主要发生在腹板部分,其合力占总剪力的95~97%,因此截面上的剪力主要由腹板部分来承担。

切应力沿腹板高度的分布亦为二次曲线。

计算公式为 ()2222824z Q B b h H h y I b τ⎡⎤⎛⎫=-+-⎢⎥ ⎪⎝⎭⎣⎦(3-23)近似计算腹板上的最大切应力:dhFs 1max =τ d 为腹板宽度 h 1为上下两翼缘内侧距圆形截面梁横截面上同一高度各点的切应力汇交于一点,其竖直分量沿截面宽度相等,沿高度呈抛物线变化。

最大切应力发生在中性轴上,其大小为(3-25) 圆环形截面上的切应力分布与圆截面类似。

切应力强度条件梁的最大工作切应力不得超过材料的许用切应力,即 []max max maxz z Q S I bττ*=≤ (3-26)式中,max Q 是梁上的最大切应力值;max z S *是中性轴一侧面积对中性轴的静矩;z I 是横截面对中性轴的惯性矩;b 是max τ处截面的宽度。

对于等宽度截面,max τ发生在中性轴上,对于宽度变化的截面,max τ不一定发生在中性轴上。

剪切的实用计算名义切应力:假设切应力沿剪切面是均匀分布的 ,则名义切应力为 AQ=τ (3-27) 剪切强度条件:剪切面上的工作切应力不得超过材料的 许用切应力[]τ,即 []ττ≤=AQ(3-28)挤压的实用计算名义挤压应力 假设挤压应力在名义挤压面上是均匀分布的,则 []bsbs bs bsP A σσ=≤ (3-29) 式中,bs A 表示有效挤压面积,即挤压面面积在垂直于挤压力作用线平面上的投影。

当挤压面为平面时为接触面面积,当挤压面为曲面时为设计承压接触面面积在挤压力垂直面上的 投影面积。

挤压强度条件挤压面上的工作挤压应力不得超过材料的许用挤压应力 []bs bsbs A Pσσ≤=(3-30) 1, 变形计算圆轴扭转时,任意两个横截面绕轴线相对转动而产生相对扭转角。

相距为l 的两个横截面的相对扭转角为dx GI TlP⎰=0ϕ (rad) 若等截面圆轴两截面之间的扭矩为常数,则上式化为PGI Tl=ϕ (rad) 图式中P GI 称为圆轴的抗扭刚度。

显然,ϕ的正负号与扭矩正负号相同。

公式()的适用条件:(1) 材料在线弹性范围内的等截面圆轴,即P ττ≤;(2) 在长度l 内,T 、G 、P I 均为常量。

当以上参数沿轴线分段变化时,则应分段计算扭转角,然后求代数和得总扭转角。

即 ∑==ni P i ii iI G l T 1ϕ (rad) 当T 、P I 沿轴线连续变化时,用式计算ϕ。

2, 刚度条件扭转的刚度条件 圆轴最大的单位长度扭转角max 'ϕ不得超过许可的单位长度扭转角[]'ϕ,即[]''maxmax ϕϕ≤=PGI T (rad/m) 式 []'180'max max ϕπϕ≤⨯=︒P GI T (m /︒) ()2,挠曲线的近似微分方程及其积分在分析纯弯曲梁的正应力时,得到弯矩与曲率的关系EIM=ρ1对于跨度远大于截面高度的梁,略去剪力对弯曲变形的影响,由上式可得()()EIx M x =ρ1 利用平面曲线的曲率公式,并忽略高阶微量,得挠曲线的近似微分方程,即 ()EIx M =''ω () 将上式积分一次得转角方程为 ()C dx EIx M +==⎰'ωθ ()再积分得挠曲线方程 ()D Cx dx dx EI x M ++⎥⎦⎤⎢⎣⎡=⎰⎰ω () 式中,C,D 为积分常数,它们可由梁的边界条件确定。

当梁分为若干段积分时,积分常数的确定除需利用边界条件外,还需要利用连续条件。

3,梁的刚度条件限制梁的最大挠度与最大转角不超过规定的许可数值,就得到梁的刚度条件,即[]ωω≤max ,[]θθ≤max () 3,轴向拉伸或压缩杆件的应变能在线弹性范围内,由功能原理得 l F W V ∆==21ε 当杆件的横截面面积A 、轴力F N 为常量时,由胡克定律EAlF l N =∆,可得 EA l F V N 22=ε ()杆单位体积内的应变能称为应变能密度,用εV 表示。

相关文档
最新文档