输入输出阻抗以及阻抗匹配.docx
射频巴伦电路阻抗匹配

射频巴伦电路阻抗匹配
射频巴伦电路的阻抗匹配是指将电路的输入阻抗和输出阻抗调整到与传输线特性阻抗相等,以消除反射,提高传输效率。
以下是关于阻抗匹配的一些常见措施:
1.使用匹配网络:在电路中加入一个或多个元件,形成一个特定的网络,该网络在特定频率下可以使得输入阻抗和输出阻抗变得与传输线特性阻抗相等。
常见的匹配网络有L型、T型和π型等。
2.调整电路元件:通过调整电路中的电阻、电容、电感等元件的值,可以改变电路的阻抗,使其与传输线特性阻抗相匹配。
3.使用变压器:在某些情况下,可以使用变压器来实现阻抗匹配。
通过调整变压器的匝数比,可以将电路的输入阻抗和输出阻抗调整到适当的值。
4.采用共轭匹配:如果已知传输线的特性阻抗和负载的复阻抗,可以使用共轭匹配的方法,使得传输线的输出电压和负载输入电压达到最大值。
共轭匹配不需要使用任何额外的元件,只需要简单地调整传输线的长度或角度即可。
总之,阻抗匹配是射频巴伦电路中非常重要的一个环节,它能够提高信号传输的效率,减小信号反射和能量损失,从而保证电路的正常工作和性能。
ADC阻抗以及阻抗匹配

我来大概概括一下ADC输入阻抗的问题:1:SAR型ADC这种ADC内阻都很大,一般500K以上。
即使阻抗小的ADC,阻抗也是固定的。
所以即使只要被测源内阻稳定,只是相当于电阻分压,可以被校正。
2:开关电容型,如TLC2543之类。
他要求很低的输入阻抗用于对内部采样电容快速充电。
这时最好有低阻源,否则会引起误差。
实在不行,可以外部并联一很大的电容,每次被取样后,大电容的电压下降不多。
因此并联外部大电容后,开关电容输入可以等效为一个纯阻性阻抗,可以被校正。
3:FLASH.html">FLASH型(直接比较型)。
大多高速ADC都是直接比较型,也称闪速型(FLASH),一般都是低阻抗的。
要求低阻源。
对外表现纯阻性,可以和运放直接连接4:双积分型大多输入阻抗极高,几乎不用考虑阻抗问题5:Sigma-Delta型。
这是目前精度最高的ADC类型,也是最难伺候的一种ADC。
重点讲一下要注意的问题:a.内部缓冲器的使用。
SigmaDelta型ADC属于开关电容型输入,必须有低阻源。
所以为了简化外部设计,内部大多集成有缓冲器。
缓冲器打开,则对外呈现高阻,使用方便。
但要注意了,缓冲器实际是个运放。
那么必然有上下轨的限制。
大多数缓冲器都是下轨50mV,上轨AVCC-1.5V。
在这种应用中,共莫输入范围大大的缩小,而且不能到测0V。
一定要特别小心!一般用在电桥测量中,因为共模范围都在1/2VCC附近。
不必过分担心缓冲器的零票,通过内部校零寄存器很容易校正的。
b.输入阻抗问题。
SigmaDelta型ADC属于开关电容型输入,在低阻源上工作良好。
但有时候为了抑制共模或抑制乃奎斯特频率外的信号,需要在输入端加RC滤波器,一般DATASHEET上会给一张最大允许输入阻抗和C和Gain的关系表。
这时很奇怪的一个特性是,C越大,则最大输入阻抗必须随之减小!刚开始可能很多人不解,其实只要想一下电容充电特性久很容易明白的。
50ohm特点阻抗与阻抗匹配[整理版]
![50ohm特点阻抗与阻抗匹配[整理版]](https://img.taocdn.com/s3/m/cfb5fa12cd1755270722192e453610661ed95a30.png)
一、50ohm特征阻抗终端电阻示图B.终端电阻的作用:1、阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。
2、减少噪声,降低辐射,防止过冲。
在串联应用情况下,串联的终端电阻和信号线的分布电容以及后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。
C.终端电阻取决于电缆的特性阻抗。
D.如果使用0805封装、1/10W的贴片电阻,但要防止尖峰脉冲的大电流对电阻的影响,加30PF的电容.E.有高频电路经验的人都知道阻抗匹配的重要性。
在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。
高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。
同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er决定:另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。
这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。
图1 同轴传送线路的终端电阻构成只有当同轴电缆的特性阻抗Zo和终端阻抗FT的值相等时,即ZIN=Zo=RT称为阻抗匹配。
Zo≠RT时随着频率f,ZIN变化。
作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。
图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。
当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲.二、怎样理解阻抗匹配?阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。
阻抗匹配分为低频和高频两种情况讨论。
我们先从直流电压源驱动一个负载入手。
由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。
假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。
阻抗变换器的计算

阻抗变换器的计算
阻抗变换器是一种电路,用于将一个电路的阻抗转换为另一个电路的阻抗。
常见的阻抗变换器有匹配变压器、阻抗匹配网络和阻抗转换器等。
1.输入阻抗和输出阻抗的定义:输入阻抗是指在输入端看到的阻抗,输出阻抗是指在输出端看到的阻抗。
2.选择变压器的变比:根据输入阻抗和输出阻抗的比例,选择变压器的变比。
变压器变比的计算公式为:变比=√(输出阻抗/输入阻抗)。
3.计算变压器的绕组数量:根据变压器的变比和输入输出阻抗的数量关系,计算出变压器的绕组数量。
若输入阻抗和输出阻抗的数量相等,则变压器只需要一个绕组。
若输入阻抗的数量大于输出阻抗的数量,则变压器需要多个绕组。
4.计算变压器的绕组比例:根据变压器的变比和绕组数量,计算出每个绕组的绕组比例。
如果有多个绕组,则每个绕组的绕组比例相同。
5.计算变压器的实际变比:根据变压器的绕组数量和绕组比例,计算出变压器的实际变比。
实际变比等于变压器的变比乘以绕组比例。
6.计算变压器的电压比例:根据变压器的实际变比,计算出变压器的电压比例。
需要注意的是,在实际应用中,还需要考虑变压器的额定功率和绕组之间的互感等因素,以确保阻抗变换器的稳定性和性能。
输出阻抗与输入阻抗详解

输出阻抗与输入阻抗详解一般讲:<a>采集信号1.信号源为电压源,输入阻抗越大越好;2.信号源为电流源,输入阻抗越小越好;<b>采集功率1.输入阻抗要与源阻抗一致合成一句话,就是源和负载的阻抗要匹配(不同的应用场合,“匹配”的涵义不一样)电路的带负载能力与输入输出阻抗的关系带负载能力带负载能力是指,外接器件后,输出的电压或电流大小不受影响的能力。
比如,如果一个单片机的引脚输出5伏电压信号,如果接上一个负载后,它的5伏保持不变,那么,它就可以带动这个负载,如果变小,那就说明带不动负载。
同样,如果输出的电流能够满足负载的需要,那就说明带负载能力满足要求,反之亦然。
所谓带负载能力,是说电路的输出电阻的大小,和电压源(电流源)中的内阻是一个意思。
例如:在放大电路中,如果你想负载获得得稳定的电压,即负载大小变化时也能获得稳定的电压,此时就要求放大电路的输出电阻越小越好,这样内阻基本上不参与输出电压的分压,所以负载电阻不管多大它上面的电压基本不变。
你完全可以用电压源串一个内阻接负载时的情况分析。
如果放大电路输出可以等效成电流源(如果你想让负载上获得稳定的电流),此时就要求输出输出电阻越大越好(最好无穷大),这样不管负载怎么变化内阻(它是并联的)分得的电流都很小,所以电流很稳定。
你完全可以用理想电流源并联一个内阻的情况来分析。
所以在实际电路,你要看它的输出端是想稳定输出电流还是想稳定电压(放大电路中的负反馈类型可以判断出来),如果是想稳定输出电压,说它带负载能力强表示其输出电阻比较小,如果是稳定输出电流,说它带负载能力强表示其输出电阻比较大。
通常,要求输出电阻比较小的情况居多。
输入阻抗输入阻抗是指一个电路输入端的等效阻抗。
在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。
你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。
输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。
输出阻抗与输入阻抗详解

一般讲:<a>采集信号1.信号源为电压源,输入阻抗越大越好;2.信号源为电流源,输入阻抗越小越好;<b>采集功率1.输入阻抗要与源阻抗一致合成一句话,就是源和负载的阻抗要匹配(不同的应用场合,“匹配”的涵义不一样)电路的带负载能力与输入输出阻抗的关系带负载能力带负载能力是指,外接器件后,输出的电压或电流大小不受影响的能力。
比如,如果一个单片机的引脚输出5伏电压信号,如果接上一个负载后,它的5伏保持不变,那么,它就可以带动这个负载,如果变小,那就说明带不动负载。
同样,如果输出的电流能够满足负载的需要,那就说明带负载能力满足要求,反之亦然。
所谓带负载能力,是说电路的输出电阻的大小,和电压源(电流源)中的内阻是一个意思。
例如:在放大电路中,如果你想负载获得得稳定的电压,即负载大小变化时也能获得稳定的电压,此时就要求放大电路的输出电阻越小越好,这样内阻基本上不参与输出电压的分压,所以负载电阻不管多大它上面的电压基本不变。
你完全可以用电压源串一个内阻接负载时的情况分析。
如果放大电路输出可以等效成电流源(如果你想让负载上获得稳定的电流),此时就要求输出输出电阻越大越好(最好无穷大),这样不管负载怎么变化内阻(它是并联的)分得的电流都很小,所以电流很稳定。
你完全可以用理想电流源并联一个内阻的情况来分析。
所以在实际电路,你要看它的输出端是想稳定输出电流还是想稳定电压(放大电路中的负反馈类型可以判断出来),如果是想稳定输出电压,说它带负载能力强表示其输出电阻比较小,如果是稳定输出电流,说它带负载能力强表示其输出电阻比较大。
通常,要求输出电阻比较小的情况居多。
输入阻抗输入阻抗是指一个电路输入端的等效阻抗。
在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。
你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。
输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。
阻抗匹配

信号传输过程中负载阻抗和信源内阻抗之间的特定配合关系。
一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。
对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出阻抗5-10倍以上,就可认为阻抗匹配良好;对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音箱,而晶体管放大器则无此限制,可以接任何阻抗的音箱。
匹配条件①负载阻抗等于信源内阻抗,即它们的模与辐角分别相等,这时在负载阻抗上可以得到无失真的电压传输。
②负载阻抗等于信源内阻抗的共轭值,即它们的模相等而辐角之和为零。
这时在负载阻抗上可以得到最大功率。
这种匹配条件称为共轭匹配。
如果信源内阻抗和负载阻抗均为纯阻性,则两种匹配条件是等同的。
阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。
对于不同特性的电路,匹配条件是不一样的。
在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份绝对值相等而符号相反。
这种匹配条件称为共扼匹配。
阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
史密夫图表上。
电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。
如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。
重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。
共轭匹配在信号源给定的情况下,输出功率取决于负载电阻与信号源内阻之比K,当两者相等,即K=1时,输出功率最大。
匹配电阻_精品文档

匹配电阻简介在电路设计中,匹配电阻是一种常用的元件。
它被用于调整电路中的阻抗,以实现信号的最大传输或最小反射。
本文将介绍匹配电阻的基本概念、工作原理以及在电路设计中的应用。
匹配电阻的基本概念匹配电阻,也称为阻抗匹配电阻,是一种特殊的电阻。
它的阻抗与待匹配电路的阻抗相等,从而确保电路中的信号能够得到最佳的传输。
匹配电阻通常采用无感电阻,即具有纯电阻而没有电感或电容。
这样可以避免电感或电容对信号的频率响应产生干扰。
匹配电阻的工作原理匹配电阻的工作原理基于阻抗匹配原理。
当待匹配电路的输出阻抗与输入阻抗不匹配时,会产生反射信号。
这种反射信号会导致信号的损失和失真。
通过在待匹配电路的输入或输出端添加匹配电阻,可以调整阻抗,使其与待匹配电路的阻抗匹配,从而最小化信号的反射和损失。
匹配电阻的应用匹配电阻广泛应用于各种电路设计中,特别是在射频和微波领域。
以下是一些匹配电阻的常见应用场景:1. 射频天线匹配射频天线常常需要匹配电阻来匹配发射机和接收机之间的阻抗。
通过添加匹配电阻,可以确保射频信号的最大传输和最小反射。
2. 高频电路匹配在高频电路设计中,匹配电阻用于匹配信号源和负载的阻抗。
它可以使信号源的输出能够被最大限度地传输到负载,同时最小化信号的反射。
3. 差分信号匹配差分信号传输常常需要匹配电阻来确保两个信号之间的阻抗匹配。
这对于避免信号的失真和串扰非常重要。
如何选择匹配电阻选择适当的匹配电阻需要考虑多个因素,包括电路的工作频率、输入和输出阻抗以及所需的功耗等。
以下是选择匹配电阻时应该考虑的几个要点:1. 阻抗匹配匹配电阻的阻值应与待匹配电路的输入或输出阻抗相等,以实现阻抗匹配。
2. 功耗匹配电阻的功耗也是一个重要的考虑因素。
在选择匹配电阻时,应确保其功耗在可接受范围内。
3. 工作频率匹配电阻的工作频率应与待匹配电路的工作频率相匹配,以确保信号的传输和反射符合要求。
结论匹配电阻是一种用于调整电路阻抗的常用元件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
输入、输出阻抗以及阻抗匹配
在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。
阻抗常用 Z 表示。
阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。
阻抗的单位是欧。
在直流电中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。
电阻很小的物质称作良导体,如金属等;电阻极大的物质称作绝缘体,如木头和塑料等。
还有一种介于两者之间的导体叫做半导体,而超导体则是一种电阻值几近于零的物质。
但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。
电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。
它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。
此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。
对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。
在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大。
也就是阻抗减小到最小值。
在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反。
一、输入阻抗
输入阻抗是指一个电路输入端的等效阻抗。
在输入端上加上一个电压源 U,测量输入端的电流 I ,则输入阻抗 Rin 就是 U/I 。
你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。
输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。
输入阻抗是用来衡量放大器对信号源的影响的一个性能指标:
对于电压驱动的电路,输入阻抗越大,表明放大器从信号源取的电流越小,放大器输入端得到的信号电压也越大,即信号源电压衰减的少,对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响。
理论基础: Us=( Rs+Ri)× I 。
Rs 为信号源内阻, Ri 为放大器输入电阻。
因此作为测量信号电压的示波器、电
压表等仪器的放大电路应当具有较大的输入电阻。
对于一般的放大电路来说,输入电阻当然是越大越好。
如果想从信号源取得较大的电流,则应该使放大器具有较小的输入电阻
而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。
因此,我
们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要
考虑阻抗匹配问题。
)另外如果要获取最大输出功率时,也要考虑阻抗匹配问题。
二、输出阻抗
无论信号源或放大器还有电源,都有输出阻抗的问题。
输出阻抗就是一个信号源
的内阻。
本来,对于一个理想的电压源(包括电源),内阻应该为 0,或理想电流
源的阻抗应当为无穷大。
输出阻抗在电路设计最特别需要注意。
但现实中的电压源,则不能做到这一点。
我们常用一个理想电压源串联一个电阻
r 的方式来等效一个实际的电压源。
这个跟理想电压源串联的电阻r ,就是(信
号源 / 放大器输出 / 电源)的内阻了。
当这个电压源给负载供电时,就会有电流 I 从
这个负载上流过,并在这个电阻上产生 I ×r的电压降。
这将导致电源输出电压的下降,从而限制了最大输出功率(关于为什么会限制最大输出功率,请看后面的
“阻抗匹配”一问)。
同样的,一个理想的电流源,输出阻抗应该是无穷大,但
实际的电路是不可能的。
输出电阻用来衡量放大器在不同负载条件下维持输出信号电压(或电流)恒定能力的
强弱,称为其带负载能力。
当放大器将放大了的信号输出给负载电阻 RL时,对负载RL来说,放大器可以等效为具有内阻 Ro 的信号源,由这个信号源向 RL 提供输出信
号电压和输出信号电流。
Ro称为放大器的输出电阻,它是从放大器
输出端向放大器本身看入的交流等效电阻。
如果输出电阻 Ro很小,满足 Ro<<RL 条件,则当 RL在较大范围内变化时,就可基本维持输出信号电压的恒定。
反之,如
果输出电阻 Ro 很大,满足 Ro>>RL条件,则当 RL 在较大范围内变化时,就可维持
输出信号电流的恒定。
如手机电池,它的内阻可以等效看作输出电阻,用了几年后,内阻高了,也就要报废了,因为带不动外面的东西
三、阻抗匹配
阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。
阻抗匹配分
为低频和高频两种情况讨论。
我们先从直流电压源驱动一个负载入手。
由于实
际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压
源,等效成一个理想的电压源跟一个电阻r 串联的模型。
假设负载电阻为R,电
源电动势为 U,内阻为 r ,那么我们可以计算出流过电阻R 的电流为:I=U/(R+r) ,
可以看出,负载电阻R 越小,则输出电流越大。
负载R 上的电压为:
Uo=IR=U/[1+(r/R)] ,可以看出,负载电阻 R 越大,则输出电压 Uo越高。
再来计算
一下电阻 R 消耗的功率为:
P=I2×R=[U/(R+r)]2 ×R=U2×R/(R2+2×R×r+r2)
=U2×R/[(R - r)2+4 ×R×r]
=U2/{[(R- r)2/R]+4 ×r}
对于一个给定的信号源,其内阻 r 是固定的,而负载电阻 R 则是由我们来选择的。
注意式中 [(R-r)2/R] ,当 R=r 时, [(R-r)2/R] 可取得最小值 0,这时负载电阻 R 上可获得最大输出功率 Pmax=U2/(4×r) 。
即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。
对于纯电阻电路,此结论同样适用于低频电路及高频电路。
当交流电路中含有容性或感性阻抗时,
结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配。
在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,
跟原信号还是一样的)。
从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。
有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。
在高频电路中,我们还必须考虑反射的问题。
当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。
如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。
为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。
传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。
例如,常用的闭路电视同轴电缆特性阻抗为75Ω,而一些射频设备上则常用特
征阻抗为 50Ω的同轴电缆。
另外还有一种常见的传输线是特性阻抗为300Ω的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。
因为电视机的射频输入端输入阻抗为 75Ω,所以 300Ω的馈线将与其不能匹配。
实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,
有一个 300Ω到 75Ω的阻抗转换器(一个塑料封装的,一端有一个圆形的插头
的那个东东,大概有两个大拇指那么大)。
它里面其实就是一个传输线变压器,
将 300Ω的阻抗,变换成 75Ω的,这样就可以匹配起来了。
这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量。
为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配,如果阻抗不匹配会有什么不良后果呢?如果不
匹配,则会形成反射,能量传递不过去,降低效率;会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备。
如果是电路板上的高速信号线与
负载阻抗不匹配时,会产生震荡,辐射干扰等。
当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗
转换,就像上面所说的电视机中的那个例子那样。
第二,可以考虑使用串联/ 并联电容或电感的办法,这在调试射频电路时常使用。
第三,可以考虑使用串联 / 并
联电阻的办法。
一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。
而一些接收器的输入
阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485 总线接收器,常在数据线终端并联 120 欧的匹配电阻。