高考数学 专题25 含参“一元二次不等式”的解法黄金解题模板

合集下载

含参数的一元二次不等式的解法高中数学

含参数的一元二次不等式的解法高中数学

含参数的一元二次不等式的解法高中数学一元二次不等式是高中数学中重要的内容之一,它与一元二次方程不同,需要通过特定的方法来解决。

当一元二次不等式中出现参数时,解法也会有所不同。

本文将介绍含参数的一元二次不等式的解法。

首先,我们来看一个简单的例子,假设有不等式 f(x) =ax^2+bx+c > 0,其中a、b、c为实数且不为零。

我们的目标是确定x的取值范围使得不等式成立。

步骤一:将不等式化简为标准形式首先,我们需要将不等式化简为标准形式,即形如(ax^2+bx+c)>0的形式。

若不等式已经处于此形式,则可以直接进行下一步。

若不等式不满足此形式,则需要移项合并同类项,将不等式转化为标准形式。

步骤二:确定基本情况下的解法对于标准形式的一元二次不等式,我们可以利用图像法或代数法来解决。

对于a>0和a<0的两种情况,基本的解法如下:1. 当a>0时:- 如果a>0,二次函数的开口朝上,函数图像是一个开口朝上的抛物线。

此时的不等式解集为抛物线上方的实数集。

- 若抛物线与x轴有两个交点,我们可以通过求解对应的一元二次方程,求出两个交点x1和x2。

然后我们可以得到解集: x<x1 或x>x2- 若抛物线与x轴只有一个交点,我们可以求解的结果只有一个交点x0,此时解集为:x<x0 或 x>x0。

2. 当a<0时:- 如果a<0,二次函数的开口朝下,函数图像是一个开口朝下的抛物线。

此时的不等式解集为抛物线下方的实数集。

- 若抛物线与x轴有两个交点,我们可以通过求解对应的一元二次方程,求出两个交点x1和x2。

然后我们可以得到解集: x1<x<x2- 若抛物线与x轴没有交点,则解集为空集:ø步骤三:含参数时的解法当一元二次不等式中存在参数时,解法稍有不同。

我们以一个具体的例子来说明。

例题:对于不等式f(x) = (a+b)x^2+(b+c)x+c>0,其中a,b,c 为实数且不为零。

一元二次不等式的解法全

一元二次不等式的解法全

2 . (1) 当x 2 3或x 2 3时,y 0
(2) 当x〉2 3或x〈2 3时,y〉0
(3) 当2 〈3 x〈2 3时,y〈0
3. x | x 4或x 3
y
五、小结
o ●x1
● x2 x
(1)一元二次不等式的解集与一元二次方程
的解及其相应的二次函数的图像相对于轴的
位置密切相关.解题时要注意解题格式,头脑
有两个相
有两个不等实 根 x1,x2(x1<x2)
等实根 x1=x2
ax2+bx的+c解>0集(a>0)﹛x|x<x1或x>x2﹜﹛x|x≠x1﹜
ax2+bx+c<0 (a>0) 的解集
﹛x|x1<x<x2﹜
Φ
无实根 R Φ
∆=b2-4ac ∆>0
y
y∆=0 y ∆<0
二次函数 y=ax2+bx+c
以上四个不等式中我们规定了 a 0
如果题目中给出的不等式中二次项系 数小于0,哪怎么办呢? 对了,我们只要在不等式两边同乘-1, 然后把不等式的方向改变一下,就可 化为以上四种形式中的一种。
三、例题讲解
例1 解不等式2x2-3x-2>0 o -1/2 ●

2
x
解: 因为∆>0, 方程2x2-3x-2=0 的解是
中要想象图像或划出草图.
(2)对于a<0的一元二次不等式可转化为
a>0的情形求解.
(3)一元二次不等式的解法是今后学习其他
不等式的基础,要求大家熟练掌握解法,准
确运算结果.
利用一元二次函数图象解一 元二次不等式

高中数学:含参 “一元二次不等式”的解法高中数学黄金解题模板

高中数学:含参 “一元二次不等式”的解法高中数学黄金解题模板

A.
B.
C.
D.
【答案】C
∵关于 的方程
存在三个不等实根,
∴方程
有两个根,且一正一负,且正根在区间


内.
则有
,解得

∴实数 的取值范围是
.选 C.
点睛:
解答本题时,根据所给函数的特征并利用换元的方法将问题化为方程根的问题处理,然后结合二次方程根
的分布情况再转化成不等式的 问题解决.对于本题中的
根的情况,还要根据数形结合根据两函
个,则有 1- a2 <0,此时 a2 >1,而 0<b<1+a,故 a>1,
由不等式 a2 1 x2 2bx b2 <0 解得
2b 2ab x 2b 2ab , 即 b x b 1 要使该不等式的解集中的整数恰有 3 个,那么-
2 a2 1
2 a2 1
a 1
a 1
2020 年
数图象交点的个数来判断.
5.若“
”是“
”的充分而不必要条件,则实数 的取值范围是( )
A.
B.
C.
D.
【答案】A
2020 年
B 中的不等式不能分解因式,故考虑判断式 4k 2 4(k 2 k) 4k ,
(1)当 k=0 时, 0, x R . (2)当 k>0 时,△<0,x R .
(3)当 k<0 时, 0, x k k或x k k .
第三步 ,得出结论:
综上所述,k 的取值范围是: k 0或 1 k 0.
考点:1.一元二次不等式的解法;2.含参不等式的解法.
【变式演练 3】已知 a 0 ,解关于 x 的不等式 ax2 (a 2)x 2 0 .

含参数的一元二次不等式的解法详细版.ppt

含参数的一元二次不等式的解法详细版.ppt

[答案]
(1)A
23 (2){x|3<x<4}
[分析] 此类不等式求解,要先移项通分化为gfxx>0(或 gfxx<0)的形式再化为整式不等式.转化必须保持等价.
[解析] (1)x-x 1-2≥0∴-xx-1≥0, ∴xx≠x+0 1≤0 ,∴-1≤x<0. (2)原不等式化为:64xx- -43<0, ∴(6x-4)(4x-3)<0,∴23<x<34, ∴原不等式的解集为{x|23<x<34}.
(3)数轴上方的曲线对应区间就是 f(x)>0 的解集;数轴下 方的曲线对应区间就是 f(x)<0 的解集.
(4)如果分解因式后有重根,则“奇过偶不过”,即乘方指 数是奇数的画线时穿过 x 轴,乘方指数是偶数的,画线时到此 根对应 x 轴上点后返回,不穿过去.
3.含根号的不等式求解一般用平方法,但平方时一定要 注意符合不等式性质的要求.
)
A.{x|x<-2,或 0<x<3}
B.{x|-2<x<2,或 x>3}
C.{x|x<-2,或 x>0}
D.{x|x<0,或 x<3}
[答案] A
[分析] 原不等式左端是分式,右端为 0,属于AB<0 型,可
等价转化为 AB<0,即 x(x+2)(x-3)<0,依次令 x=0,x+2=0,
x-3=0 得,x1=0,x2=-2,x3=3,将数轴按此三数对应点
∴(2)当 a 0时,原不等式变形为: x 2x 3 0
∴当 a 0时,原不等式解集为: x | 2 x 3
综上所述: a 0时,原不等式解集为:x | x 2或x 3
a 0时,原不等式解集为:x | 2 x 3
(4)由条件知,a=-2,∴不等式 ax2+5x+7>0, 即-2x2+5x+7>0,∴2x2-5x-7<0, ∴-1<x<72.

一元二次不等式的解法(含参不等式)

一元二次不等式的解法(含参不等式)
一元二次不等式的解法
(第三课时)
含参数的不等式
1、分式不等式
1 、
f (x) g ( x)

0
f (x) 0 g(x)
2、指数、对数不等式
①当 a 1时
a f (x) ag(x) f (x) g(x)
loga f (x) loga g(x) f (x) g(x) 0
求出 a,b.
题型与解法
(三)逆向问题
例2.已知不等式 ax2 bx 2 0 的解集为
11
( , ), 求a-b 的值.
23
解法一:∵不等式
∴方程 ax2
ax2
bx


bx 2 0的解集为 (
2 0 的两根为 1 , 1
1 2
,
,
1 3
),
23
1

66 a b 10.
题型与解法
(三)逆向问题
变式训练2
若不等式 ax2 bx c 0 的解 集是{x | 1 x 2},求不等式
3 cx2 bx a 0 的解集.
{x | 3 x 1} 2
课堂练习
1.下列不等式中,解集为实数集R的是(D )
(A) (x 1)2 0 (B) | x3 8 | 0
(C) | x | 0
(D) x2 2x 3 0
2.当 a 0时,不等式x2 ax 12a2 0 的解是(C)
(A) x 3a或x 4a (B) 3a x 4a
(C) 4a x 3a (D) 3a x 4a
4 a
a1 2
1b
b 2 0, 2 0.

一元二次不等式的解法

一元二次不等式的解法

含参一元二次不等式的解法及推广一:一元二次不等式的解法(含参)思路①数性结合---利用二次函数图像读出解集(最常用的方法可同理写出开口向下的) 思路②利用不等式性质求解集(可推广到指对数等两根的不等式)类型一:二次不等式含参数问题(利用图像法,只需利用开口,判别式,两根大小画图草图即可,不需要y 轴,对称轴,所以二次不等式含参数问题主要围绕上述三个方面讨论)例题1 解关于x 的不等式ax 2-(a +1)x +1<0.解:(1)当a =0时,原不等式可化为-x +1<0,∴x>1.(2)当a ≠0时,原不等式可化为(ax -1)(x -1)<0,①当a<0时,不等式可化为(x -1a)(x -1)>0, ∵1a <1,∴x<1a或x>1. ②当a>0时,不等式可化为(x -1a)(x -1)<0, 若1a <1,即a>1,则1a<x<1; 若1a=1,即a =1,则x ∈∅; 若1a >1,即0<a<1,则1<x<1a. 综上所述,当a<0时,原不等式的解集为{x|x<1a或x>1}; 当a =0时,原不等式的解集为{x|x>1};当0<a<1时,原不等式的解集为{x|1<x<1a}; 当a =1时,原不等式的解集为∅;当a>1时,原不等式的解集为{x|1a<x<1}. 例2.解关于x 的不等式:()2220mx m x +-->.解:当0m =时,不等式化为220x -->,解得1x <-;当0m >时,不等式化为()()210mx x -+>,解得1x <-,或2x m >; 当20m -<<时,21m <-,不等式化为2(1)0x x m ⎛⎫-+< ⎪⎝⎭, 解得21x m <<-;当2m =-时,不等式化为()210x +<,此时无解;当2m <-时,21m >-,不等式化为2(1)0x x m ⎛⎫-+< ⎪⎝⎭, 解得21x m-<<; 综上,0m =时,不等式的解集是{}1x x <-;0m >时,不等式的解集是{|1x x <-或2x m ⎫>⎬⎭; 20m -<<时,不等式的解集是21x x m ⎧⎫<<-⎨⎬⎩⎭; 2m =-时,不等式无解;2m <-时,不等式的解集是21x x m ⎧⎫-<<⎨⎬⎩⎭. 例3.已知不等式()20ax a b x b -++>(1)若不等式的解集为{|1x x <或}x b >,求实数a 的值;(2)若2b =,解该不等式.解:(1)因为不等式()20ax a b x b -++>的解集为{|1x x <或}x b >,所以1x =和x b =是方程()20ax a b x b -++=的两个根, 由根与系数关系得11a b b a b b a +⎧+=⎪⎪⎨⎪⨯=⎪⎩,解得1a =; (2)当2b =时,不等式为()2220ax a x -++>,当0a =时,不等式为220x -+>,可得:1x <;当0a ≠时,不等式可化为()()210ax x -->,方程()2220ax a x -++=的两根为11x =,22x a=, 当0a <时,可得:21x a <<; 当0a >时, ①当21a <时,即2a >时,可得:1x >或2x a <; ②当21a 即2a =时,可得:1x ≠;③当21>a,即02a <<时,可得1x <或2x a >; 综上:当0a <时,不等式解集为21x x a ⎧⎫<<⎨⎬⎩⎭; 当0a =时,不等式解集为{}1x x <;当02a <<时,不等式解集为{|1x x <或2x a ⎫>⎬⎭; 当2a =时,不等式解集为{}1x x ≠;当2a >时,不等式解集为{1x x 或2x a ⎫<⎬⎭. 例4.(1)当5a =-时,求不等式2320ax x ++>的解集;(2)求关于x 的不等式2321ax x ax ++>--(其中0a >)的解集.解(1)由题意,当5a =-时,不等式2320ax x ++>,即为25320x x -++>,可得()()1520x x -+<,所以原不等式的解集为2,15⎛⎫- ⎪⎝⎭. (2)不等式2321ax x ax ++>--可化为()2330ax a x +++>,即()()310ax x ++>,即()310x x a ⎛⎫++> ⎪⎝⎭, 当0<<3a 时,31a -<-,不等式的解集为()3,1,a ⎛⎫-∞-⋃-+∞ ⎪⎝⎭; 当3a =时,31a-=-,不等式的解集为()(),11,-∞--+∞; 当3a >时,31a ->-,不等式的解集为()3,1,a ⎛⎫-∞-⋃-+∞ ⎪⎝⎭, 综上所述,原不等式解集为①当0<<3a 时,()3,1,a ⎛⎫-∞-⋃-+∞ ⎪⎝⎭; ②当3a =时,()(),11,-∞--+∞;③当3a >时,()3,1,a ⎛⎫-∞-⋃-+∞ ⎪⎝⎭. 例5.解关于x 的不等式x 2-(a +a 2)x +a 3>0.解: 原不等式可化为(x -a)(x -a 2)>0.则方程x 2-(a +a 2)x +a 3=0的两根为x 1=a ,x 2=a 2,由a 2-a =a(a -1)可知,(1)当a<0或a>1时,a 2>a.∴原不等式的解为x>a 2或x<a.(2)当0<a<1时,a 2<a ,∴原不等的解为x>a 或x<a 2.(3)当a =0时,原不等式为x 2>0,∴x ≠0.(4)当a =1时,原不等式为(x -1)2>0,∴x ≠1.综上可知:当a<0或a>1时,原不等式的解集为{x|x<a 或x>a 2};当0<a<1时,原不等式的解集为{x|x<a 2或x>a};当a =0时,原不等式的解集为{x|x ≠0};当a =1时,原不等式的解集为{x|x ≠1}.类型二:二次不等式恒成立求参数范围问题二次不等式ax 2+bx +c>0(a ≠0)恒成立两种解法①最小值大于0②图像始终位于x 轴上方常见题目又分为R 上恒成立和在给定区间上恒成立解题思路分三类①最值②图像③分离参数后重复1和2(前提参数好分离)例1:函数f(x)=x 2+ax +3,当x ∈R 时,f(x)≥a 恒成立,求实数a 的取值范围;解法1:设g(x)=f(x)-a =x 2+ax +3-a ,当x ∈R 时,f(x)≥a 恒成立,即g(x)=x 2+ax +3-a ≥0恒成立,需且只需Δ=a 2-4(3-a)≤0,即a 2+4a -12≤0, 解得-6≤a ≤2,即a 的范围是[-6,2].解法2:设g(x)=f(x)-a =x 2+ax +3-a ,当x ∈R 时,f(x)≥a 恒成立即g(x)=x 2+ax +3-a ≥0恒成立, 只需g(x)的最小值2244(3)044ac b a a a ---=≥, 解得-6≤a ≤2,即a 的范围是[-6,2]解法3:分离出a ,2(1)(3)a x x -≥-+当1x =时,易得恒成立;当1x >时, 22(3)(1)2(1)44(12)(1)(1)1x x x a x x x x +-+-+≥-=-=--++---由均值不等式得-6≤a ,同理当1x <时,22(3)(1)2(1)4412(1)(1)1x x x a x x x x +-+-+≤-=-=-+----由均值不等式得a ≤2小结:二次恒成立定义域R 用图像(法一),定义域非R 用最值(法二)分参数容易就用法3变式练习一、解答题例2.已知2(1)1y m x mx =+-+.(1)当5m =时,求不等式0y >的解集;(2)若不等式0y >的解集为R ,求实数m 的取值范围.解:(1)当5m =时,2651y x x =-+,不等式0y >即26510x x -+>,即()()31210x x -->, 故不等式的解集为13x x ⎧<⎨⎩或12x ⎫>⎬⎭; (2)由题意得2(1)10m x mx +-+>的解集为R ,当10m +=时,该不等式的解集为{}1x x >-,不符合题意,舍去;当10m +≠时,根据二次函数图象特征知,开口向上且∆<0,即()210410m m m +>⎧⎨-+<⎩,解得22m -<+综上所述,实数m 的取值范围是{22m m -<+.例3.设a 为实数,若关于x 的不等式220x ax a -->恒成立,求a 的取值范围.因为关于x 的不等式220x ax a -->恒成立,故二次函数22y x ax a =--的判别式即280a a +<,解得()8,0a ∈-.例4.已知二次函数()()21f x kx k x k =--+.若关于x 的不等式()0f x <的解集为R ,求实数k 的取值范围.解:因为()0f x <的解集为R ,所以()210kx k x k --+<,对x ∈R 恒成立,由二次函数知识得00k <⎧⎨∆<⎩,即()220140k k k <⎧⎪⎨--<⎪⎩, 解得1k <-.例5.已知不等式2364ax x -+>的解集为{1x x <或}x b >.(1)求a 、b 的值;(2)m 为何值时,230ax mx ++≥的解集为R ?(3)解不等式()20ax ac b x bc -++<.解:(1)由题意知,1和b 是方程2320ax x -+=的两根,则320a -+=,得1a =,方程为2320x x -+=,由韦达定理可得12b ⨯=,解得2b =;(2)由题意可知,关于x 的不等式230x mx ++≥的解集为R ,所以,2120m ∆=-≤,解得m -≤(3)不等式()20ax ac b x bc -++<,即为()2220x c x c -++<,即()()20x x c --<.①当2>c 时,原不等式的解集为{}2x x c <<;②当2c <时,原不等式的解集为{}2x c x <<;③当2c =时,原不等式无解.综上知,当2>c 时,原不等式的解集为{}2x x c <<;当2c <时,原不等式的解集为{}2x c x <<;当2c =时,原不等式的解集为∅.例6.已知y =x 2+ax +3-a ,若-2≤x ≤2,x 2+ax +3-a ≥0恒成立,求a 的取值范围. 解:设函数y =x 2+ax +3-a 在-2≤x ≤2时的最小值为关于a 的一次函数,设为g(a),则当对称轴x =-2a <-2,即a>4时,g(a)=(-2)2+(-2)a +3-a =7-3a ≥0,解得a ≤73,与a>4矛盾,不符合题意.当-2≤-2a ≤2,即-4≤a ≤4时,g(a)=3-a -24a ≥0,解得-6≤a ≤2,此时-4≤a ≤2. 当-2a >2,即a<-4时,g(a)=22+2a +3-a =7+a ≥0,解得a ≥-7,此时-7≤a<-4. 综上,a 的取值范围为-7≤a ≤2.例7.(1)解关于x 的不等式()()22442x a x a a R -++≤-∈.(2)若14x <≤时,不等式()2241x a x a -++≥--恒成立,求实数a 的取值范围.解解:(1)因为2(2)442x a x a -++-,即2(2)20x a x a -++,所以()(2)0x a x --,当2a <时,2a x ,当2a =时,2x =,当2a >时,2x a .综上所述,当2a <时,不等式的解为{|2}x a x ,当2a =时,不等式的解为{|2}x x =,当2a >时,不等式的解为{|2}x x a .(2)对于任意的14x <≤,()2241x a x a -++≥--恒成立,即2(2)50x a x a -+++恒成立,对任意的14x <≤,2(1)25a x x x --+恒成立,当14x <时,2254(1)11x x a x x x -+=-+--恒成立, 因为14x <时,所以013x <-,所以4(1)2(1)41x x x -+--,当且仅当411x x -=-,即3x =时等号成立, 所以4a ≤,所以实数a 的取值范围为(],4-∞.例8.已知函数2()(1)f x x a x a =-++.(1)当2a =时,求关于x 的不等式()0f x >的解集;(2)求关于x 的不等式()0f x <的解集;(3)若()20f x x +≥在区间(1,)+∞上恒成立,求实数a 的取值范围.解析:(1)当2a =时,则2()32f x x x =-+,由()0f x >,得2320x x -+>,令2320x x -+=,解得1x =,或2x =∴原不等式的解集为(-∞,1)(2⋃,)+∞(2)由()0f x <得1(0)()x a x --<,令()(1)0x a x --=,得1x a =,21x = ;当1a >时,原不等式的解集为(1,)a ;当1a =时,原不等式的解集为∅;当1a <时,原不等式的解集为(,1)a ;(2)由()20f x x +即20x ax x a -++在(1,)+∞上恒成立,得21x x a x +≤-令1(0)t x t =->, 则22(1)1232231x x t t t x t t++++==+++-, ∴223a +故实数a 的取值范围是(,3-∞⎤⎦例9.已知关于x 的不等式210ax x a -+-≤.(1)当a ∈R 时,解关于x 的不等式;(2)当[]2,3a ∈时,不等式210ax x a -+-≤恒成立,求x 的取值范围.解:(1)不等式210ax x a -+-≤可化为()()110x ax a -+-≤,当0a =时,不等式化为10x -≥,解得1≥x ,当0a <时,不等式化为()110a x x a -⎛⎫--≥ ⎪⎝⎭, 解得1a x a-≤,或1≥x ; 当0a >时,不等式化为()110a x x a -⎛⎫--≤ ⎪⎝⎭; ①102a <<时,11a a ->,解不等式得11a x a -≤≤, ②12a =时,11a a -=,解不等式得1x =, ③12a >时,11a a -<,解不等式得11a x a-≤≤. 综上,当0a =时,不等式的解集为{|1}x x ≥, 当0a <时,不等式的解集为{1|a x x a -≤或1}x ≥, 102a <<时,不等式的解集为1{|1}a x x a-≤≤, 12a =时,不等式的解集为{}|1x x =, 12a >时,不等式的解集为1{|}1a ax x ≤≤-. (2)由题意不等式210ax x a -+-≤对[]2,3a ∈恒成立,可设()()()211f a x a x =-+-+,[]2,3a ∈,则()f a 是关于a 的一次函数,要使题意成立只需:()()222021030320f x x f x x ⎧≤⎧--≤⎪⇒⎨⎨≤--≤⎪⎩⎩, 解得:112x -≤≤, 所以x 的取值范围是1,12⎡⎤-⎢⎥⎣⎦. 例10.(1)当1≤x ≤2时,不等式x 2+mx +4<0恒成立,求实数m 的取值范围.(2)对任意-1≤x ≤1,函数y =x 2+(a -4)x +4-2a 的值恒大于0,求a 的取值范围. 解:(1)令y =x 2+mx +4.∵y<0在1≤x ≤2上恒成立.∴y =0的根一个小于1,另一个大于2.如图所示:可得504240m m +<⎧⎨++<⎩,∴m 的取值范围是{m|m<-5}. (2)∵x 2+(a -4)x +4-2a>0恒成立,即x 2+ax -4x +4-2a>0恒成立.∴(x -2)·a>-x 2+4x -4.∵-1≤x ≤1,∴x -2<0.∴()22244222x x x a x x x --+-<=-=---. 令y =2-x ,则当-1≤x ≤1时,y 的最小值为1,∴a<1.故a 的取值范围为{a|a<1}. 类型三:分式,高次不等式的解法分式不等式:此类不等式求解,要先移项通分化为f x g x >0(或f x g x<0)的形式,再等价转化为整式不等式,特别的如果分母的正负容易判断,则可两边同乘以分母化正式例题1 解下列不等式:(1)3x -22x +1>0; (2)x +12-x≥3. .[解析] (1)3x -22x +1>0⇔(3x -2)(2x +1)>0⇔{x|x>23或x<-12}.(2)x +12-x ≥3⇔x +12-x -3≥0⇔4x -52-x ≥0⇔4x -5x -2≤0, ⇔⎩⎪⎨⎪⎧ 4x -5x -2≤0x -2≠0⇔{x|54≤x<2}. ∴原不等式的解集为{x|54≤x<2}. 例2解下列不等式:(1)x +1x -3≥0;(2)5x +1x +1<3. [解析] (1)不等式x +1x -3≥0可化为⎩⎪⎨⎪⎧ x +1x -3≥0x -3≠0,∴x ≤-1或x>3.∴原不等式的解集为{x|x ≤-1或x>3}.(2)不等式5x +1x +1<3可化为5x +1x +1-3<0, 即2x -1x +1<0,∴2(x -1)(x +1)<0, ∴-1<x<1.∴原不等式的解集为{x|-1<x<1}.简单高次不等式解法:把分式不等式转化为高次整式不等式,然后用“穿根法”求解 例题3:解下列不等式:(1)x 2+2x 3-x ≥0; (2)2x 2-5x +13x 2-7x +2≤1. -[解析] (1)原不等式⇔⎩⎪⎨⎪⎧ x 2+2x 3-x ≥03-x ≠0⇔⎩⎪⎨⎪⎧ x x +2x -3≤0,①x -3≠0.②将①式的三个根-2,0,3在数轴上标出来,然后用一条曲线穿根(从最大的根右上方穿起),如图所示,①式的解为x ≤-2,或0≤x ≤3.由②式知x ≠3,∴原不等式的解为{x|x ≤-2,或0≤x<3}.(2)2x 2-5x +13x 2-7x +2≤1⇔2x 2-5x +1-3x 2+7x -23x 2-7x +2≤0⇔-x 2+2x -13x 2-7x +2≤0⇔x 2-2x +13x 2-7x +2≥0⇔ ⎩⎪⎨⎪⎧ x -123x -1x -2≥0,①3x -1x -2≠0.②①式中三个根为13,1,2,其中1为二重根.由图知,①式的解为x ≤13,或x ≥2,或x =1.由②式知x ≠13,且x ≠2, ∴原不等式的解为{x|x<13,或x>2,或x =1}. 『规律总结』 穿根法求高次不等式的解集:(1)求解过程概括为:化正⇒求根⇒标根⇒穿根⇒写集(注意端点值能否取到). (2)“化正”指不等式中未知数最高项的系数为正值.(3)奇(奇次根)过,偶(偶次根)返回.例4:不等式:x(x -1)2(x +1)3(x -2)>0的解集为__{x|-1<x<0,或x>2}__.[解析] 原不等式可化为⎩⎪⎨⎪⎧ x x +1x -2>0x -1≠0 ⇔⎩⎪⎨⎪⎧ -1<x<0,或x>2x ≠1⇔-1<x<0,或x>2.∴原不等式的解集为{x|-1<x<0,或x>2}.例5:已知集合631x M x x +⎧⎫=≥⎨⎬+⎩⎭,2324850221x x N x x x x ⎧⎫--=≤⎨⎬-+-⎩⎭,求M N ⋃,(∁R M )∩N . 解:由631x x +≥+得,2301x x -≤+,则312x -≤<,即312M x x ⎧⎫=-≤⎨⎬⎩⎭<; 由2324850221x x x x x --≤-+-得,()()()()22125011x x x x x +-≤--+,则12x ≤-或512x <≤, 即15122N x x x ⎧⎫=≤-≤⎨⎬⎩⎭或<; ∴52M N x x ⎧⎫⋃=≤⎨⎬⎩⎭,312R C M x x x ⎧⎫=≤-⎨⎬⎩⎭或>,()35122R C M N x x x ⎧⎫⋂=≤-≤⎨⎬⎩⎭或<. 例6:解关于x 的不等式11ax a x +≤+. 21(1)110ax a x ax a x x-+++≤+⇔≤ 即(1)(1)0ax x x--≤等价于(1)(1)00ax x x x --≤⎧⎨≠⎩1.0a =时,即()[)(1)0,01,0x x x x -≥⎧⇒∈-∞⋃+∞⎨≠⎩2.0a ≠时,三次不等式对应的方程的三个根分别为0,1和1a ; ⑴0a <时,利用数轴标根法,大致图像为:[)1,01,x a ⎡⎫∴∈+∞⎪⎢⎣⎭;⑵0a >时,草图为:需要判断1a 和1的大小①01a <<时,解集为()1,01,a ⎡⎤-∞⎢⎥⎣⎦; ②1a =时,解集为(){},01-∞;③1a >时,解集为()1,0,1a ⎡⎤-∞⎢⎥⎣⎦. 综上:①0a <时,解集为[)1,01,a ⎡⎫+∞⎪⎢⎣⎭; ②0a =时,解集为()[),01,-∞+∞;③01a <<时,解集为()1,01,a ⎡⎤-∞⎢⎥⎣⎦; ④1a =时,解集为(){},01-∞;⑤1a >时,解集为()1,0,1a ⎡⎤-∞⎢⎥⎣⎦.例7.解关于x 的不等式()2201x x a R ax -->∈-. 由原不等式可得()()1201x x ax +->-,所以 ()()()1120ax x x -+-> 当0a =时,不等式的解集为:12x -<<;当0a ≠时,方程()()()1120ax x x -+-=解为:1x a=,1-,2; 当0a <时:()()1120x x x a ⎛⎫-+-< ⎪⎝⎭ ①11a <-,10a -<<时,其解集为:()1,1,2a ⎛⎫-∞⋃- ⎪⎝⎭ ②11a=-,1a =-时,其解集为:()(),11,2-∞-⋃- ③110a -<<,1a <-时,其解集为()1,1,2a ⎛⎫-∞-⋃ ⎪⎝⎭当0a >时:()()1120x x x a ⎛⎫-+-> ⎪⎝⎭ ①12a >,102a <<时,其解集为:()11,2,a ⎛⎫-⋃+∞ ⎪⎝⎭②12a=,12a =时,其解集为:()()1,22,-+∞ ③102a <<,12a >时,其解集为()11,2,a ⎛⎫-⋃+∞ ⎪⎝⎭。

含参一元二次不等式解法步骤

含参一元二次不等式解法步骤好啦,今天咱们来聊聊含参一元二次不等式的解法。

嗯,你可能一听到“含参一元二次不等式”这几个字,心里就觉得头大,怕是看着那堆公式都懵了。

不过别急,我保证这篇文章不是什么天书,咱们就像聊聊天一样,轻轻松松地搞定它。

你看,数学这东西就像生活中的那些小道理,只要抓住了重点,就能轻松应对。

首先啊,咱们得搞清楚“含参一元二次不等式”是什么意思。

说得简单点,这玩意儿就是带有字母(我们叫它“参数”)的二次不等式。

比如说,咱们有个式子是这样子的:(ax^2 + bx + c > 0),其中的a、b、c就是常见的参数。

你是不是感觉就像搞“解密任务”一样?其实没那么复杂,只要捋清楚步骤,啥都能搞定!第一步肯定是得判断一下这二次不等式的性质。

是的,你没听错,就是先看看它是个“啥性格的家伙”。

它是大于零、小于零,还是大于等于零?这一步就像是给它“定个性格”,就能决定后面怎么处理。

说白了,就是要搞明白它是不是“乖巧”,还是“暴躁”。

要是它是大于零,我们就知道答案范围一般是“x”的值在哪个区间,反之如果是小于零,那就得小心一点,可能会有负面影响,得分清楚。

咱们得看看这个不等式有没有什么“拐点”或“转折”之类的。

你知道吧,二次不等式通常有“转折点”,这个转折点就是它的“根”。

在解这种不等式时,咱们得先把它变成方程 (ax^2 + bx + c = 0),然后用求根公式找出它的根。

这一步就像是找寻不等式背后的“秘密钥匙”,有了它,你就能找到解决问题的正确方法。

再说,解这个方程的时候你得小心点,因为有可能出现两种根、一个根,甚至是根都没有的情况。

啥意思呢?就是方程有可能有两个不同的解,也有可能只有一个解,甚至干脆没解。

所以呢,你得根据不同的情况来判断。

在数学里,这种情况就像是生活中,你心里有了目标,却不知道结果会不会如愿——有时候一切顺利,没啥阻力;有时候却遇到挑战,啥都没发生。

有了根之后,咱们就得结合不等式的符号来考虑了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题25 含参“一元二次不等式”的解法【高考地位】解含参一元二次不等式,常涉及对参数的分类讨论以确定不等式的解,这是解含参一元二次不等式问题的一个难点. 在高考中各种题型多以选择题、填空题等出现,其试题难度属中高档题. 【方法点评】类型一 根据二次项系数的符号分类使用情景:参数在一元二次不等式的最高次项解题模板:第一步 直接讨论参数大于0、小于0或者等于0;第二步 分别求出其对应的不等式的解集; 第三步 得出结论.例1 已知关于x 的不等式2320ax x -+>)(R a ∈.(1)若不等式2320ax x -+>的解集为{|1}或x x x b <>,求,a b 的值.(2)求不等式ax x ax ->+-5232)(R a ∈的解集【答案】(1)1,2a b ==(2)①当0>a 时,a x x 3{>或}1-<x ②当03<<-a 时,}13{-<<x ax ③当3-=a 时,∅④当3-<a 时,}31{ax x <<-⑤ 当0=a 时,原不等式解集为{}1-<x x②当03<<-a 时,13-<a ,∴}13{-<<x a x③当3-=a 时,13-=a ,∴∅④当3-<a 时,13->a,∴}31{a x x <<-综上所述,原不等式解集为①当0>a 时,a x x 3{>或}1-<x ;②当03<<-a 时,}13{-<<x ax③当3-=a 时,∅;④当3-<a 时,}31{ax x <<-;⑤当0=a 时,原不等式解集为{}1-<x x . 考点:一元二次不等式的解法.【点评】(1)本题考察的是一元二次不等式和一元二次方程的关系,由题目所给条件知2320ax x -+=的两根为1x x b ==或,且0a >,根据根与系数的关系,即可求出,a b 的值.(2)本题考察的是解含参一元二次不等式,根据题目所给条件和因式分解化为()()310ax x -+>,然后通过对参数a 进行分类讨论,即可求出不等式的解集.【变式演练1】解关于x 的不等式:(2)(2)0x ax -->. 【答案】当0a <时,原不等式的集为2{|2}x x a<<,当0a =时,原不等式的集为{|2}x x <,当01a <<时,原不等式的集为2{|x x a>或2}x <,当1a =时,原不等式的集为{|2}x R x ∈≠.综上,当0a <时,原不等式的集为2{|2}x x a<<, 当0a =时,原不等式的集为{|2}x x <,当01a <<时,原不等式的集为2{|x x a>或2}x <, 当1a =时,原不等式的集为{|2}x R x ∈≠. 考点:不等式的解法.【变式演练2】已知p :1x 和2x 是方程220x mx --=的两个实根,不等式21253||a a x x --≥-对任意实数[]1,1m ∈-恒成立;q :不等式2210ax x +->有解,若p 为真,q 为假,求a 的取值范围. 【答案】1a ≤-∴440a ∆=+>,∴10a -<<, ∴不等式2210ax x +->有解时1a >-, ∴q 假时a 的范围为1a ≤-,② 由①②可得a 的取值范围为1a ≤-.考点:命题真假性的应用【变式演练3】关于x 的不等式2(2)20ax a x +--≥,()a R ∈ (1)已知不等式的解集为(][),12,-∞-⋃+∞,求a 的值;(2)解关于x 的不等式2(2)20ax a x +--≥.【答案】(1)1 (2)0a >,2|1x x x a ⎧⎫<->⎨⎬⎩⎭或,0a =,{}|1x x ≤-,20a -<<,2|1x x a ⎧⎫<<-⎨⎬⎩⎭{}2,|1a x x =-=-,22,|1a x x a ⎧⎫<--<<⎨⎬⎩⎭【解析】试题分析:(1)求解时主要利用一元二次不等式的解集的边界值为与不等式对应的方程的根,结合根与系数的关系得到a 值;(2)解带参数的不等式时要对参数分情况讨论,本题中首先要讨论最高次项系数是否为零的问题,其次要讨论二次不等式对应的函数图像开口方向及与x 轴交点坐标的大小问题。

考点:1.一元二次不等式的解法;2.分情况讨论的解题思想.类型二 根据二次不等式所对应方程的根的大小分类使用情景:一元二次不等式可因式分解类型解题模板:第一步 将所给的一元二次不等式进行因式分解;第二步 比较两根的大小关系并根据其大小进行分类讨论; 第三步 得出结论.例2 解关于x 的不等式:2(1)10(0)ax a x a ---<<. 【答案】详见解析.考点:解含参的一元二次不等式【点评】解含参的一元二次不等式,第一步先讨论二次项前的系数,此题为0<a ,所以先不讨论,第一步,先将式子分解因式,整理为1()(1)0x x a +->,第二步,ax 11-=,12=x ,讨论两根的大小关系,从而写出解集的形式.【变式演练4】解关于x 的不等式01)1(2>++-x a ax (a 为常数且0≠a ).【答案】0<a 时不等式的解集为)1,1(a ; 10<<a 时不等式的解集为),1()1,(+∞-∞a;1=a 时不等式的解集为),1()1,(+∞-∞ ;1>a 时不等式的解集为),1()1,(+∞-∞ a. 若1>a ,110<<a ,不等式的解集为),1()1,(+∞-∞ a【解析】试题分析:21(1)10()(1)0ax a x a x x a-++>⇔-->,先讨论0a <时不等式的解集;当0a >时,讨论1与1a的大小,即分10<<a ,1=a ,1>a 分别写出不等式的解集即可. 试题解析:原不等式可化为0)1)(1(>--x a x a(1)0<a 时,不等式的解集为)1,1(a;(2)0>a 时,若10<<a ,11>a ,不等式的解集为),1()1,(+∞-∞a; 若1=a ,不等式的解集为),1()1,(+∞-∞ ; 若1>a ,110<<a ,不等式的解集为),1()1,(+∞-∞ a; 考点:1.一元二次不等式的解法;2.含参不等式的解法.【变式演练5】已知0a <,解关于x 的不等式2(2)20ax a x ---<. 【答案】当2a <-时,2{x | x x 1}a <-或>;当2a =-时,{}1x x ≠;当20a -<<时,2{x |x 1x }a<或>-.考点:一元二次不等式.【变式演练6】已知二次函数2()23f x mx x =--,关于实数x 的不等式()0f x ≤的解集为[]1,n -.(1)当0a >时,解关于x 的不等式:21(1)2ax n m x ax ++>++; (2)是否存在实数(0,1)a ∈,使得关于x 的函数1()3xx y f a a +=-([]1,2x ∈)的最小值为5-?若存在,求实数a 的值;若不存在,说明理由.【答案】(1)当01a <≤时,原不等式的解集为2|2x x x a ⎧⎫><⎨⎬⎩⎭或;当1a >时,原不等式的解集为2|2x x x a ⎧⎫><⎨⎬⎩⎭或.(2)a =01a <<时,原不等式化为2(2)()0x x a -->,且22a <,解得2x a >或2x <; ②当1a =时,原不等式化为2(2)0x ->,解得x R ∈且2x ≠; ③当1a >时,原不等式化为2(2)()0x x a -->,且22a >,解得2x a <或2x >; 综上所述:当01a <≤时,原不等式的解集为2|2x x x a ⎧⎫><⎨⎬⎩⎭或;当1a >时,原不等式的解集为2|2x x x a ⎧⎫><⎨⎬⎩⎭或.考点:二次不等式解集与二次方程根的关系,二次函数最值.类型三 根据判别式的符号分类使用情景:一般一元二次不等式类型解题模板:第一步 首先求出不等式所对应方程的判别式;第二步 讨论判别式大于0、小于0或等于0所对应的不等式的解集; 第三步 得出结论.例3 设集合A={x |x 2+3k 2≥2k (2x -1)},B={x |x 2-(2x -1)k +k 2≥0},且A ⊆B ,试求k 的取值范围.【答案】.010<≤-≥k k 或【解析】解:}0)]1()][13([|{≥+---=k x k x x A ,比较,1,13的大小+-k k 因为),1(2)1()13(-=+--k k k(1)当k >1时,3k -1>k +1,A={x |x ≥3k -1或x 1+≤k }. (2)当k =1时,x R ∈.(3)当k <1时,3k -1<k +1,A={}131|+≤+≥k x k x x 或.B 中的不等式不能分解因式,故考虑判断式k k k k 4)(4422-=+-=∆, (1)当k =0时,R x ∈<∆,0. (2)当k >0时,△<0,x R ∈.(3)当k <0时,k k x k k x -+≥--≤>∆或,0.故:当0≥k 时,由B=R ,显然有A B ⊆,当k <0时,为使A B ⊆,需要⇒⎪⎩⎪⎨⎧-+≥+--≤-kk k kk k 113k 1-≥,于是k 1-≥时,B A ⊆. 综上所述,k 的取值范围是:.010<≤-≥k k 或【点评】解含参的一元二次不等式,可先分解因式,再讨论求解,若不易分解,也可对∆进行分类,或利用二次函数图像求解.对于二次项系数不含参数且不能因式分解时,则需对判别式∆的符号分类. 【变式演练7】在区间)2,1(上,不等式042<---mx x 有解,则m 的取值范围为( ) A .4->m B .4-<m C .5->m D .5-<m 【答案】C考点:一元二次不等式定区间定轴问题.【变式演练8】设不等式2220x ax a -++≤的解集为M ,如果[]1,4M ⊆,求实数a 的取值范围.【答案】18(1,]7-.当1a =-时,{}[]11,4M =-⊄; 当2a =时,{}[]21,4M =⊆; ③当0∆>时,1a <-或2a >,设方程()0f x =的两根为1x ,2x ,且12x x <,那么[]12,M x x = ,[]1,4M ⊆,∴1214x x ≤<≤,即(1)0,(4)0,0,214,2f f a ≥⎧⎪≥⎪⎪⎨∆>⎪-⎪<-<⎪⎩解得1827a <≤.综上所述,[]1,4M ⊆时,a 的取值范围是18(1,]7-. 考点:1、一元二次不等式的解法;2、一元二次方程根的分布及子集的应用. 【高考再现】1.【2015高考江苏,7】不等式224x x-<的解集为________.【答案】(1,2).-【解析】由题意得:2212x x x -<⇒-<<,解集为(1,2).- 【考点定位】解指数不等式与一元二次不等式【名师点晴】指数不等式按指数与1的大小判断其单调性,决定其不等号是否变号;对于一元二次方程20(0)ax bx c a ++=>的解集,先研究ac b 42-=∆,按照0>∆,0=∆, 0<∆三种情况分别处理,具体可结合二次函数图像直观写出解集.2.【2015高考上海,理17】记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,下列选项中,能推出方程③无实根的是( ) A .方程①有实根,且②有实根 B .方程①有实根,且②无实根 C .方程①无实根,且②有实根 D .方程①无实根,且②无实根 【答案】B3.【2015高考广东,文11】不等式2340x x --+>的解集为 .(用区间表示) 【答案】()4,1-【解析】由2340x x --+<得:41x -<<,所以不等式2340x x --+>的解集为()4,1-,所以答案应填:()4,1-.【考点定位】一元二次不等式.【名师点晴】本题主要考查的是一元二次不等式,属于容易题.解题时要注意2x 的系数是否为正数,如果2x 的系数是负数,一定要化为正数,否则很容易出现错误. 4.【2015高考上海,文16】 下列不等式中,与不等式23282<+++x x x 解集相同的是( ). A. 2)32)(8(2<+++x x x B. )32(282++<+x x xC. 823212+<++x x x D.218322>+++x x x 【答案】B【考点定位】同解不等式的判断.【名师点睛】求解本题的关键是判断出022)1(3222>≥++=++x x x . 本题也可以解出各个不等式,再比较解集.此法计算量较大. 【反馈练习】1.【安徽省蒙城县2018届高三上学期“五校”联考数学(文)试题】在关于x 的不等式()210x a x a -++<的解集中至多包含2个整数,则a 的取值范围是 ( ) A. ()3,5- B. ()2,4- C. []3,5- D. []2,4- 【答案】D【解析】 因为关于x 的不等式()210x a x a -++<可化为()()10x x a --<,当1a >时,不等式的解集为1x a <<, 当1a <时,不等式的解集为1a x <<,要使得解集中至多包含2个整数,则4a ≤且2a ≥-, 所以实数a 的取值范围是[]2,4a ∈-,故选D.点睛:本题主要考查了不等式解集中整数解的存在性问题,其中解答中涉及到一元二次不等式的求解,元素与集合的关系等知识点的综合应用,试题比较基础,属于基础题,同时着重考查了分类讨论思想的应用,解答中正确求解不等式的解集是解答的关键.2.【福建省莆田第九中学2017-2018学年高二上学期期中考试数学(文)试题】关于x 的不等式()222800x ax a a --<>的解集为()12,x x 且2115x x -=,则a =( )A. 52B. 3C. 52- D. -3【答案】A【解析】不等式22280x ax a --<即: ()()240x a x a +-<,结合0a >可得,不等式的解集为: 24a x a -<<,据此可得: ()4215a a --=,解得: 52a =. 本题选择A 选项.3.【安徽省淮北市第一中学2017-2018学年高二上学期期中考试数学(理)试题】已知函数()211f x x a x a ⎛⎫=-++ ⎪⎝⎭.(1)当2a =时,解关于x 的不等式()0f x ≤; (2)若0a >,解关于x 的不等式()0f x ≤. 【答案】(1)1,22⎡⎤⎢⎥⎣⎦;(2)见解析4.【安徽省阜阳市太和中学2017-2018学年高二上学期期中考试数学(文)试题】已知()()236f x x a a x b =-+-+.(1)当不等式()0f x >的解集为()1,3-时,求实数,a b 的值; (2)解关于a 的不等式()10f >.【答案】(1) 3{9.a b ==或3{9.a b == (2) 当()26430b ∆=--≤时,即6b ≤-时,不等式的解集为∅;当()26430b ∆=-->时,即6b >-时,不等式的解集为(3+.5.【山东省临沂市2017-2018学年高二上学期质量调研(期中)数学(文)试题】设函数()21f x mx mx =--.(1)若对于一切实数x , ()0f x < 恒成立,求m 的取值范围; (2)若对于[]1,2x ∈, ()5f x m <- 恒成立,求m 的取值范围. 【答案】(1){}|40m m -<≤(2){}|2m m <【解析】(1) 要使210mx mx --<恒成立,若0m =,显然10-<;若0m ≠,则20,{40m m m <∆=+<,即40m -<<.∴m 的取值范围为{}|40m m -<≤. (2)要使()5f x m <-在[]1,2上恒成立, 只需26mx mx m -+< 恒成立([]1,2x ∈),∵22131024x x x ⎛⎫-+=-+> ⎪⎝⎭,∴261m x x <-+.∵226611324y x x x ==-+⎛⎫-+ ⎪⎝⎭ 在[]1,2x ∈上是减函数, ∴函数261y x x =-+在[]1,2上的最小值min 2y =.∴m 的取值范围是{}|2m m <.点睛:不等式的任意性问题即为不等式的恒成立问题,常用的方法有两个:一是,分离变量法,将变量和参数移到不等式的两边,转化为求新的函数据的最值问题,即可得到参数范围;二是,含参讨论法,此法是一般方法,讨论参数的范围,结合单调性处理.6.【山东省临沂市2017-2018学年高二上学期质量调研(期中)数学(理)试题】设函数()26f x mx mx m =--+.(1)若对于[]2,2m ∈-, ()0f x <恒成立,求实数x 的取值范围; (2)若对于[]1,3x ∈, ()0f x <恒成立,求实数m 的取值范围. 【答案】(1){}|12x x -<<(2)67m <∴2min61m x x ⎛⎫<⎪-+⎝⎭. ∵()21h x x x =-+在区间[]1,3上为增函数, ∴()()()13h h x h ≤≤,即()17h x ≤≤,∴266617x x ≥≥-+, ∴67m <.点睛:本题考查了不等式恒成立问题,常考题型,转化为函数求最值,已知哪个变量的范围就构造关于哪个量的函数,也常采用变量分离.7.【广东省揭阳市第一中学2017-2018学年高二上学期期中考试数学(理)试题】设函数()()211f x ax a x =-++.(1)当a R ∈时,求关于x 的不等式()0f x <的解集;(2)若()321f x x x ≤-+在3,2⎡⎫+∞⎪⎢⎣⎭上恒成立,求a 的取值范围.【答案】(1)详见解析;(2) 3a ≤.【点睛】本题为解含参的一元二次不等式,若二次项的系数含有参数,先对二次项系数分类讨论,特别是不能忘记二次项系数为0的情况,当二次项的系数不为0时,分二次项系数大于0,和小于0两种情况,比较两根的大小,根据不等式的要求写出不等式的解集;当二次项的系数不含参数时,讨论判别式的情况,若有根则求根,若两根大小不定时,还要讨论两根的大小,根据不同情况,画出抛物线属性结合,写出解集. 分离参数法求参数的取值范围也是常见题型,首先分离参数,注意不等号的方向,求最值,利用“极值原理”求最值,给出参数的取值范围.8.【山东省潍坊市第七中学2017-2018学年高二上学期期中考试数学试题】已知函数()()21f x ax ax a R =--∈.(1)若对任意实数x , ()0f x <恒成立,求实数a 的取值范围; (2)解关于x 的不等式()23f x x <-. 【答案】(1) 40a -<≤;(2)详见解析.【解析】(1)当0a =时, ()10f x =-<恒成立; 当0a ≠时,要使对任意实数x , ()0f x <恒成立,需满足()()2{ 410a a a <∆=---<,解得40a -<<,故实数a 的取值范围为40a -<≤. (2)由不等式()23f x x <-得()2220ax a x -++<,即()()210ax x --<.方程()()210ax x --=的两根是11x =, 22(0)x a a=>. ①当0a <时, 20a < 20a <,不等式的解为2x a<或1x >;②当0a =时,不等式的解为1x >; ③当02a <<时, 21a <不等式的解为21x a<<; ④当2a =时, 21a =,不等式无解; ⑤当2a >时, 21a >,不等式的解为21x a<<.【方法点睛】本题主要考查一元二次不等式的解法、分类讨论思想,属于难题. 分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.9.【福建省闽侯第四中学2017-2018学年高二上学期期中数学(文)试题】已知关于x 的不等式2320ax x -+> ()a R ∈.(1)若关于x 的不等式2320ax x -+> ()a R ∈的解集为{|1x x <或}x b >,求,a b 的值; (2)解关于x 的不等式2325ax x ax -+>- ()a R ∈. 【答案】(1)1,2a b ==(2)见解析。

相关文档
最新文档