济南市2018年高三一模文科数学测试题

合集下载

山东省济南第一中学高三上学期1月月考数学(文)试题Word版含解析

山东省济南第一中学高三上学期1月月考数学(文)试题Word版含解析

济南一中高三年级2018新年学业检测数学试题(文科)第I卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则=()A. B. C. D.【答案】A【解析】根据题意,集合,而,则,则,故选A.2. 在复平面内,复数对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】,∴复数对应的点位于第二象限故选:B点睛:复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把的幂写成最简形式.3. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了()A. 60里B. 48里C. 36里D. 24里【答案】C【解析】试题分析:由题意知,此人每天走的里数构成公比为的等比数列,设等比数列的首项为,则有,,,所以此人第天和第天共走了里,故选C.考点:1、阅读能力及建模能力;2、等比数列的通项及求和公式.4. 从数字,,,,中任取个,组成一个没有重复数字的两位数,则这个两位数大于的概率是()A. B. C. D.【答案】C【解析】从数字1,2,3,4,5中任取2个,组成一个没有重复数字的两位数共有=20个,其中这个两位数小于30的个数为=8个(十位1,2中任选1个,个位其余4个数选1个),故所求概率P=1﹣=故选:C5. 执行如图所示的程序框图,如果输入,则输出的值为A. 6B. 8C. 10D. 12【答案】C【解析】试题分析:模拟执行程序,可得:;;不满足条件;不满足条件;不满足条件;不满足条件,此时满足条件,推出循环,输出的值为,故选C.考点:程序框图.6. 若变量x,y满足则x2+y2的最大值是()A. 4B. 9C. 10D. 12【答案】C【解析】试题分析:画出可行域,点A(3,1)到原点距离最大,所以,选C.【考点】简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力. 7. 直线与圆相切,则()A. 或B. 或C. 或D. 或【答案】D【解析】∵直线与圆心为(1,1),半径为1的圆相切,∴=1或12,故选D.考点:本题主要考查利用圆的一般方程求圆的圆心和半径,直线与圆的位置关系,以及点到直线的距离公式的应用.8. 已知函数,则下列结论中正确的是A. 函数的最小正周期为B. 函数的图象关于点对称C. 由函数的图象向右平移个单位长度可以得到函数的图象D. 函数在区间上单调递增【答案】C【解析】对于函数,它的最小正周期为=π,故排除A;令x=,求得f(x)=,故函数f(x)的图象不关于点对称;故排除B;把函数的图象向右平移个单位长度,可以得到函数y=sin2(x﹣)+]=sin2x的图象,故C满足条件;在区间上,∈(,),函数f(x)单调递减,故排除D,故选:C.9. 函数,则函数的导数的图象是()A. B.C. .D.【答案】A【解析】函数,可得y′=是奇函数,可知选项B,D不正确;当x=时,y′=,导函数值为负数,排除A,故选:C.10. 如图, 网格纸上的小正方形的边长为, 粗实线画出的是某几何体的三视图, 则该几何体的体积是A. B.C. D.【答案】A【解析】根据三视图知几何体是组合体,下面是半个圆柱、上面是一个以圆柱轴截面为底的四棱锥,圆柱的底面半径为2,母线长为3;四棱锥的高是2,底面是边长为4、3的矩形,∴该几何体的体积V=,故选:A.11. 已知球的半径为,三点在球的球面上,球心到平面的距离为,,, 则球的表面积为A. B. C. D.【答案】D【解析】在中,,由正弦定理可得平面截球所得圆的半径(即的外接圆半径),又∵球心到平面的距离∴球的半径,故球O的表面积故选D【点睛】本题考查的知识点是球的体积和表面积,其中根据已知条件求出球的半径是解答本题的关键.12. 设函数的定义域为R , , 当时,, 则函数在区间上的所有零点的和为A. B. C. D .【答案】B【解析】函数f(x)的定义域为R,f(﹣x)=f(x),可知函数是偶函数,f(x)=f(2﹣x),可知函数的对称轴为:x=1,当x∈[0,1]时,f(x)=x3,函数g(x)=|cos(πx)|﹣f(x)可知函数是偶函数,g(x)=|cos(πx)|﹣f(x)=0,可得|cos(πx)|=f(x),在同一个直角坐标系中画出函数y=|cos(πx)|,y=f(x)的图象如图:函数在区间[﹣,]上的零点的和为:0.函数在[,]时,两个函数的交点关于x=1对称,零点有3个,零点的和为:3.故选:B.点睛:本题重点考查了函数的对称性,通过对称性把零点和问题转化为寻找对称中心和对称轴的问题,研究函数问题即研究函数的图象与性质.第Ⅱ卷(非选择题共90分)二、填空题:本大题共5个小题,每小题5分,共20分.13. 函数的极小值为_______.【答案】-2【解析】试题分析:,令得,当或时,,当时,,所以当时,函数有极小值,且极小值是.考点:导数研究函数的极值.14. 设是公差为正数的等差数列,若,,_________.【答案】105【解析】设数列的公差为d(d>0),∵3=15∴=5.∵∴(5﹣d)•5•(5+d)=5(25﹣d2)=80∴d2=25﹣16=9∴d=3∴a11+a12+a13=(a1+a2+a3)+30d=15+90=105故答案为105.15. 已知平面向量与的夹角为,,,则__________.【答案】2【解析】试题分析:.考点:向量的基本运算.16. 如果,,…,是抛物线:上的点,它们的横坐标依次为,,…,,是抛物线的焦点,若,则_________.【答案】20【解析】由抛物线方程y2=4x可得p=2.∵横坐标x1,x2,…,x10依次成等差数列,F是抛物线的焦点,且x1+x9=2,则故答案为:20.点睛:在解决与抛物线有关的问题时,要注意抛物线的定义在解题中的应用。

2018年山东省济南市高考一模数学试卷(文科)【解析版】

2018年山东省济南市高考一模数学试卷(文科)【解析版】

2018年山东省济南市高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2+2x﹣3=0},B={﹣1,1},则A∪B=()A.{1}B.{﹣1,1,3}C.{﹣3,﹣1,1}D.{﹣3,﹣1,1,3}2.(5分)若命题“p或q”与命题“非p”都是真命题,则()A.命题p与命题q都是真命题B.命题p与命题q都是假命题C.命题p是真命题,命题q是假命题D.命题p是假命题,命题q是真命题3.(5分)欧拉公式e ix=cos x+i sin x(i为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.特别是当x=π时,e iπ+1=0被认为是数学上最优美的公式,数学家们评价它是“上帝创造的公式”.根据欧拉公式可知,e4i表示的复数在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限4.(5分)下列曲线中离心率为的是()A.B.C.D.5.(5分)若,,则sin A的值为()A.B.C.或D.6.(5分)已知变量x,y满足约束条件,若z=2x﹣y,则z的取值范围是()A.[﹣5,6)B.[﹣5,6]C.(2,9)D.[﹣5,9]7.(5分)将函数的图象向左平移个单位后得到函数g(x)的图象,则g(x)()A.为奇函数,在上单调递减B.为偶函数,在上单调递增C.周期为π,图象关于点对称D.最大值为1,图象关于直线对称8.(5分)如图,在正方体ABCD﹣A1B1C1D1中,P为BD1的中点,则△P AC在该正方体各个面上的射影可能是()A.①④B.②③C.②④D.①②9.(5分)函数的图象大致为()A.B.C.D.10.(5分)执行如图所示的程序框图,当输入i=2018时,输出的结果为()A.﹣1008B.1009C.3025D.302811.(5分)已知双曲线C:的两条渐近线是l1,l2,点M是双曲线C 上一点,若点M到渐近线l1距离是3,则点M到渐近线l2距离是()A.B.1C.D.312.(5分)设x1,x2分别是函数f(x)=x﹣a﹣x和g(x)=x log a x﹣1的零点(其中a>1),则x1+4x2的取值范围是()A.[4,+∞)B.(4,+∞)C.[5,+∞)D.(5,+∞)二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,满足||=5,|2|=5,||=5,则||=.14.(5分)如图,茎叶图记录了甲、乙两名射击运动员的5次训练成绩(单位:环),则成绩较为稳定的那位运动员成绩的方差为.15.(5分)在平面四边形ABCD中,∠A=∠C=90°,∠B=30°,,BC=5,则线段BD的长度为.16.(5分)一个密闭且透明的正方体容器中装有部分液体,已知该正方体的棱长为2,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体体积的取值范围为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.每22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记S n为数列{a n}的前n 项和,已知,n∈N*.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和T n.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为等腰梯形,AD∥BC,,E,F分别为线段AD,PB的中点.(1)证明:PD∥平面CEF;(2)若PE⊥平面ABCD,PE=AB=2,求四面体P﹣DEF的体积.19.(12分)2018年2月22日上午,山东省省委、省政府在济南召开山东省全面展开新旧动能转换重大工程动员大会,会议动员各方力量,迅速全面展开新旧动能转换重大工程.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了200件产品作为样本,检测一项质量指标值,若该项质量指标值落在[20,40)内的产品视为合格品,否则为不合格品.如图是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.表1:设备改造后样本的频数分布表(1)完成下面的2×2列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关;(2)根据图1和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;(3)根据市场调查,设备改造后,每生产一件合格品企业可获利180元,一件不合格品亏损100元,用频率估计概率,则生产1000件产品企业大约能获利多少元?附:20.(12分)如图,在平面直角坐标系xOy中,点M(2,1)在抛物线C:x2=ay上,直线l:y=kx+b(b≠0)与抛物线C交于A,B两点,且直线OA,OB的斜率之和为﹣1.(1)求a和k的值;(2)若b>1,设直线l与y轴交于D点,延长MD与抛物线C交于点N,抛物线C在点N处的切线为n,记直线n,l与x轴围成的三角形面积为S,求S 的最小值.21.(12分)设函数,a∈R.(1)讨论f(x)的单调性;(2)当a>0时,记f(x)的最小值为g(a),证明:g(a)<1.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,过点P(1,2)的直线l的参数方程为(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4sinθ.(1)求直线l的普通方程和曲线C的直角坐标方程;(2)若直线l与曲线C相交于M,N两点,求的值.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣2|﹣|x+2|.(1)求不等式f(x)≥6的解集;(2)当x∈R时,f(x)≥﹣x+a恒成立,求实数a的取值范围.2018年山东省济南市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2+2x﹣3=0},B={﹣1,1},则A∪B=()A.{1}B.{﹣1,1,3}C.{﹣3,﹣1,1}D.{﹣3,﹣1,1,3}【解答】解:∵集合A={x|x2+2x﹣3=0}={﹣3,1},B={﹣1,1},∴A∪B={﹣3,﹣1,1}.故选:C.2.(5分)若命题“p或q”与命题“非p”都是真命题,则()A.命题p与命题q都是真命题B.命题p与命题q都是假命题C.命题p是真命题,命题q是假命题D.命题p是假命题,命题q是真命题【解答】解:命题“p或q”与命题“非p”都是真命题,则p是假命题,q是真命题,故选:D.3.(5分)欧拉公式e ix=cos x+i sin x(i为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.特别是当x=π时,e iπ+1=0被认为是数学上最优美的公式,数学家们评价它是“上帝创造的公式”.根据欧拉公式可知,e4i表示的复数在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:因为欧拉公式e ix=cos x+i sin x(i为虚数单位),所以e4i=cos4+i sin4,因为4∈(π,),cos4<0,sin4<0,所以e4i表示的复数在复平面中位于第三象限.故选:C.4.(5分)下列曲线中离心率为的是()A.B.C.D.【解答】解:离心率为<1,排除A,B.因为.可得a=3,b=1,c=2,所以e==,满足题意,排除C.故选:D.5.(5分)若,,则sin A的值为()A.B.C.或D.【解答】解:∵,,∴A+∈(,),可得:cos(A+)=﹣=﹣,∴sin A=sin[(A+)﹣]=[sin(A+)﹣cos(A+)]=×(+)=.故选:B.6.(5分)已知变量x,y满足约束条件,若z=2x﹣y,则z的取值范围是()A.[﹣5,6)B.[﹣5,6]C.(2,9)D.[﹣5,9]【解答】解:变量x,y满足约束条件不等式组表示的平面区域如图所示,当直线z=2x﹣y过点A时,z取得最小值,由,可得A(﹣2,1)时,在y轴上截距最大,此时z取得最小值﹣5.当直线z=2x﹣y过点C时,z取得最小值,由,可得C(2,﹣2)时,因为C不在可行域内,所以z=2x﹣y的最大值小于4+2=6,则z的取值范围是:[﹣5,6).故选:A.7.(5分)将函数的图象向左平移个单位后得到函数g(x)的图象,则g(x)()A.为奇函数,在上单调递减B.为偶函数,在上单调递增C.周期为π,图象关于点对称D.最大值为1,图象关于直线对称【解答】解:函数的图象向左平移个单位,得y=cos[2(x+)﹣]=cos2x的图象,∴函数g(x)=cos2x;∴g(x)是偶函数,A错误;且周期为T,在[﹣+kπ,kπ],k∈Z上单调递增,在[kπ,kπ+],k∈Z上单调递减,∴B、C错误;关于点(kπ+,0)对称,关于直线x=,k∈Z对称;∴g(x)的最大值为1,且图象关于x=对称,D正确.故选:D.8.(5分)如图,在正方体ABCD﹣A1B1C1D1中,P为BD1的中点,则△P AC在该正方体各个面上的射影可能是()A.①④B.②③C.②④D.①②【解答】解:从上下方向上看,△P AC的投影为①图所示的情况;从左右方向上看,△P AC的投影为④图所示的情况;从前后方向上看,△P AC的投影为④图所示的情况;故选:A.9.(5分)函数的图象大致为()A.B.C.D.【解答】解:函数,可得:y′=,x<0时,函数是增函数,x>0时是减函数,x=0是函数的极大值点,函数的图象只有C满足.故选:C.10.(5分)执行如图所示的程序框图,当输入i=2018时,输出的结果为()A.﹣1008B.1009C.3025D.3028【解答】解:当输入i=2018时,当n=0时,满足进行循环的条件,执行循环体后,S=1,n=1当n=1时,满足进行循环的条件,执行循环体后,S=1,n=2当n=2时,满足进行循环的条件,执行循环体后,S=4,n=3当n=3时,满足进行循环的条件,执行循环体后,S=2,n=4当n=4时,满足进行循环的条件,执行循环体后,S=7,n=5当n=5时,满足进行循环的条件,执行循环体后,S=3,n=6当n=6时,满足进行循环的条件,执行循环体后,S=10,n=7……当n=2k﹣1时,满足进行循环的条件,执行循环体后,S=k,n=2k,……当n=2017时,满足进行循环的条件,执行循环体后,S=1009,n=2018当n=2018时,不满足进行循环的条件,故输出的S值为1009,故选:B.11.(5分)已知双曲线C:的两条渐近线是l1,l2,点M是双曲线C上一点,若点M到渐近线l1距离是3,则点M到渐近线l2距离是()A.B.1C.D.3【解答】解:双曲线C:的两条渐近线为:2x±3y=0,设M(x1,y1)为双曲线上的点,则4x12﹣9y12=36,由M到双曲线的渐近线的距离乘积为k ===是常数,点M到渐近线l1距离是3,则点M到渐近线l2距离是:=.故选:A.12.(5分)设x1,x2分别是函数f(x)=x﹣a﹣x和g(x)=x log a x﹣1的零点(其中a>1),则x1+4x2的取值范围是()A.[4,+∞)B.(4,+∞)C.[5,+∞)D.(5,+∞)【解答】解:由设x1,x2分别是函数f(x)=x﹣a﹣x和g(x)=x log a x﹣1的零点(其中a>1),可知x1是方程的解;x2是方程的解;则x1,x2分别为函数的图象与函数y=y=a x和函数y=log a x的图象交点的横坐标;设交点分别为A(x1,),B(x2,)由a>1,知0<x1<1;x2>1;又因为y=a x和y=log a x以及的图象均关于直线y=x对称,所以两交点一定关于y=x对称,由于点A(x1,),关于直线y=x的对称点坐标为(,x1),所以,有x1x2=1,而x1≠x2则x 1+4x2=x1+x2+3x2≥>2+3=5即x1+4x2∈(5,+∞)故选:D.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,满足||=5,|2|=5,||=5,则||=.【解答】解:向量,满足,,,可得4=75,=50,可得:6+3=175.可得=.故答案为:.14.(5分)如图,茎叶图记录了甲、乙两名射击运动员的5次训练成绩(单位:环),则成绩较为稳定的那位运动员成绩的方差为2.【解答】解:根据茎叶图中的数据知,甲的成绩为87、89、90、91和93;乙的成绩为88、89、90、91和92,∴乙的成绩分布均匀些,且乙的平均成绩为=×(88+89+90+91+92)=90,方差为s2=[(88﹣90)2+(89﹣90)2+(90﹣90)2+(91﹣90)2+(92﹣90)2]=2.故答案为:2.15.(5分)在平面四边形ABCD中,∠A=∠C=90°,∠B=30°,,BC=5,则线段BD的长度为.【解答】解:AD和BC的延长线相交于E点,如图,∵∠A=∠BCD=90°,∠B=30°,,BC=5,∴BE===6,可得:CE=BE﹣BC=1,又∵∠CED=60°,∠EDC=30°,∴CD===,∴BD===.故答案为:.16.(5分)一个密闭且透明的正方体容器中装有部分液体,已知该正方体的棱长为2,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体体积的取值范围为.【解答】解:如图,要使任意转动该正方体,液面的形状都不可能是三角形,则液体的体积应大于三棱锥A1﹣ABD的体积,小于多面体BCDA1B1C1D1的体积.∵,∴.∴液体体积的取值范围为:.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.每22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记S n为数列{a n}的前n项和,已知,n∈N*.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和T n.【解答】解:(1)由,得当n=1时,a1=S1=3;当n≥2时,a n=S n﹣S n=2n2+n﹣[2(n﹣1)2+(n﹣1)]=4n﹣1.﹣1所以a n=4n﹣1.(2)==,所以=.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为等腰梯形,AD∥BC,,E,F分别为线段AD,PB的中点.(1)证明:PD∥平面CEF;(2)若PE⊥平面ABCD,PE=AB=2,求四面体P﹣DEF的体积.【解答】(1)证明:连接BE、BD,BD交CE于点O,∵E为线段AD的中点,AD∥BC,,∴BC∥ED,∴四边形BCDE为平行四边形,∴O为BD的中点,又F是BP的中点,∴OF∥PD,又OF⊂平面CEF,PD⊄平面CEF,∴PD∥平面CEF;(2)解:由(1)知,四边形BCDE为平行四边形,∴BE∥CD,∵四边形ABCD为等腰梯形,AD∥BC,,∴AB=AE=BE,∴三角形ABE是等边三角形,∴,做BH⊥AD于H,则,∵PE⊥平面ABCD,PE⊂平面P AD,∴平面P AD⊥平面ABCD,又平面P AD∩平面ABCD=AD,BH⊥AD,BH⊂平面ABCD,∴BH⊥平面P AD,∴点B到平面P AD的距离为,又∵F为线段PB的中点,∴点F到平面P AD的距离等于点B到平面P AD的距离的一半,即,又,∴=.19.(12分)2018年2月22日上午,山东省省委、省政府在济南召开山东省全面展开新旧动能转换重大工程动员大会,会议动员各方力量,迅速全面展开新旧动能转换重大工程.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了200件产品作为样本,检测一项质量指标值,若该项质量指标值落在[20,40)内的产品视为合格品,否则为不合格品.如图是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.表1:设备改造后样本的频数分布表(1)完成下面的2×2列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关;(2)根据图1和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;(3)根据市场调查,设备改造后,每生产一件合格品企业可获利180元,一件不合格品亏损100元,用频率估计概率,则生产1000件产品企业大约能获利多少元?附:【解答】解:(1)根据图1和表1得到2×2列联表:将2×2列联表中的数据代入公式计算得:=≈12.21.∵12.21>6.635,∴有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关.(2)根据图1和表1可知,设备改造后产品为合格品的概率约为,设备改造前产品为合格品的概率约为;即设备改造后合格率更高,因此,设备改造后性能更好.(3)用频率估计概率,1000件产品中大约有960件合格品,40件不合格品,180×960﹣100×40=168800,所以该企业大约获利168800元.20.(12分)如图,在平面直角坐标系xOy中,点M(2,1)在抛物线C:x2=ay上,直线l:y=kx+b(b≠0)与抛物线C交于A,B两点,且直线OA,OB的斜率之和为﹣1.(1)求a和k的值;(2)若b>1,设直线l与y轴交于D点,延长MD与抛物线C交于点N,抛物线C在点N处的切线为n,记直线n,l与x轴围成的三角形面积为S,求S 的最小值.【解答】解:(1)将点M(2,1)代入抛物线C:x2=ay,得a=4,,得x2﹣4kx﹣4b=0,设A(x1,y1),B(x2,y2),则x1+x2=4k,x1x2=﹣4b,解法一:==,由已知得,所以,k=﹣1.解法二:==,由已知得k=﹣1.(2)在直线l的方程y=﹣x+b中,令x=0得D(0,b),,直线DM的方程为:,即,由,得x2﹣2(1﹣b)x﹣4b=0,解得:x=2,或x=﹣2b,所以N(﹣2b,b2),由x2=4y,得,,切线n的斜率,切线n的方程为:y﹣b2=﹣b(x+2b),即y=﹣bx﹣b2,由,得直线l、n交点Q,纵坐标,在直线y=﹣x+b,y=﹣bx﹣b2中分别令y=0,得到与x轴的交点R(b,0),E (﹣b,0),所以=,,b∈(1,+∞),当时,函数单调递减;当时,函数单调递增;∴当时,S最小值为.21.(12分)设函数,a∈R.(1)讨论f(x)的单调性;(2)当a>0时,记f(x)的最小值为g(a),证明:g(a)<1.【解答】解:(1)f(x)的定义域为(0,+∞),==,当a≤0时,f'(x)>0,f(x)在(0,+∞)上单调递增;当a>0时,当x∈(0,a),f'(x)<0,f(x)单调递减;当x∈(a,+∞),f'(x)>0,f(x)单调递增;综上,当a≤0时,f(x)在(0,+∞)上单调递增;当a>0时,f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(2)证明:由(1)知,f(x)min=f(a)==,即.解法一:=,,∴g'(a)单调递减,又g'(1)>0,g'(2)<0,所以存在a0∈(1,2),使得g'(a0)=0,∴当a∈(0,a0)时,g'(a)>0,g(a)单调递增;当a∈(a0,+∞)时,g'(a)<0,g(a)单调递减;∴g(a)max=g(a0)=,又g'(a0)=0,即,,∴=,令t(a0)=g(a0),则t(a0)在(1,2)上单调递增,又a0∈(1,2),所以t(a0)<t(2)=2﹣1=1,∴g(a)<1.解法二:要证g(a)<1,即证,即证:,令,则只需证,=,当a∈(0,2)时,h'(a)<0,h(a)单调递减;当a∈(2,+∞)时,h'(a)>0,h(a)单调递增;所以h(a)min=h(2)=,所以h(a)>0,即g(a)<1.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,过点P(1,2)的直线l的参数方程为(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4sinθ.(1)求直线l的普通方程和曲线C的直角坐标方程;(2)若直线l与曲线C相交于M,N两点,求的值.【解答】解:(1)由已知得:,消去t得,∴化为一般方程为:,即:l:.曲线C:ρ=4sinθ得,ρ2=4ρsinθ,即x2+y2=4y,整理得x2+(y﹣2)2=4,即:C:x2+(y﹣2)2=4.(2)把直线l的参数方程(t为参数)代入曲线C的直角坐标方程中得:,即t2+t﹣3=0,设M,N两点对应的参数分别为t1,t2,则,∴===.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣2|﹣|x+2|.(1)求不等式f(x)≥6的解集;(2)当x∈R时,f(x)≥﹣x+a恒成立,求实数a的取值范围.【解答】解:(1)当x≤﹣2时,f(x)=﹣x+4,∴f(x)≥6⇒﹣x+4≥6⇒x≤﹣2,故x≤﹣2;当﹣2<x<1时,f(x)=﹣3x,∴f(x)≥6⇒﹣3x≥6⇒x≤﹣2,故x∈ϕ;当x≥1时,f(x)=x﹣4,∴f(x)≥6⇒x﹣4≥6⇒x≥10,故x≥10;综上可知:f(x)≥6的解集为(﹣∞,2]∪[10,+∞).(2)由(1)知:,【解法一】如图所示:作出函数f(x)的图象,由图象知,当x=1时,﹣1+a≤﹣3,解得:a≤﹣2,∴实数a的取值范围为(﹣∞,﹣2].【解法二】当x≤﹣2时,﹣x+4≥﹣x+a恒成立,∴a≤4,当﹣2<x<1时,﹣3x≥﹣x+a恒成立,∴a≤﹣2,当x≥1时,x﹣4≥﹣x+a恒成立,∴a≤﹣2,综上,实数a的取值范围为(﹣∞,﹣2].。

2018届山东省济南第一中学高三上学期期中考试文科数学试题及答案

2018届山东省济南第一中学高三上学期期中考试文科数学试题及答案

济南第一中学2018届高三上学期期中考试文科数学试题1. 设集合{}1|(),|12x M y y N y y ⎧⎫===≥⎨⎬⎩⎭,则集合M ,N 的关系为A.MN = B.M N ⊆ C.N M ≠⊂ D.N M ≠⊃2.下列各式中错误的是 A . 330.80.7> B . 0..50..5log 0.4log 0.6> C . 0.10.10.750.75-<D . lg1.6lg1.4>3.已知向量a =(1,2)-,b =(,2)x ,若a ⊥b ,则||b =AB .C .5D .204.若点),4(a 在21x y =的图像上,则π6tan a 的值为A. 0B.33C. 1D. 3 5."6"πα=是"212cos "=α的.A 充分不必要条件 .B 必要不充分条件.C 充分必要条件.D 既不充分也不必要条件6.函数()xx x f 2log 12-=定义域为 A. ()+∞,0 B. ()+∞,1 C. ()1,0 D. ()()+∞,11,0 7. 在△ABC 中,a b c、、分别是三内角A B C、、的对边,︒=︒=45,75C A ,2b =,则此三角形的最小边长为( )A .46 B .322C .362D .428. 命题“∈∃x R ,0123=+-x x ”的否定是A .∈∃x R ,0123≠+-x xB .不存在∈x R ,0123≠+-x xC .∈∀x R, 0123=+-x xD .∈∀x R, 0123≠+-x x9.要得到函数的图像,只需将函数的图像A.向左平移个单位 B.向右平移个单位C.向左平移个单位D.向右平移个单位 10. 函数的一个零点落在下列哪个区;间A. (0,1)B. (1,2)C. (2,3)D. (3,4) 11. 等差数列{}n a 中,已知112a =-,130S =,使得0n a >的最小正整数n 为A .7B .8C .9D .1014.在△ABC 中,内角A,B,C 对边的边长分别为,,,a b c A 为锐角,lg b +lg(c1)=lgsin A =-lg2, 则△ABC 为A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形15.若实数,a b 满足2,a b +=则33a b +的最小值是 A. 18 B.6 C.16. 在数列{}n a 中,13a =, 11ln(1)n n a a n+=++,则n a =A .3ln n +B .3(1)ln n n +-C .3ln n n +D .1ln n n ++ 17. 在△ABC中,若2,AB AB AC BA BC CA CB =⋅+⋅+⋅则△ABC是A .等边三角形 B. 锐角三角形 C. 钝角三角形 D. 直角三角形 18. 函数sin xy x=,(,0)(0,)x ππ∈- 的图象可能是下列图象中的二、填空题(54)⨯分19. ABC ∆中,如果bc a c b c b a 3))((=-+++,那么A 等于 20. 已知sin π 0()(-1)+1 >0x x f x f x x ≤⎧=⎨⎩,则5()6f 的值为 21. 若曲线x y ln =的一条切线与直线y x =-垂直,则该切线方程为 22.1111447(32)(31)n n +++=⨯⨯-+ 三、解答题23. (12)分已知向量()()2sin ,cos m x x π=--,,2sin()2n x x π⎫=-⎪⎭,函数()1f x m n =-⋅.(1)求函数()f x 的解析式; (2)求()f x 的单调递增区间.24. (14)分已知数列{}n a ,当2≥n 时满足n n n a a S -=--11,(1)求该数列的通项公式; (2)令n n a n b )1(+=,求数列{}n b 的前n 项和n T .25. (14)分已知函数()f x xlnx =, (1)求()f x 的最小值;(2)若对所有1x ≥都有()1f x ax ≥-,求实数a 的取值范围.高三数学试题(文科)答案一、 选择题DCBDA DCDDB BBCDB ADC 二、 填空题3π12 10x y --=31nn + 三、 解答题24. 解:(1) 当2≥n 时,n n na a S -=--11,则111n n n S a a ++-=-,作差得:1112n n n n a a a a +-+=-+,112n n a a -∴=.又212121211112S a a a a a a a -=---=-⇒=即,知0n a ≠,112n n a a -∴=, ∴{}n a 是首项为12,公比为12的等比数列, 1111222n n na -∴=⋅=().(2)由(1)得: 12n nn b +=, 1231234122222n n n n n T -+∴=+++++ ,234112*********n n n n n T ++∴=++++++ 23411111111222222n n n n T ++∴=+++++- , 111111334221122212n n n n n ++-⋅++=+-=--, 332n n n T +∴=-.25.解:(1)()f x 的定义域为()0,+∞, ()f x 的导数()1ln f x x '=+.令()0f x '>,解得1x e>;令()0f x '<,解得10x e<<.从而()f x 在10,e ⎛⎫ ⎪⎝⎭单调递减,在1,e⎛⎫+∞ ⎪⎝⎭单调递增.所以,当1x e=时,()f x 取得最小值11()f ee=-.(2)依题意,得()1f x ax ≥-在[)1,+∞上恒成立,即不等式1ln a x x≤+对于[)1,x ∈+∞恒成立 .令1()ln g x x x=+, 则21111()1g x xx x x ⎛⎫'=-=- ⎪⎝⎭. 当1x >时,因为11()10g x x x ⎛⎫'=-> ⎪⎝⎭,故()g x 是()1,+∞上的增函数, 所以()g x 的最小值是(1)1g =, 所以a 的取值范围是(],1-∞.。

山东省济南市2017-2018学年高考数学一模试卷(文科) Word版含解析

山东省济南市2017-2018学年高考数学一模试卷(文科) Word版含解析

2017-2018学年山东省济南市高考数学一模试卷(文科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z满足z•(2+i)=10﹣5i(i为虚数单位),则z的共轭复数为()A.﹣3+4i B.﹣3﹣4i C.3+4i D.3﹣4i2.已知集合M={x|﹣x≤x<3},集合N={x|y=},则M∪N=()A.M B.N C.{x|﹣1≤x≤2}D.{x|﹣3≤x<3}3.某校高三(1)班共有48人,学号依次为1,2,3,…,48,现用系统抽样的办法抽取一个容量为6的样本.已知学号为3,11,19,35,43的同学在样本中,那么还有一个同学的学号应为()A.27 B.26 C.25 D.244.已知直线ax+by=1经过点(1,2),则2a+4b的最小值为()A.B.2C.4 D.45.设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个:①若m∥n,m⊥β,则n⊥β;②若m∥α,m∥β,则α∥β;③若m∥n,m∥β,则n∥β;④若m⊥α,m⊥β,则α⊥β其中真的个数为()A.1 B.2 C.3 D.46.已知p:∃x0∈R,使sinx0=;q:∀x∈(0,),x>sinx,则下列判断正确的是()A.p为真B.¬q为假C.p∧q为真D.p∨q为假7.函数f(x)=2sin(ωx+φ)(w>0,|φ|<)的部分图象如图所示,则f(0)+f()的值为()A.2﹣B.2+C.1﹣D.1+8.已知x,y满足约束条件,则z=的范围是()A.[,2]B.B[﹣,]C.[,]D.[,]9.已知函数f(x)=ax2﹣bx2+x,连续抛掷两颗骰子得到的点数分别是a,b,则函数f (x)在x=1处取得最值的概率是()A.B.C.D.10.已知抛物线y2=2px(p>0),△ABC的三个顶点都在抛物线上,O为坐标原点,设△ABC三条边AB,BC,AC的中点分别为M,N,Q,且M,N,Q的纵坐标分别为y1,y2,y3.若直线AB,BC,AC的斜率之和为﹣1,则++的值为()A.﹣B.﹣C.D.二、填空题:(本题共5小题,每题5分,共25分)11.设ln3=a,ln7=b,则e a+e b=_______.(其中e为自然对数的底数)12.已知向量,,其中||=,||=2,且(﹣)⊥,则向量和的夹角是_______.13.已知过点(2,4)的直线l被圆C:x2+y2﹣2x﹣4y﹣5=0截得的弦长为6,则直线l的方程为_______.14.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为_______.(参考数据:sin15°=0.2588,sin7.5°=0.1305)15.已知函数f(x)=,g(x)=kx+1,若方程f(x)﹣g(x)=0有两个不同实根,则实数k的取值范围为_______.三、解答题:本大题共6小题,共75分16.近日,济南楼市迎来去库存一系列新政,其中房产税收中的契税和营业税双双下调,对住房市场持续增长和去库存产生积极影响.某房地产公司从两种户型中各拿出9套进行促销活动,其中A户型每套面积100平方米,均价1.1万元/平方米,B户型每套面积80平方米,1.2/18/平方米):(II)张先生想为自己和父母买两套售价小于100万元的房子,求至少有一套面积为100平方米的概率.17.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+a=2b(Ⅰ)求角C的值;(Ⅱ)若c=2,且△ABC的面积为,求a,b.18.如图,四棱锥P﹣ABCD的底面为正方形,侧面PAD⊥底面ABCD,PA⊥AD,E,E,H分别为AB,PC,BC的中点(Ⅰ)求证:EF∥平面PAD;(Ⅱ)求证:平面PAH⊥平面DEF.19.已知数列{a n}为公差不为零的等差数列,其前n项和为S n,满足S5﹣2a2=25,且a1,a4,a13恰为等比数列{b n}的前三项(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设T n是数列{}的前n项和,是否存在k∈N*,使得等式1﹣2T k=成立,若存在,求出k的值;若不存在,说明理由.20.设椭圆C: +=1(a>b>0),定义椭圆C的“相关圆”方程为x2+y2=.若抛物线y2=4x的焦点与椭圆C的一个焦点重合,且椭圆C短轴的一个端点和两个焦点构成直角三角形(Ⅰ)求椭圆C的方程和“相关圆”E的方程;(Ⅱ)过“相关圆”E上任意一点P的直线l:y=kx+m与椭圆交于A,B两点,O为坐标原点,若OA⊥OB,证明原点O到直线AB的距离为定值,并求m的取值范围.21.设函数f(x)=ax2+b(lnx﹣x),g(x)=﹣2+(1﹣b)x,已知曲线y=f(x)在点(1,f(1))处的切线与直线x﹣y+1=0垂直.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值点;(Ⅲ)若对于任意b∈(1,+∞),总存在x1,x2∈[1,b],使得f(x1)﹣f(x2)﹣1>g(x1)﹣g(x2)+m成立,求实数m的取值范围.2016年山东省济南市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z满足z•(2+i)=10﹣5i(i为虚数单位),则z的共轭复数为()A.﹣3+4i B.﹣3﹣4i C.3+4i D.3﹣4i【考点】复数代数形式的乘除运算.【分析】由z•(2+i)=10﹣5i,得z=,再由复数代数形式的乘除运算化简复数z,则z的共轭复数可求.【解答】解:由z•(2+i)=10﹣5i,得=3﹣4i,则z的共轭复数=3+4i.故选:C.2.已知集合M={x|﹣x≤x<3},集合N={x|y=},则M∪N=()A.M B.N C.{x|﹣1≤x≤2}D.{x|﹣3≤x<3}【考点】并集及其运算.【分析】分别求出集合M、N的范围,从而求出其并集即可.【解答】解:集合M={x|﹣x≤x<3}={x|0≤x<3},集合N={x|y=}={x|﹣3≤x≤2},则M∪N={x|﹣3≤x<3},故选:D.3.某校高三(1)班共有48人,学号依次为1,2,3,…,48,现用系统抽样的办法抽取一个容量为6的样本.已知学号为3,11,19,35,43的同学在样本中,那么还有一个同学的学号应为()A.27 B.26 C.25 D.24【考点】系统抽样方法.【分析】根据系统抽样的特征,从48名学生从中抽取一个容量为6的样本,则系统抽样的分段间隔为8,可求得余下的同学的编号.【解答】解:∵从48名学生从中抽取一个容量为6的样本,∴系统抽样的分段间隔为=8,∵学号为3,11,19,35,43的同学在样本中,∴抽取的另一个同学的学号应为27,故选:A.4.已知直线ax+by=1经过点(1,2),则2a+4b的最小值为()A.B.2C.4 D.4【考点】基本不等式.【分析】直线ax+by=1经过点(1,2),可得:a+2b=1.再利用基本不等式的性质、指数的运算性质即可得出.【解答】解:∵直线ax+by=1经过点(1,2),∴a+2b=1.则2a+4b≥==2,当且仅当时取等号.故选:B.5.设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个:①若m∥n,m⊥β,则n⊥β;②若m∥α,m∥β,则α∥β;③若m∥n,m∥β,则n∥β;④若m⊥α,m⊥β,则α⊥β其中真的个数为()A.1 B.2 C.3 D.4【考点】的真假判断与应用.【分析】①根据线面垂直的性质定理进行判断.②根据线面平行的判定定理进行判断.③根据线面平行的判定定理进行判断.④根据线面垂直和面面垂直的判定定理进行判断.【解答】解:①若m∥n,m⊥β,则n⊥β成立,故①正确;②若m∥α,m∥β,则α∥β不一定成立,有可能相交,故②错误;③若m∥n,m∥β,则n∥β或n⊂β;故③错误,④若m⊥α,m⊥β,则α∥β,故④错误,故正确的是①,故选:A6.已知p:∃x0∈R,使sinx0=;q:∀x∈(0,),x>sinx,则下列判断正确的是()A.p为真B.¬q为假C.p∧q为真D.p∨q为假【考点】复合的真假.【分析】分别判断出p,q的真假,从而判断出复合的真假即可.【解答】解:∀x∈R,都有sinx≤1,故p:∃x0∈R,使sinx0=是假;令f(x)=x﹣sinx,f′(x)=1+cosx>0,y=f(x)在区间(0,)上单调递增,∴f(x)>f(0)=0,故q:∀x∈(0,),x>sinx是真,故B正确,故选:B.7.函数f(x)=2sin(ωx+φ)(w>0,|φ|<)的部分图象如图所示,则f(0)+f()的值为()A.2﹣B.2+C.1﹣D.1+【考点】正弦函数的图象.【分析】根据函数f(x)的部分图象,求出周期T与ω的值,再计算φ的值,写出f(x)的解析式,从而求出f(0)+f()的值.【解答】解:根据函数f(x)=2sin(ωx+φ)(w>0,|φ|<)的部分图象,得T=﹣(﹣)=,又T==π,∴ω=2;当x=﹣时,函数f(x)取得最小值﹣2,∴2×(﹣)+φ=﹣+2kπ,k∈Z,解得φ=﹣+2kπ,k∈Z,又|φ|<,∴φ=﹣,∴f(x)=2sin(2x﹣);∴f(0)+f()=2sin(﹣)+2sin(2×﹣)=2×(﹣)+2sin=2﹣.故选:A.8.已知x,y满足约束条件,则z=的范围是()A.[,2]B.B[﹣,]C.[,]D.[,]【考点】简单线性规划.【分析】画出满足条件的平面区域,求出角点的坐标,根据z=的几何意义求出z的范围即可.【解答】解:画出满足条件的平面区域,如图示:,由,解得A(1,2),由,解得B(3,1),而z=的几何意义表示过平面区域内的点与(﹣1,﹣1)的直线的斜率,显然直线AC斜率最大,直线BC斜率最小,K AC==,K BC==,故选:C.9.已知函数f(x)=ax2﹣bx2+x,连续抛掷两颗骰子得到的点数分别是a,b,则函数f (x)在x=1处取得最值的概率是()A.B.C.D.【考点】利用导数求闭区间上函数的最值.【分析】所有的(a,b)共计6×6=36个,函数f′(x)=ax2﹣bx在x=1处取得最值等价于f″(1)=2a﹣b=0,用列举法求得满足条件的(a,b)有3个,再根据概率公式计算即可.【解答】解:连续抛掷两颗骰子得到的点数分别是a,b,共有36种等可能事件,∵f(x)=ax3﹣bx2+x,∴f′(x)=ax2﹣bx+1,∵函数f′(x)=ax2﹣bx+1在x=1处取得最值,∴f″(x)=2ax﹣b,∴f″(1)=2a﹣b=0,即2a=b,满足的基本事件有(1,2),(2,4),(3,6),共3种,故函数f′(x)在x=1处取得最值的概率为=,故选:C.10.已知抛物线y2=2px(p>0),△ABC的三个顶点都在抛物线上,O为坐标原点,设△ABC三条边AB,BC,AC的中点分别为M,N,Q,且M,N,Q的纵坐标分别为y1,y2,y3.若直线AB,BC,AC的斜率之和为﹣1,则++的值为()A.﹣B.﹣C.D.【考点】抛物线的简单性质.【分析】设AB,BC,AC的方程,联立方程组消元,利用根与系数的关系解出y1,y2,y3,根据斜率之和为﹣1化简++即可得出答案.【解答】解:设AB的方程为x=m1y+t1,BC的方程为x=m2y+t2,AC的方程为x=m3y+t3,联立方程组,消元得:y2﹣2pm1y﹣2pt1=0,∴y1=pm1,同理可得:y2=pm2,y3=pm3,∵直线AB,BC,AC的斜率之和为﹣1,∴++=﹣1.∴则++=++=(++)=﹣.故选:B.二、填空题:(本题共5小题,每题5分,共25分)11.设ln3=a,ln7=b,则e a+e b=10.(其中e为自然对数的底数)【考点】对数的运算性质.【分析】使用对数恒等式解出.【解答】解:∵ln3=a,ln7=b,∴e a=3,e b=7,∴e a+e b=10.故答案为10.12.已知向量,,其中||=,||=2,且(﹣)⊥,则向量和的夹角是.【考点】平面向量数量积的运算.【分析】利用向量垂直的数量积为0列出方程;利用向量的平方等于向量模的平方及向量的数量积公式将方程用模与夹角表示求出夹角.【解答】解:设两个向量的夹角为θ,∵||=,||=2,且(﹣)⊥,∴(﹣)•=||2﹣•=||2﹣||•||cosθ=3﹣2cosθ=0,解得cosθ=,∵0≤θ≤π,∴θ=,故答案为:.13.已知过点(2,4)的直线l被圆C:x2+y2﹣2x﹣4y﹣5=0截得的弦长为6,则直线l的方程为x﹣2=0或3x﹣4y+10=0.【考点】直线与圆的位置关系.【分析】设过点(2,4)的直线l的方程为y=k(x﹣2)+4,求出圆C的圆心C(1,2),半径r=,圆心C(1,2)到直线l的距离d,由此能求出直线l的方程;当直线l的斜率不存在时,直线l的方程为x=2也满足条件.由此能求出直线l的方程.【解答】解:设过点(2,4)的直线l的方程为y=k(x﹣2)+4,圆C:x2+y2﹣2x﹣4y﹣5=0的圆心C(1,2),半径r==,圆心C(1,2)到直线l的距离d==,∵过点(2,4)的直线l被圆C:x2+y2﹣2x﹣4y﹣5=0截得的弦长为6,∴由勾股定理得:,即,解得k=,∴直线l的方程为y=(x﹣2)+4,即3x﹣4y+10=0,当直线l的斜率不存在时,直线l的方程为x=2,圆心C(1,2)到直线x=2的距离d=1,满足,故x﹣2=0是直线l的方程.综上,直线l的方程为x﹣2=0或3x﹣4y+10=0.故答案为:x﹣2=0或3x﹣4y+10=0.14.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为24.(参考数据:sin15°=0.2588,sin7.5°=0.1305)【考点】程序框图.【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故答案为:24.15.已知函数f(x)=,g(x)=kx+1,若方程f(x)﹣g(x)=0有两个不同实根,则实数k的取值范围为(,1)∪(1,e﹣1].【考点】根的存在性及根的个数判断;函数的零点与方程根的关系.【分析】方程f(x)﹣kx=1有两个不同实根可化为函数f(x)与函数y=kx+1有两个不同的交点,作函数f(x)与函数y=kx+1的图象,结合函数的图象求解.【解答】解:∵g(x)=kx+1,∴方程f(x)﹣g(x)=0有两个不同实根等价为方程f(x)=g(x)有两个不同实根,即f(x)=kx+1,则等价为函数f(x)与函数y=kx+1有两个不同的交点,当1<x≤2,则0<x﹣1≤1,则f(x)=f(x﹣1)=e x﹣1,当2<x≤3,则1<x﹣1≤2,则f(x)=f(x﹣1)=e x﹣2,当3<x≤4,则2<x﹣1≤3,则f(x)=f(x﹣1)=e x﹣3,…当x>1时,f(x)=f(x﹣1),周期性变化;函数y=kx+1的图象恒过点(0,1);作函数f(x)与函数y=kx+1的图象如下,C(0,1),B(2,e),A(1,e);故k AC=e﹣1,k BC=;在点C处的切线的斜率k=e0=1;结合图象可得,实数k的取值范围为(,1)∪(1,e﹣1];故答案为:三、解答题:本大题共6小题,共75分16.近日,济南楼市迎来去库存一系列新政,其中房产税收中的契税和营业税双双下调,对住房市场持续增长和去库存产生积极影响.某房地产公司从两种户型中各拿出9套进行促销活动,其中A户型每套面积100平方米,均价1.1万元/平方米,B户型每套面积80平方米,1.2/18/平方米):(II)张先生想为自己和父母买两套售价小于100万元的房子,求至少有一套面积为100平方米的概率.【考点】列举法计算基本事件数及事件发生的概率;分层抽样方法.【分析】(Ⅰ)由已知利用平均数公式能求出a,b.(Ⅱ)A户型小于100万的有2套,B户型小于100万的有4套,先求出买两套售价小于100万的房子所含基本事件总数,再列举法求出事件A=“至少有一套面积为100平方米住房所含基本事件个数,由此能求出至少有一套面积为100平方米的概率.【解答】解:(Ⅰ)由已知得:(0.98+0.99+1.06+1.17+1.10+1.21+a+1.09+1.14)=1.1,解得a=1.16,(1.08+1.11+1.12+b+1.26+1.27+1.26+1.25+1.28)=1.2,解得b=1.17.…(Ⅱ)A户型小于100万的有2套,设为A1,A2,B户型小于100万的有4套,设为B1,B2,B3,B4…买两套售价小于100万的房子所含基本事件总数为=15,…令事件A=“至少有一套面积为100平方米住房”,则A中所含基本事件有{A1,A2},{A1,B1},{A1,B2},{A1,B3},{A1,B4},{A2,B1},{A2,B2},{A2,B3},{A2,B4},共9个…∴P(A)=,∴至少有一套面积为100平方米的概率为..17.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+a=2b(Ⅰ)求角C的值;(Ⅱ)若c=2,且△ABC的面积为,求a,b.【考点】正弦定理;余弦定理.【分析】(Ⅰ)利用两角和的正弦函数公式,正弦定理,三角形内角和定理化简已知等式可得sinA=2sinAcosC,由于sinA≠0,解得,又C是三角形的内角,即可得解C的值.(Ⅱ)利用三角形面积公式可求ab=4,又由余弦定理可解得a+b=4,联立即可解得a,b的值.【解答】(本题满分为12分)解:(Ⅰ)∵2ccosA+a=2b,∴2sinCcosA+sinA=2sinB,…∴2sinCcosA+sinA=2sin(A+C),即2sinCcosA+sinA=2sinAcosC+2cosAsinC,∴sinA=2sinAcosC,∴,又∵C是三角形的内角,∴…(Ⅱ)∵,∴,∴ab=4,…又∵c2=a2+b2﹣2abcosC,∴4=(a+b)2﹣2ab﹣ab,∴a+b=4,∴a=b=2.…18.如图,四棱锥P﹣ABCD的底面为正方形,侧面PAD⊥底面ABCD,PA⊥AD,E,E,H分别为AB,PC,BC的中点(Ⅰ)求证:EF∥平面PAD;(Ⅱ)求证:平面PAH⊥平面DEF.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(Ⅰ)取CD中点N,连接FN,EN,则FN∥PD,EN∥AD,故而平面EFN∥平面PAD,所以EF∥平面PAD;(Ⅱ)由侧面PAD⊥底面ABCD可得PA⊥平面ABCD,故PA⊥DE,由正方形的性质可得DE⊥AH,故DE⊥平面PAH,于是平面PAH⊥平面DEF.【解答】证明:(Ⅰ)取CD中点N,连接FN,EN.∵在△CPD中,F,N为中点,∴FN∥PD.∵正方形ABCD中,E,N为中点,∴EN∥AD,∵EN⊂平面EFN,FN⊂平面EFN,EN∩FN=N,PD⊂平面PAD,AD⊂平面PAD,PD∩AD=D,∴平面EFN∥平面PAD,∵EF⊂平面EFN,∴EF∥平面PAD.(Ⅱ)∵侧面PAD⊥底面ABCD,PA⊥AD,侧面PAD∩底面ABCD=AD,∴PA⊥底面ABCD,∵DE⊂底面ABCD,∴DE⊥PA,∵E,H分别为正方形ABCD边AB,BC中点,∴Rt△ABH≌Rt△ADE,则∠BAH=∠ADE,∴∠BAH+∠AED=90°,则DE⊥AH,∵PA⊂平面PAH,AH⊂平面PAH,PA∩AH=A,∴DE⊥平面PAH,∵DE⊂平面EFD,∴平面PAH⊥平面DEF.19.已知数列{a n}为公差不为零的等差数列,其前n项和为S n,满足S5﹣2a2=25,且a1,a4,a13恰为等比数列{b n}的前三项(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设T n是数列{}的前n项和,是否存在k∈N*,使得等式1﹣2T k=成立,若存在,求出k的值;若不存在,说明理由.【考点】数列的求和;数列递推式.【分析】(I)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;(II)利用“裂项求和”与数列的单调性即可得出.【解答】解:(Ⅰ)设等差数列{a n}的公差为d(d≠0),∴,解得a1=3,d=2,∵b1=a1=3,b2=a4=9,∴.(Ⅱ)由(I)可知:a n=3+2(n﹣1)=2n+1.,∴=,∴,单调递减,得,而,所以不存在k∈N*,使得等式成立.20.设椭圆C: +=1(a>b>0),定义椭圆C的“相关圆”方程为x2+y2=.若抛物线y2=4x的焦点与椭圆C的一个焦点重合,且椭圆C短轴的一个端点和两个焦点构成直角三角形(Ⅰ)求椭圆C的方程和“相关圆”E的方程;(Ⅱ)过“相关圆”E上任意一点P的直线l:y=kx+m与椭圆交于A,B两点,O为坐标原点,若OA⊥OB,证明原点O到直线AB的距离为定值,并求m的取值范围.【考点】椭圆的简单性质.【分析】(Ⅰ)由抛物线y2=4x的焦点为(1,0)与椭圆C的一个焦点重合,椭圆C短轴的一个端点和其两个焦点构成直角三角形,得到b=c=1,由此能求出椭圆C的方程和“相关圆”E 的方程.(Ⅱ)联立方程组得(1+2k2)x2+4kmx+2m2﹣2=0,由此利用根的判别式、韦达定理、点到直线距离公式,结合已知条件能证明原点O到直线AB的距离为定值,并能求出m的取值范围.【解答】解:(Ⅰ)因为若抛物线y2=4x的焦点为(1,0)与椭圆C的一个焦点重合,所以c=1又因为椭圆C短轴的一个端点和其两个焦点构成直角三角形,所以b=c=1故椭圆C的方程为,“相关圆”E的方程为…证明:(Ⅱ)设A(x1,y1),B(x2,y2)联立方程组得(1+2k2)x2+4kmx+2m2﹣2=0△=16k2m2﹣4(1+2k2)(2m2﹣2)=8(2k2﹣m2+1)>0,即2k2﹣m2+1>0…,由条件OA⊥OB得3m2﹣2k2﹣2=0…所以原点O到直线l的距离是由3m2﹣2k2﹣2=0得为定值.…此时要满足△>0,即2k2﹣m2+1>0,又,即,所以,即或…21.设函数f(x)=ax2+b(lnx﹣x),g(x)=﹣2+(1﹣b)x,已知曲线y=f(x)在点(1,f(1))处的切线与直线x﹣y+1=0垂直.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值点;(Ⅲ)若对于任意b∈(1,+∞),总存在x1,x2∈[1,b],使得f(x1)﹣f(x2)﹣1>g(x1)﹣g(x2)+m成立,求实数m的取值范围.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,得到f′(1)=2a=﹣1,求出a的值即可;(Ⅱ)求出f(x)的导数,结合二次函数的性质,通过讨论b的范围,确定函数的单调区间,求出函数的极值点即可;(Ⅲ)令F(x)=f(x)﹣g(x),x∈[1,b],求出F(x)的导数,得到F(x)max﹣F(x)min=F(b)﹣F(1)=blnb﹣b+1,问题转化为即blnb﹣b>m对任意b∈(1,+∞)成立.构造函数:t(b)=blnb﹣b,b∈[1,+∞),通过讨论函数t(b)的单调性,求出m的范围即可.【解答】解:(Ⅰ),所以k=f'(1)=2a=﹣1,所以…(Ⅱ),其定义域为(0,+∞),,令h(x)=﹣x2﹣bx+b,x∈(0,+∞)△=b2+4b(i)当﹣4≤b≤0时,△=b2+4b≤0,有h(x)≤0,即f'(x)≤0,所以f(x)在区间(0,+∞)上单调递减,故f(x)在区间(0,+∞)无极值点;(ii)当b<﹣4时,△>0,令h(x)=0,有,,x2>x1>0,当x∈(0,x1)时,h(x)<0,即f'(x)<0,得f(x)在(0,x1)上递减;当x∈(x1,x2)时,h(x)>0,即f'(x)>0,得f(x)在(x1,x2)上递增;当x∈(x2,+∞)时,h(x)<0,即f'(x)<0,得f(x)在(x2,+∞)上递减.此时f(x)有一个极小值点和一个极大值点.(iii)当b>0时,△>0,令h(x)=0,有,,当x∈(0,x2)时,h(x)>0,即f'(x)>0,得f(x)在(0,x2)上递增;当x∈(x2,+∞)时,h(x)<0,即f'(x)<0,得f(x)在(x2,+∞)上递减.此时f(x)唯一的极大值点,无极小值点.综上可知,当b<﹣4时,函数f(x)有一个极小值点和一个极大值点.当﹣4≤b≤0时,函数f(x)在(0,+∞)上有无极值点;当b>0时,函数f(x)有唯一的极大值点,无极小值点;…(III)令F(x)=f(x)﹣g(x),x∈[1,b],则F(x)==blnx﹣x若总存在x1,x2∈[1,b],使得f(x1)﹣f(x2)﹣1>g(x1)﹣g(x2)+m成立,即总存在x1,x2∈[1,b],使得f(x1)﹣g(x1)>f(x2)﹣g(x2)+m+1成立,即总存在x1,x2∈[1,b],使得F(x1)﹣F(x2)>m+1成立,即F(x)max﹣F(x)min>m+1,因为x∈[1,b],所以F'(x)≥0,即F(x)在[1,b]上单调递增,所以F(x)max﹣F(x)min=F(b)﹣F(1)=blnb﹣b+1,即blnb﹣b+1>m+1对任意b∈(1,+∞)成立,即blnb﹣b>m对任意b∈(1,+∞)成立.构造函数:t(b)=blnb﹣b,b∈[1,+∞),t'(b)=lnb,当b∈[1,+∞)时,t'(b)≥0,∴t(b)在[1,+∞)上单调递增,∴t(b)min=t(1)=﹣1.∴对于任意b∈(1,+∞),∴t(b)>t(1)=﹣1.所以m≤﹣1…2016年9月12日。

推荐-山东省济南市2018—2018学年度第一学期高三统一

推荐-山东省济南市2018—2018学年度第一学期高三统一

山东省济南市2018—2018学年度第一学期高三统一考试数学试题(文史类)第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题。

每小题5分;共60分。

在每题给出的四个选项中,只有一项是符合题目要求的。

) 1.a 表示“处理框”,b 表示“输入、输出框”,c 表示“起、止框”,d 表示“判断框”,以下 四个图形依次为 ( ) A .abcd B .dcab C .bacd D .cbad2.已知f (x )=x 2-4x +5在区间[0,5]上的最小值、最大值分别为a 、b ,则(a ,b )是 ( ) A .(1,5) B .(1,10) C .(5,10) D .(2,1) 3.sin20°cos70°+sin10°sin50°= ( )A .41B .23 C .21 D .43 4.已知集合M={1,a 2},P={-a ,-1},若M ∪P 的元素个数为3,则M ∩P= ( ) A .{0,1} B .{0,-1} C .{0} D .{-1}5.要从165人中抽取15人进行身体健康检查,现采用分层抽样法进行抽取,若这165人中, 老年人为22人,则老年人中被抽取参加健康检查的人数为 ( ) A .5 B .4 C .3 D .2 6.设a =40.9,b=80.48,c=31.8,则有 ( ) A .a <b<c B .c>a >b C .b>a >c D .a >c>b 7.设a =(m+1)i -3j ,b =i +(m -1)j , (a +b )⊥(a -b ),则m = ( ) A .2 B .-2 C .3 D .-3 8.已知直线l :x -2y -3=0,则直线l 的倾斜角为 ( )A .arctan2B .arctan21 C .π-arctan 21 D .π-arctan29.以下程序运行后输出结果为( )A .12B .11C .132D .13110.圆),2(01sin 12222Z k k y x y x ∈+≠=-+=+ππθθ与直线的位置关系是 ( )A .相离B .相切C .相交D .不能确定11.已知奇函数f (x )、g(x ),若f (x )>0的解集为(1,3),g(x )>0的解集为(21,23),则 g(x )> f (x )>0的解集为( )A .(1,23)B .(21,23)C .(1,23)∪(-23,-1) D .(23,3)∪(-3,-23) 12.用若干个大小相同,棱长为1的正方体摆成一个立体模型,其三视图如下根据三视图回答此立体模型共有正方体个数为 ( )A .4B .5C .6D .7第Ⅱ卷(共54分)二、填空题:本大题共4小题.每小题4分,共16分.把答案填在题中横线上. 13.若)cos(),2,2(,31)sin(απππαα+-∈=-则= . 14.函数)2||,0,0)(sin()(πϕωϕω<>>+=A x A x f 其中的部分图象如图所示,则f (x )的解析式为 .15.已知函数y=f (x )的反函数是f -1(x )=1+log 3x ,则f (x )= .16.已知m 、n 是不同的直线,α、β是不重合的平面,给出下列命题:①若m //α,则m 平行于平面α内的任意一条直线;②若α//β,m ⊂α,n ⊂β,则m //n ;③若m ⊥α,n ⊥β,m ∥n ,则α∥β;④若α∥β,m ⊂α,则m //β上面的命题中,真命题的序号是 (写出所有真命题的序号).三、解答题:本大题共6个小题.共74分.解答应写出文字说明,证明过程或演算步骤。

山东省济南第一中学2018届高三上学期1月月考数学(文)试题+Word版含解析

山东省济南第一中学2018届高三上学期1月月考数学(文)试题+Word版含解析

济南一中高三年级2018新年学业检测济南一中高三年级2018新年学业检测数学试题(文科)第I卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则=()A. B. C. D.【答案】A【解析】根据题意,集合,而,则,则,故选A.2. 在复平面内,复数对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】,∴复数对应的点位于第二象限故选:B点睛:复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把的幂写成最简形式.3. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了()A. 60里B. 48里C. 36里D. 24里【答案】C【解析】试题分析:由题意知,此人每天走的里数构成公比为的等比数列,设等比数列的首项为,则有,,,所以此人第天和第天共走了里,故选C.考点:1、阅读能力及建模能力;2、等比数列的通项及求和公式.4. 从数字,,,,中任取个,组成一个没有重复数字的两位数,则这个两位数大于的概率是()A. B. C. D.【答案】C【解析】从数字1,2,3,4,5中任取2个,组成一个没有重复数字的两位数共有=20个,其中这个两位数小于30的个数为=8个(十位1,2中任选1个,个位其余4个数选1个),故所求概率P=1﹣=故选:C5. 执行如图所示的程序框图,如果输入,则输出的值为A. 6B. 8C. 10D. 12【答案】C【解析】试题分析:模拟执行程序,可得:;;不满足条件;不满足条件;不满足条件;不满足条件,此时满足条件,推出循环,输出的值为,故选C.考点:程序框图.6. 若变量x,y满足则x2+y2的最大值是()A. 4B. 9C. 10D. 12【答案】C【解析】试题分析:画出可行域,点A(3,1)到原点距离最大,所以,选C.【考点】简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力. 7. 直线与圆相切,则()A. 或B. 或C. 或D. 或【答案】D【解析】∵直线与圆心为(1,1),半径为1的圆相切,∴=1或12,故选D.考点:本题主要考查利用圆的一般方程求圆的圆心和半径,直线与圆的位置关系,以及点到直线的距离公式的应用.8. 已知函数,则下列结论中正确的是A. 函数的最小正周期为B. 函数的图象关于点对称C. 由函数的图象向右平移个单位长度可以得到函数的图象D. 函数在区间上单调递增【答案】C【解析】对于函数,它的最小正周期为=π,故排除A;令x=,求得f(x)=,故函数f(x)的图象不关于点对称;故排除B;把函数的图象向右平移个单位长度,可以得到函数y=sin2(x﹣)+]=sin2x的图象,故C满足条件;在区间上,∈(,),函数f(x)单调递减,故排除D,故选:C.。

山东省济南市2018届高考数学3月模拟考试文 精品推荐

山东省济南市2018届高三3月高考模拟考试数学(文史类)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分180分.考试时间180分钟.考试结束后将答题卡交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:柱体体积公式:V=Sh ,其中S 为柱体底面的面积,h 为柱体的高.第Ⅰ卷(共60分)一、 选择题:本大题共18个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合U ={1,2,3,4,5,6,7},A ={1,2,4},B ={1,3,5},则A ∩U B = A. {2,4,6} B. {1,3,5} C. {3,5} D. {2,4}2. 直线1l :kx -y -3=0和2l :x +(2k +3)y -2=0互相垂直,则k = A. -3 B. -2 C. -12或-1D.12或1 3. 复数55i 12i+的虚部是高考资源网A. -1B. 1C. iD. -i4. 若a >b >0,则下列不等式不.成立的是A. a b +<B. 1122a b > C. ln a >ln b D. 0.30.3a b < 5. 某程序的框图如图所示,则运行该程序后输出的B 的值是 A. 5 B. 18 C. 23D. 476. 已知α为锐角,cos α=55,则tan π24α⎛⎫+ ⎪⎝⎭= A. -3B. - 17C. -43D. -7 7. 若实数x ,y满足条件 ,目标函数z =x +y ,则A. z max =0B. z max =52C. z min =52D. z max =38. 若一个螺栓的底面是正六边形,它的主视图和俯视图如图所 示,则它的体积是ππ+3π9. 已知函数f (x )= ,若0x 是y =()f x 的 第8题图零点,且0<t <0x ,则f(t)A. 恒小于0B. 恒大于0C. 等于0D. 不大于018. 设α、β是两个不同的平面,m 、n 是平面α内的两条不同直线,l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是A. m ∥1l 且n ∥2lB. m ∥β且n ∥2lC. m ∥β且n ∥βD. m ∥β且1l ∥α18. 设函数y =f (x )与函数y =g (x )的图象如右图所示,则函数y =f (x ) ·g (x )的图象可能是 第18题图18. 下列命题:① 若函数2()23f x x x =-+,x ∈[-2,0]的最小值为2;② 线性回归方程对应的直线ˆˆˆybx a =+至少经过其样本数据点(1x ,1y ),(2x ,2y ),…,(n x ,n y )中的一个点;③ 命题p :∃x ∈R ,使得210x x ++<则⌝p :∀ x ∈R ,均有x 2+x +1≥0;④ 若x 1,x 2,…,x 18的平均数为a ,方差为b ,则x 1+5,x 2+5,…,x 18+5的平均数为a +5,方差为b +25.其中,错误..命题的个数为 A. 0 B. 1 C. 2 D. 3山东省济南市2018届高三3月高考模拟考试32x x -21log (0)3x x x ⎛⎫-> ⎪⎝⎭(x ≤0)x +2y -5≤0 2x +y -4≤0x ≥0y ≥1第5题图π数学(文史类)第Ⅱ卷(非选择题 共90分)注意事项:1. 第Ⅱ卷共2页, 所有题目的答案考生须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试卷上; 如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.作图时,可用2B 铅笔,要字体工整,笔迹清晰.在草稿纸上答题无效.考试结束后将答题卡上交.2. 答卷前将密封线内的项目填写清楚,密封线内答题无效. 二、 填空题:本大题共4个小题,每小题4分,共18分.18. 在△ABC 中,sin 2C sin A sin B +sin 2B ,a b ,则角C = .18. 在等比数列{a n }中,a n >0(n ∈N ﹡),且a 6-a 4=24,a 3a 5=64,则{a n }的前6项和是高考资源网.18. 过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF (O 为原点)的垂直平分线上,则双曲线的离心率为 .18. 观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+18=49 ……照此规律,第n 个等式为 .三、 解答题:本大题共6个小题.共74分.解答应写出文字说明、证明过程或演算步骤. 18. (本小题满分18分)已知等差数列{a n }的前n 项和为S n ,S 5=35,a 5和a 7的等差中项为18. (Ⅰ) 求a n 及S n ; (Ⅱ) 令241n n b a =-(n ∈N ﹡),求数列{b n }的前n 项和T n . 18. (本小题满分18分)已知向量m =(2cos ωx ,-1),n =(sin ωx -cos ωx ,2),函数f (x )= m ·n +3的周期为π.(Ⅰ) 求正数ω; (Ⅱ) 若函数f (x )的图像向左平移π8,倍,得到函数g (x )的图像,求函数g (x )的单调增区间.19. (本小题满分18分)山东省《体育高考方案》于2018年2月份公布,方案要求以学校为单位进行体育测试,某校对高三1班同学按照高考测试项目按百分制进行了预备测试,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~180分数段的人数为2人. (Ⅰ) 请估计一下这组数据的平均数M ;(Ⅱ) 现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成一个小组.若选出的两人成绩差大于20,则称这两人为“帮扶组”,试求选出的两人为“帮扶组”的概率.20. (本小题满分18分)如图,在正三棱柱ABC -A 1B 1C 1中,底面ABC 为正三角形,M 、N 、G 分别是棱CC 1、AB 、BC 的中点.且CC 1AC .(Ⅰ) 求证:CN //平面 AMB 1;(Ⅱ) 求证:B 1M ⊥平面AMG .21. (本小题满分18分) 第20题图济南市“两会”召开前,某政协委员针对自己提出的“环保提案”对某处的环境状况进行了实地调研.据测定,该处的污染指数与附近污染源的强度成正比,与到污染源的距离成反比,比例常数为k (k >0).现已知相距36 km 的A ,B 两家化工厂(污染源)的污染强度分别为正数a ,b ,它们连线上任意一点C 处的污染指数y 等于两化工厂对该处的污染指数之和.设AC =x (km).(Ⅰ) 试将y 表示为x 的函数;(Ⅱ) 若a =1时,y 在x =6处取得最小值,试求b 的值.22. (本小题满分18分)已知中心在原点O ,焦点F 1、F 2在x 轴上的椭圆E 经过点C (2, 2),且抛物线y 2= 的焦点为F 1. (Ⅰ) 求椭圆E 的方程;(Ⅱ) 垂直于OC 的直线l 与椭圆E 交于A 、B 两点,当以AB 为直径的圆P 与y 轴相切时,求直线l 的方程和圆P 的方程.山东省济南市2018届高三3月高考模拟考试数学(文史类)参考答案一、 选择题1. D2. A3. B4. A5. C6. B7. D8. C9. B 18. A 18. A 18. D 二、 填空题 18.π618. n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2三、 解答题18. 解:(Ⅰ) 设等差数列{a n }的公差为d ,因为S 5=5a 3=35,a 5+a 7=26,高考资源网第19题图所以有112721026a d a d +=⎧⎨+=⎩,…………………………………………………………………2分解得a 1=3,d =2,…………………………………………………………………4分 所以a n =3+2(n -1)=2n +1;S n =3n +(1)2n n -×2=n 2+2n.………………………6分 (Ⅱ) 由(Ⅰ)知a n =2n +1,所以b n =241n a -= 1(1)n n +…………………………8分 =111n n -+,……………………………………………………………… 18分 所以T n = 11111111223111n n n n n ⎛⎫⎛⎫⎛⎫-+-++-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭….……18分 18. 解:(Ⅰ)f (x )=(2cos ωx ,-1)·(sin ωx -cos ωx ,2)+3……………………………………………1分=2cos ωx (sin ωx -cos ωx )+1………………………………………………………2分=2sin ωx cos ωx -2cos 2ωx +1 (3)分=sin2ωx -cos2ωx (4)分sin 24x πω⎛⎫-⎪⎝⎭.................................................................. 5分 ∵T =π,且ω>0,∴ω=1. (6)分( Ⅱ) 由(Ⅰ)知:f (xsin π24x ⎛⎫-⎪⎝⎭…………………………………… 7分 g (xsin ππ284x ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦=2sin2x …………………………………9分∴2k π-π2≤2x ≤2k π+π2,k ∈Z ;……………………………………………18分 ∴k π- π4≤x ≤k π+ π4,k ∈Z ; (18)分 ∴函数g (x )的单调增区间为πππ,π+44k k ⎡⎤-⎢⎥⎣⎦,k ∈Z.……………………18分 19. 解:(Ⅰ) 由频率分布直方图可知:50~60分的频率为0.1,60~70分的频率为0.25,70~80分的频率为0.45,80~90分的频率为0.18,90~180分的频率为0.18;…………………………………………………………………… 2分∴这组数据的平均数M=55×0.1+65×0.25+75×0.45+85×0.18+95×0.18=73(分)…………………………………………………………………………………4分(Ⅱ)∵90~180分数段的人数为2人,频率为0.18;∴参加测试的总人数为20.05=40人,…………………………………… 5分∴50~60分数段的人数为40×0.1=4人,………………………………… 6分设第一组50~60分数段的同学为A1,A2,A3,A4;第五组90~180分数段的同学为B1,B2…………………………………………………………………… 7分则从中选出两人的选法有:(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2),共18种;………………………………………………………………………………………9分其中两人成绩差大于20的选法有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2)共8种 (18)分则选出的两人为“帮扶组”的概率为P=815……………………………… 18分20. 解:(Ⅰ)设AB1的中点为P,连结NP、MP……………… 1分∵CM 12AA1,NP12AA1,∴CM NP,…2分∴CNPM是平行四边形,∴CN∥MP……………3分∵CN⊄平面AMB1,MP⊂平面AMB1,∴CN∥平面AMB1……………………………………………4分(Ⅱ)∵CC1⊥平面ABC,∴平面CC1B1B⊥平面ABC,∵AG⊥BC,∴AG⊥平面CC1B1B,∴B1M⊥AG.…………………………………………………………6分∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1C,第20题图设:AC=2a,则CC1 a在Rt△MCA中,AM=…………………………… 8分同理,B1M a…………………………………………………………… 9分∵BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,∴AB1==,∴AM 2+B 1M 2=21AB ,∴B 1M ⊥AM ,………………………………………18分又AG ∩AM =A ,∴B 1M ⊥平面AMG..………………………………………18分21. 解:(Ⅰ) 设点C 受A 污染源污染指数为ka x ,点C 受B 污染源污染指数为36kbx-,其中k 为比例系数,且k >0. ………………………………………………2分从而点C 处污染指数(036)36ka kb y x x x =+<<-………………………4分 (Ⅱ) 因为a =1,所以,36k kby x x=+-,……………………………………… 5分y ′=221(36)bk x x ⎡⎤-+⎢⎥-⎣⎦,…………………………………………………7分 令y ′=0,得x =9分当x ∈⎛⎝时,函数单调递减;当x ∈⎫+∞⎪⎭时,函数单调递增.∴当x =18分又此时x =6,解得b =25,经验证符合题意.所以,污染源B 的污染强度b 的值为25…………………………………18分22. 解:(Ⅰ) 设椭圆E 的方程为22221(0)x y a b a b+=>>,…………………………… 1分则22441a b +=,①………………………………………………………… 2分∵抛物线2y =-的焦点为F 1∴c =②………………………………………………………………3分又a 2=b 2+c 2③由①、②、③得a 2=18,b 2=6……………………………………………… 5分所以椭圆E 的方程为221126x y +=………………………………………… 6分 (Ⅱ) 依题意,直线OC 斜率为1,由此设直线l 的方程为y =-x +m ,………… 7分代入椭圆E 方程,得3x 2-4mx +2m 2-18=0. ………………………………… 8分由Δ=18m 2-18(2m 2-18)=8(18-m 2),得m 2<18. ………………………………9分记A (x 1,y 1)、B (x 2,y 2),则x 1+x 2=43m,x 1x 2=22123m -………………18分圆P 的圆心为1212,22x x y y ++⎛⎫⎪⎝⎭,半径12||r x x =-=…………………………1分 当圆P 与y 轴相切时,122x x r +=,则2x 1x 2=212()4x x +,即222(212)439m m -=,m 2=9<18,m =±3………………………………18分 当m =3时,直线l 方程为y =-x +3,此时,x 1+x 2=4,圆心为(2,1),半径为2,圆P 的方程为(x -2)2+(y -1)2=4;……………………………………………18分 同理,当m =-3时,直线l 方程为y =-x -3,圆P 的方程为(x +2)2+(y +1)2=4…………………………………………… 18 分。

2018高考数学文第一次模拟考试题济南市有答案

亍围为」

—三

解答题:共70分.解答应写出文字说明、怔明
过程或演算步骤第H7〜2i题为必考题,每个 试题考生都必须作答丨.|每12、23题为选考题,
考生根据要求作答.丨(
)必考题:共
60分.
17.记□为数列的前
项和,已知

(
1
)求
C数列


通:
页公
^式
丨(
2
1
设J,
T、,
、/.
—in


的-
、/.前
、:
乙两
丐名射击运动员

5
次训纟
练成绩
位:

,则
绩较为稳
魚定
那位运动员成
戏绩
的万差「


15.在平
r
四边



L
则线段

长丿


16.
个密闭且
[透|
明的正方体容器
寸装

n
有部
分液体,

「知该
正万体
的棱
芟长为
2
2
如:

任】
意转动该丄
二力,
体液面的
1勺形
彳状都不
,可
冃能

—・
角]
形:
那么液

体积的取值
肖范
.2 1
5.1
5.
-三




17.

:
(
1
)




推荐-山东济南市2018年1月高三统一考试数学(文) 精品

2018年1月济南市高三统一考试数学(文史类)第I 卷(选择题 共60分)一、选择题:本大题共12个小题。

每小题5分;共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列集合中恰有2个元素的集合是 ( ) A .}0{2=-x xB .}0|{2=-y y yC .}|{2x x y x -=D .}|{2x x y y -= 2.函数||x x y =的图象大致是( )3.设)(x f 是定义域为R 且最小正周期为23π的函数,在一个周期内若=)(x f)415(,0,sin 02,cos πππ-⎪⎩⎪⎨⎧<≤<≤-f x x x x 则等于( )A .1B .22C .0D .22-4.已知a ,b 是两条直线,α,β是两个平面,有下列4个命题: A .若a ∥b ,b ⊂α,则a ∥α B .若a ⊥b ,a ⊥α,b ⊄α,则b ∥α C .若α⊥β,a ⊥α,b ⊥β,则a ⊥bD .若a ,b 异面,a ⊂α,b ⊂β,a ∥β,则α∥β其中正确命题有( ) A .①② B .②③ C .③④ D .②④ 5.不等式112≤-x x 的解集为( )A .(-1,1)B .)1,1[-C .]1,(--∞D .[-1,1]6.艺术体操委员会由10位女性委员和5位男性委员组成,委员会要组织6倍委员出国考察学习,如果按性别分层,并在各层依比例随机抽样,试问此考察团的组成方法的种数共有 ( )A .25410C C B .35310C C C .615C D .25410P P 7.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足 1,,,212121=+∈+=λλλλλλ且其中R OB OA OC ,则点C 的轨迹是( )A .直线B .椭圆C .圆D .双曲线8.在平面直角坐标系内,动点M 到定点A (1,1)的距离减去点M 到定点B (1,-1)的距离的差是非负实数a (a 是小于或等于2的定值),则动点M 的轨迹是 ( ) A .双曲线的一支 B .双曲线的一支或一条直线 C .双曲线的一支或一支直线或一条射线D .除C 外还有别的情形 9.已知:}{),)((}{,log 1)(12n n n a N n n f a a x x f 则数列满足设数列*-∈=+=的前n 项和n S =A .121--nB .12-nC .141--nD .14-n10.若|log |)(,10x x f a a =<<且函数,则下列各式中成立的是 ( )A .)41()31()2(f f f <<B .)31()2()41(f f f <<C .)41()2()31(f f f <<D .)2()31()41(f f f <<11.每次测量中出现正负误差的概率都是21,在5次测量中恰好出现2次负误差的概率 是p ,在5次测量中恰好第2、3次出现负误差其余各次出现 正误差的概率是q ,则 ( ) A .p<q B .q<p C .p=q D .p 、q 的大小无法确定12.如图,正方体ABCD —A 1B 1C 1D 1中,在A 1ABB 1上一 动点P ,到A 1A 和BC 的距离相等,则P 点的轨迹是 下图中的 ( )第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题4分;共16分。

2018年山东省济南市历城二中高考数学一模试卷文科数学试题

2018年山东省济南市历城二中高考数学一模试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)若集合A={1,2,3},B={1,3,4,5},则A∩B的子集个数为()A.2B.3C.4D.162.(5分)已知点A(0,1),B(3,2),向量,则向量=()A.(10,7)B.(10,5)C.(﹣4,﹣3)D.(﹣4,﹣1)3.(5分)已知i为虚数单位,复数z满足i•z=(1﹣2i)2,则z=()A.﹣4+3iB.﹣2+3iC.2+3iD.﹣4﹣3i4.(5分)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A. B. C. D.5.(5分)已知点P在以原点为顶点、以坐标轴为对称轴的抛物线C上,抛物线C的焦点为F,准线为l,过点P作l的垂线,垂足为Q,若∠PFQ=,△PFQ的面积为,则焦点F到准线l的距离为()A.1B.C.2D.36.(5分)已知偶函数f(x)在(﹣∞,0]上是增函数.若a=f(log 2),b=f(log3),c=f(2﹣0.8),则a,b,c的大小关系为()A.a<b<cB.b<a<cC.c<b<aD.c<a<b7.(5分)《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”现有墙厚5尺,如下说法:①小鼠第二天穿垣半尺;②两鼠相遇需四天;③若大鼠穿垣两日卒,则小鼠至死方休.则以上说法错误的个数是()个.A.0B.1C.2D.38.(5分)已知函数y=Asin(ωx+φ)(ω>0,|φ|<,x∈R)的图象如图所示,则该函数的单调减区间是()A.[2+16k,10+16k](k∈Z)B.[6+16k,14+16k](k∈Z)C.[﹣2+16k,6+16k](k∈Z)D.[﹣6+16k,2+16k](k∈Z)9.(5分)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的表面积为()A.4πB.(4+)πC.6πD.(5+)π10.(5分)执行如图所示的程序框图,则输出s的值为()A. B. C. D.11.(5分)某多面体的三视图如图所示,则该多面体的体积为()A.2B.C.1D.12.(5分)若存在(x,y)满足,且使得等式3x+a(2y﹣4ex)(lny﹣lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围是()A.(﹣∞,0)∪[,+∞)B.[,+∞)C.(﹣∞,0)D.(0,]二、填空题:(本大题共4小题,每小题5分,共20分.)13.(5分)已知函数,若f(0)=2,则a+f(﹣2)=.14.(5分)已知等差数列{a n},其前n项和为S n,a2+a8=2a m=24,a1=2,则S2m =.15.(5分)已知点P和点Q分别为函数y=e x与y=kx图象上的点,若有且只有一组点(P,Q)关于直线y=x对称,则k=.16.(5分)已知点F1,F2为椭圆C1:+=1(a>b>0)和双曲线C2:﹣=1(a′>0,b′>0)的公共焦点,点P为两曲线的一个交点,且满足∠F1PF2=90°,设椭圆与双曲线的离心率分别为e1,e2,则+=.三、解答题:(本大题共5小题,共70分,解答请写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C所对的边分别为a,b,c,bsin(B+C)+acosA=0,且c =2,sinC=.(1)求证:A=+B;(2)求△ABC的面积.18.(12分)如图,在四棱锥PABCD中,底面ABCD是边长为2的正方形,平面PAC⊥平面PBD.(1)求证:PB=PD;(2)若M为PD的中点,AM⊥平面PCD,求三棱锥DACM的体积.19.(12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与医院抄录1至6月份每月10号的昼夜温差情况与患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验. (Ⅰ)求选取的2组数据恰好是相邻两个月的概率;(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程=bx +a ;(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?参考公式:线性回归方程的系数公式为b ==,a =.20.(12分)已知曲线C 的方程为ax 2+ay 2﹣2a 2x ﹣4y =0(a ≠0,a 为常数).(1)判断曲线C的形状;(2)设曲线C分别与x轴,y轴交于点A,B(A,B不同于原点O),试判断△AOB的面积S 是否为定值?并证明你的判断;(3)设直线l:y=﹣2x+4与曲线C交于不同的两点M,N,且•=﹣,求a的值.21.(12分)已知函数f(x)=a(x2﹣x)﹣lnx(a∈R).(1)若f(x)在x=1处取到极值,求a的值;(2)若f(x)≥0在[1,+∞)上恒成立,求a的取值范围;(3)求证:当n≥2时,++…+>.选修4-4:坐标系与参数方程22.(10分)以直角坐标系的原O为极点,x轴的正半轴为极轴建立极坐标系,且两个坐标系相等的单位长度,已知直线l的参数方程为为参数),圆C的极坐标方程为ρ=2.(Ⅰ)写出直线l的一般方程及圆C标准方程;(Ⅱ)设P(﹣1,1),直线l和圆C相交于A,B两点,求||PA|﹣|PB||的值.选修4-5:不等式选讲23.已知不等式|x+2|﹣|2x﹣2|>2的解集为M.(Ⅰ)求集合M;(Ⅱ)已知t为集合M中的最大正整数,若a>1,b>1,c>1,且(a﹣1)(b﹣1)(c﹣1)=t,求abc的最小值.2018年山东省济南市历城二中高考数学一模试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)若集合A={1,2,3},B={1,3,4,5},则A∩B的子集个数为()A.2B.3C.4D.16【解答】解:集合A={1,2,3},B={1,3,4,5},则A∩B={1,3},∴A∩B的子集个数为22=4.故选:C.2.(5分)已知点A(0,1),B(3,2),向量,则向量=()A.(10,7)B.(10,5)C.(﹣4,﹣3)D.(﹣4,﹣1)【解答】解:根据题意,点A(0,1),B(3,2),则向量=(3,1),又由,则向量=+=(﹣4,﹣3);故选:C.3.(5分)已知i为虚数单位,复数z满足i•z=(1﹣2i)2,则z=()A.﹣4+3iB.﹣2+3iC.2+3iD.﹣4﹣3i【解答】解:∵i•z=(1﹣2i)2=﹣3﹣4i,∴.故选:A.4.(5分)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A. B. C. D.【解答】解:有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,基本事件总数n==10,取出的2支彩笔中含有红色彩笔包含的基本事件个数m==4,∴取出的2支彩笔中含有红色彩笔的概率为p==.故选:C.5.(5分)已知点P在以原点为顶点、以坐标轴为对称轴的抛物线C上,抛物线C的焦点为F,准线为l,过点P作l的垂线,垂足为Q,若∠PFQ=,△PFQ的面积为,则焦点F到准线l的距离为()A.1B.C.2D.3【解答】解:不妨以焦点在x轴正半轴上的抛物线为例,如图,由题意,△PFQ是等腰三角形,设PQ=PF=a,则,解得:a=2,∴QF=,∴焦点F到准线l的距离为2•cos=3,故选:D.6.(5分)已知偶函数f(x)在(﹣∞,0]上是增函数.若a=f(log 2),b=f(log3),c=f(2﹣0.8),则a,b,c的大小关系为()A.a<b<cB.b<a<cC.c<b<aD.c<a<b【解答】解:∵偶函数f(x)在(﹣∞,0]上是增函数,∴函数f(x)在[0,+∞)上是减函数,a=f(log2)=f(﹣log25)=f(log25),b=f(log3)=f(﹣log 23)=f(log23),∵0<2﹣0.8<1<log23<2<log25,∴f(2﹣0.8)>f(log23)>f(log25),即c>b>a,故选:A7.(5分)《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”现有墙厚5尺,如下说法:①小鼠第二天穿垣半尺;②两鼠相遇需四天;③若大鼠穿垣两日卒,则小鼠至死方休.则以上说法错误的个数是()个.A.0B.1C.2D.3【解答】解:由题意可知:大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,前n天打洞之和为=2n﹣1,小老鼠每天打洞的距离是以1为首项,以为公比的等比数列,小老鼠前n天打洞的距离之和为=2﹣,①小鼠第二天穿垣1×即为半尺,正确;②两鼠相遇设为n天,可得2n﹣1+2﹣=5,解得2<n<3,即最多3天,故②错误;③若大鼠穿垣两日卒,此时共穿墙1+2+1+=,剩下5﹣=,设小老鼠需要k天,可得=,即为﹣=,显然方程无实数解.则小鼠至死方休,正确.故选:B.8.(5分)已知函数y=Asin(ωx+φ)(ω>0,|φ|<,x∈R)的图象如图所示,则该函数的单调减区间是()A.[2+16k,10+16k](k∈Z)B.[6+16k,14+16k](k∈Z)C.[﹣2+16k,6+16k](k∈Z)D.[﹣6+16k,2+16k](k∈Z)【解答】解:由图象知A=4,=6﹣(﹣2)=8,即T=16=,则ω=,则y=4sin(x+φ),由图象知(﹣2,0),(6,0)的中点为(2,0),当x=2时,y=﹣4,即﹣4sin(×2+φ)=﹣4,即sin(+φ)=1,即+φ=+2kπ,即φ=+2kπ,∵|φ|<,∴φ=,则y=4sin(x+),由2kπ+≤x+≤2kπ+,k∈Z,即16k+2≤x≤16k+10,k∈Z,即函数的单调递减区间为[2+16k,10+16k](k∈Z),故选:A9.(5分)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的表面积为()A.4πB.(4+)πC.6πD.(5+)π【解答】解:∵在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,∴将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体是:一个底面半径为AB=1,高为BC=2的圆柱减去一个底面半径为AB=1,高为BC﹣AD=2﹣1=1的圆锥,∴几何体的表面积为:S=π×12+2π×1×2+=(5+)π.故选:D.10.(5分)执行如图所示的程序框图,则输出s的值为()A. B. C. D.【解答】解:第一次循环,n=1,s=0,s=﹣1<2017,第二次循环,n=2,s=﹣1+﹣=﹣1<2017,第三次循环,n=3,s=﹣11<2017,第四次循环,n=4,s=﹣1,…,第2017次循环,n=2017,s=﹣1,第2018次循环,n=2018>2017,满足条件,跳出循环,输出s=﹣1,故选:A.11.(5分)某多面体的三视图如图所示,则该多面体的体积为()A.2B.C.1D.【解答】解:多面体的三视图得该多面体是长方体ABCD﹣A1B1C1D1去掉两个三棱锥A1﹣AED1和B1﹣BEC1剩余的几何体,其中AB=2,AD=AA1=1,E是A1B1的中点,∴该多面体的体积:V=﹣﹣==.故选:B.12.(5分)若存在(x,y)满足,且使得等式3x+a(2y﹣4ex)(lny﹣lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围是()A.(﹣∞,0)∪[,+∞)B.[,+∞)C.(﹣∞,0)D.(0,]【解答】解:画出不等式组表示的平面区域,如图所示;A(1,4),B(3,3),C(4,6);3x+a(2y﹣4ex)(lny﹣lnx)=0可化为﹣=2(﹣2e)ln,设t=,其中1≤t≤4;∴﹣=2(t﹣2e)lnt,令m=(t﹣2e)lnt,(1≤t≤4),则m′=lnt+,m''=+>0,当t>e时,m′>m′(e)=0,当0<t<e时,m′<m′(e)=0,∴m≥m(e)=﹣e,∴﹣≥﹣2e,解得a<0或a≥;又a值不可能为负值,∴实数a的取值范围是[,+∞).故选:B.二、填空题:(本大题共4小题,每小题5分,共20分.)13.(5分)已知函数,若f(0)=2,则a+f(﹣2)=2.【解答】解:∵函数,f(0)=2,∴f(0)=log2(0+a)=2,解得a=4,f(﹣2)=﹣=﹣2,∴a+f(﹣2)=4﹣2=2.故答案为:2.14.(5分)已知等差数列{a n},其前n项和为S n,a2+a8=2a m=24,a1=2,则S2m=.【解答】解:∵等差数列{a n},其前n项和为S n,a2+a8=2a m=24,∴m=5,a5=12,∵a1=2,∴a5=2+4d=12,解得d=,∴S2m=S10==.故答案为:.15.(5分)已知点P和点Q分别为函数y=e x与y=kx图象上的点,若有且只有一组点(P,Q)关于直线y=x对称,则k=或k≤0.【解答】解:根据题意,函数y=e x的反函数为y=lnx,则函数y=lnx与函数y=e x 关于直线y=x对称,若有且只有一组点(P,Q)关于直线y=x对称,即函数y=lnx与直线y=kx有且只有一个交点,即方程lnx=kx只有一个根,当k≤0时,明显成立,当k>0时,令f(x)=lnx﹣kx,(x>0)方程lnx=kx有且只有一个根,即函数f(x)只有一个零点,f′(x)=﹣k=,分析可得:在(0,)上,f′(x)>0,f(x)为增函数,在(,+∞)上,f′(x)<0,f(x)为减函数,则f(x)有最大值f(),必有f()=ln﹣1=0,解可得k=;故有k≤0或k=;故答案为:k≤0或k=.16.(5分)已知点F1,F2为椭圆C1:+=1(a>b>0)和双曲线C2:﹣=1(a′>0,b′>0)的公共焦点,点P为两曲线的一个交点,且满足∠F1PF2=90°,设椭圆与双曲线的离心率分别为e1,e2,则+=2.【解答】解:可设P为第一象限的点,|PF1|=m,|PF2|=n,由椭圆的定义可得m+n=2a,由双曲线的定义可得m﹣n=2a'可得m=a+a',n=a﹣a',由∠F1PF2=90°,可得m2+n2=(2c)2,即为(a+a')2+(a﹣a')2=4c2,化为a2+a'2=2c2,则+=2,即有+=2.故答案为:2.三、解答题:(本大题共5小题,共70分,解答请写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C所对的边分别为a,b,c,bsin(B+C)+acosA=0,且c =2,sinC=.(1)求证:A=+B;(2)求△ABC的面积.【解答】(本题满分为12分)解:(1)证明:因为bsin(B+C)+acosA=0,可得:bsinA+acosA=0,又由正弦定理得:bsinA=asinB,可得:asinB+acosA=0,可得:cosA=﹣sinB,所以A为钝角,B为锐角,可得:A=+B;﹣﹣﹣﹣﹣﹣(6分)(2)由正弦定理可得:==,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)可得:a2+b2=,cosC==,所以由余弦定理可得:22=a2+b2﹣2abcosC,可得:4=﹣2ab×,解得:ab=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)=absinC=×=.﹣﹣﹣﹣﹣﹣﹣(12分)则:S△ABC18.(12分)如图,在四棱锥PABCD中,底面ABCD是边长为2的正方形,平面PAC⊥平面PBD.(1)求证:PB=PD;(2)若M为PD的中点,AM⊥平面PCD,求三棱锥DACM的体积.【解答】证明:(1)连结AC、BD,交于点点,连结PO,∵在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,平面PAC⊥平面PBD.BO=DO,∴AC⊥BD,∴BD⊥平面PAC,又AB=AD,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)∴PB=PD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)解:(2)∵AM⊥平面PCD,AM⊥PD,PD的中点为M,∴AP=AD=2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)由AM ⊥平面PCD,可得AM ⊥CD,又AD ⊥CD,AM ∩AD =A, ∴CD ⊥平面PAD,∴CD ⊥PA, 又由(1)可知BD ⊥PA,BD ∩CD =D,∴PA ⊥平面ABCD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分) 故V DACM =V MACD=PA ×S △ACD=×2××2×2=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)19.(12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与医院抄录1至6月份每月10号的昼夜温差情况与患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验. (Ⅰ)求选取的2组数据恰好是相邻两个月的概率;(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程=bx +a ;(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?参考公式:线性回归方程的系数公式为b ==,a =.【解答】解:(I)设抽到相邻两个月的数据为事件A,∵从6组数据中选取2组数据共有C62=15种情况,每种情况是等可能出现的,其中抽到相邻两个月的数据的情况有5种,∴…(4分)(II)由数据求得x=11,y=24,由公式求得,由,求得∴y关于x的线性回归方程为…(9分)(III)当x=10时,,当x=6时,,所以该小组所得线性回归方程是理想的.…(12分)20.(12分)已知曲线C的方程为ax2+ay2﹣2a2x﹣4y=0(a≠0,a为常数).(1)判断曲线C的形状;(2)设曲线C分别与x轴,y轴交于点A,B(A,B不同于原点O),试判断△AOB的面积S 是否为定值?并证明你的判断;(3)设直线l:y=﹣2x+4与曲线C交于不同的两点M,N,且•=﹣,求a的值.【解答】解:(1)将曲线C的方程化为x2+y2﹣2ax﹣y=0,∴(x﹣a)2+(y﹣)2=a2+,可知曲线C是以点(a,)为圆心,以为半径的圆.(2)△AOB的面积S为定值.证明如下:在曲线C的方程中令y=0,得ax(x﹣2a)=0,得点A(2a,0),在曲线C方程中令x=0,得y(ay﹣4)=0,得点B(0,),∴S=|OA||OB|=|2a|||=4(为定值),(3)直线l与曲线C方程联立可得5ax2﹣(2a2+16a﹣8)x+16a﹣16=0,设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=,∴•=x1x2+y1y2=5x1x2+8(x1+x2)+16=﹣,即(80a﹣80﹣16a2﹣128a+64+80a)=﹣,即2a2﹣5a+2=0,解得a=2或a=,当a=2或时,都满足△>0,故a=2或21.(12分)已知函数f(x)=a(x2﹣x)﹣lnx(a∈R).(1)若f(x)在x=1处取到极值,求a的值;(2)若f(x)≥0在[1,+∞)上恒成立,求a的取值范围;(3)求证:当n≥2时,++…+>.【解答】解:(1)∵f(x)的定义域为(0,+∞),∴f′(x)=2ax﹣a﹣,∵y=f(x)在x=1处取得极小值,∴f′(1)=0,即a=1,此时,经验证x=1是f(x)的极小值点,故a=1,(2)∵f′(x)=2ax﹣a﹣,①当a≤0时,f′(x)<0,∴f(x)在[1,+∞)上单调递减,∴当x>1时,f(x)<f(1)=0矛盾.②当a>0时,f′(x)=,∵△=a2+8a>0恒成立,令f′(x)=0,解得x1=<0,(舍去),x2=, (i)当≤1时,即a≥1时,f(x)在[1,+∞)单调性递增∴f(x)≥f(x)min=f(1)=0,满足题意,(ii)当>1时,即0<a<1时,∴x∈(1,)时,f′(x)<0,即f(x)递减,∴f(x)<f(1)=0,矛盾.综上,f(x)≥0在[1,+∞)上恒成立,a≥1,(3)证明:由(1)知令a=1时,f(x)=x2﹣x﹣lnx,∴当x>2时,x2﹣x﹣lnx>0,即>,令x=n,则>=﹣,∴++…+>﹣+﹣+﹣+…+﹣=1﹣=.选修4-4:坐标系与参数方程22.(10分)以直角坐标系的原O为极点,x轴的正半轴为极轴建立极坐标系,且两个坐标系相等的单位长度,已知直线l的参数方程为为参数),圆C的极坐标方程为ρ=2.(Ⅰ)写出直线l的一般方程及圆C标准方程;(Ⅱ)设P(﹣1,1),直线l和圆C相交于A,B两点,求||PA|﹣|PB||的值.【解答】解:(Ⅰ)∵直线l的参数方程为为参数),∴由直线l的参数方程消去参数t可得x﹣1=2(y﹣2),化简并整理可得直线l的一般方程为x﹣2y+3=0,∵圆C的极坐标方程为ρ=2,∴由ρ=2可得ρ2=4,即x2+y2=4,∴圆C的标准方程为x2+y2=4.(Ⅱ)∵P(﹣1,1),|PC|==<R=2,点P(﹣1,1)代入直线l的方程,成立,∴点P在圆内,且直线l上,联立圆的方程和直线l的参数方程方程组,设A(x A,y A),B(x B,y B),则,∴,则,同理,∴.选修4-5:不等式选讲23.已知不等式|x+2|﹣|2x﹣2|>2的解集为M.(Ⅰ)求集合M;(Ⅱ)已知t为集合M中的最大正整数,若a>1,b>1,c>1,且(a﹣1)(b﹣1)(c﹣1)=t,求abc的最小值.【解答】解:(Ⅰ)根据题意,|x+2|﹣|2x﹣2|>2,分3种情况讨论①,当x<﹣2时,原不等式变形为:x﹣4>2,解可得x>6,又由x<﹣2,此时不等式的解集为∅,②,当﹣1≤x<2时,原不等式变形为:3x>2,解可得x>,又由﹣1≤x<2,此时不等式的解集为{x|<x<2};③,当x≥2时,原不等式变形为:﹣x+4>2,解可得x<2,又由x≥2,此时不等式的解集为∅,综合可得:M={x|<x<2};(Ⅱ)根据题意,若t为集合M中的最大正整数,则t=1;若a>1,b>1,c>1,且(a﹣1)(b﹣1)(c﹣1)=1,a=1+(a﹣1)≥2,b=1+(b﹣1)≥2,c=1+(c﹣1)≥2,则abc≥8(××)=8;abc的最小值为8.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档