2019届高考数学专题十九圆锥曲线综合精准培优专练理

合集下载

2019届高三好教育精准培优专练 数学(理)(学生版)

2019届高三好教育精准培优专练 数学(理)(学生版)

数学(理)培优点一函数的图象与性质01 培优点二函数零点06 培优点三含导函数的抽象函数的构造10培优点四恒成立问题14 培优点五导数的应用18 培优点六三角函数23 培优点七解三角形29 培优点八平面向量33 培优点九线性规划36 培优点十等差、等比数列40培优点十一数列求通项公式43 培优点十二数列求和47 培优点十三三视图与体积、表面积51 培优点十四外接球56 培优点十五平行垂直关系的证明59 培优点十六利用空间向量求夹角67 培优点十七圆锥曲线的几何性质76 培优点十八离心率81 培优点十九圆锥曲线综合86 培优点二十几何概型932019届高三好教育精准培优专练1.单调性的判断例1:(1)函数()212log (4)f x x -=的单调递增区间是( )A .(0,)+∞B .(0),-∞C .(2,)+∞D .(),2-∞-(2)223y xx +-+=的单调递增区间为________.2.利用单调性求最值 例2:函数y x =________.3.利用单调性比较大小、解抽象函数不等式例3:(1)已知函数()f x 的图象向左平移1个单位后关于y 轴对称,当211x x >>时,()()2121()0f x f x x x -⋅-⎡⎤⎣⎦<恒成立,设12a f ⎛⎫=- ⎪⎝⎭,()2b f =,()3c f =,则a ,b ,c 的大小关系为 ( ) A .c a b >>B .c b a >>C .a c b >>D .b a c >>(2)定义在R 上的奇函数()y f x =在(0,)+∞上递增,且102f ⎛⎫= ⎪⎝⎭,则满足19log 0f x ⎛⎫> ⎪⎝⎭的x 的集合为________________. 4.奇偶性例4:已知偶函数()f x 在区间[0,)+∞上单调递增,则满足1(21)3f x f ⎛⎫-< ⎪⎝⎭的x 的取值范围是( )A .12,33⎛⎫ ⎪⎝⎭ B .12,33⎡⎫⎪⎢⎣⎭C .12,23⎛⎫ ⎪⎝⎭ D .12,23⎡⎫⎪⎢⎣⎭ 5.轴对称例5:已知定义域为R 的函数()y f x =在[]0,7上只有1和3两个零点,且()2y f x =+与()7y f x =+ 都是偶函数,则函数()y f x =在[]0,2013上的零点个数为( ) A .404 B .804C .806D .402培优点一 函数的图象与性质6.中心对称例6:函数()f x 的定义域为R ,若()1f x +与()1f x -都是奇函数,则( ) A .()f x 是偶函数 B .()f x 是奇函数 C .()()2f x f x =+D .()3f x +是奇函数7.周期性的应用例7:已知()f x 是定义在R 上的偶函数,()g x 是定义在R 上的奇函数,且()()1g x f x =-, 则()()20172019f f +的值为( ) A .1- B .1C .0D .无法计算一、选择题1.若函数()2f x x a =+的单调递增区间是[)3,+∞,则a 的值为( ) A .2-B .2C .6-D .62.已知函数()2log 1y ax =-在()1,2上是增函数,则实数a 的取值范围是( ) A .(]0,1B .[]1,2C .[1,)+∞D .[2,)+∞3.设函数()()()ln 1ln 1f x x x =-+-,则()f x 是( ) A .奇函数,且在(0,1)内是增函数 B .奇函数,且在(0,1)内是减函数 C .偶函数,且在(0,1)内是增函数 D .偶函数,且在(0,1)内是减函数4.已知函数()y f x =的图象关于1x =对称,且在(1,)+∞上单调递增,设12a f ⎛⎫=- ⎪⎝⎭,()2b f =, ()3c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .a b c <<5.已知()f x 是奇函数,()g x 是偶函数,且()2(11)f g -+=,())114(f g -=+,则()1g 等于( ) A .4B .3C .2D .1对点增分集训6.函数1()cos (0)f x x x x x x ⎛⎫=--π≤≤π≠ ⎪⎝⎭且的图象可能为( )7.奇函数()f x 的定义域为R ,若()1f x +为偶函数,且()12f =,则()()45f f +的值为( ) A .2B .1C .1-D .2-8.函数()f x 的图象向右平移1个单位,所得图象与曲线e x y =关于y 轴对称,则()f x 的解析式为( ) A .()1e x f x +=B .()1e x f x -=C .()1e x f x -+=D .()1e x f x --=9.使2)og (l 1x x <+-成立的x 的取值范围是( ) A .()1,0-B .[)1,0-C .()2,0-D .[)2,0-10.已知偶函数()f x 对于任意R x ∈都有()()1f x f x +=-,且()f x 在区间[]0,1上是单调递增的, 则()65f -.,1()f -,()0f 的大小关系是( ) A .()0 6.5()()1f f f <-<- B .()6.5()()01f f f -<<- C .()()(60)1.5f f f -<-<D .()10()( 6.5)f f f -<<-11.对任意的实数x 都有()()()221f x f x f -=+,若(1)y f x =-的图象关于1x =对称,且()02f =, 则()()20152016f f +=( ) A .0B .2C .3D .412.已知函数()e 1x f x =-,()243g x x x =-+-,若存在()()f a g b =,则实数b 的取值范围为( ) A .[0,3]B .(1,3)C .2⎡⎣D .(22-+二、填空题13.设函数()10010x x x f x >⎧⎪==⎨⎪-<⎩,()21()g x x f x -=,则函数()g x 的递减区间是_______. 14.若函数()R ()f x x ∈是周期为4的奇函数,且在[0,2]上的解析式为()()101sin 12x x x x x f x ⎧-≤≤⎪=⎨π<≤⎪⎩,则294146f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭________. 15.设函数()||f x x a =+,()1g x x =-,对于任意的R x ∈,不等式()()f x g x ≥恒成立,则实数a 的取 值范围是________.16.设定义在R 上的函数()f x 同时满足以下条件:①()0()f x f x +-=;②()()2f x f x =+;③当01x ≤≤时,()21x f x =-,则()1351(2)222f f f f f ⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________.三、解答题17.已知函数()ln(2)af x x x=+-,其中a 是大于0的常数. (1)求函数()f x 的定义域;(2)当4()1,a ∈时,求函数()f x 在[2,)+∞上的最小值; (3)若对任意,[)2x ∈+∞恒有()0f x >,试确定a 的取值范围.18.设()f x 是定义域为R 的周期函数,最小正周期为2,且()1()1f x f x =+-,当10x -≤≤时,()f x x =-. (1)判定()f x 的奇偶性;(2)试求出函数()f x 在区间[]1,2-上的表达式.培优点二 函数零点1.零点的判断与证明例1:已知定义在()1,+∞上的函数()ln 2f x x x =--, 求证:()f x 存在唯一的零点,且零点属于()3,4.2.零点的个数问题例2:已知函数()f x 满足()()3f x f x =,当[)1,3x ∈,()ln f x x =,若在区间[)1,9内, 函数()()g x f x ax =-有三个不同零点,则实数a 的取值范围是( ) A .ln 31,3e ⎛⎫⎪⎝⎭B .ln 31,93e ⎛⎫⎪⎝⎭C .ln 31,92e ⎛⎫⎪⎝⎭D .ln 3ln 3,93⎛⎫⎪⎝⎭ 3.零点的性质例3:已知定义在R 上的函数()f x 满足:()[)[)2220,121,0x x f x xx ⎧+∈⎪=⎨-∈-⎪⎩,且()()2f x f x +=,()252x g x x +=+,则方程()()f x g x =在区间[]5,1-上的所有实根之和为( ) A .5-B .6-C .7-D .8-4.复合函数的零点例4:已知函数()243f x x x =-+,若方程()()20f x bf x c ++=⎡⎤⎣⎦恰有七个不相同的实根,则实数b 的取值范围是( ) A .()2,0- B .()2,1--C .()0,1D .()0,2一、选择题1.设()ln 2f x x x +-=,则函数()f x 的零点所在的区间为( ) A .()0,1B .()1,2C .()2,3D .()3,42.已知a 是函数()12log 2x x f x =-的零点,若00x a <<,则()0f x 的值满足( )A .()00f x =B .()00f x >C .()00f x <D .()0f x 的符号不确定3.函数2()2f x x a x=--的一个零点在区间()1,2内,则实数a 的取值范围是( ) A .()1,3B .()1,2C .()0,3D .()0,24.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a -----+-=+的两个零点分别位于区间( ) A .(),a b 和(),b c 内B .(,)a -∞和(),a b 内C .(),b c 和(),c +∞内D .(,)a -∞和(),c +∞内5.设函数()f x 是定义在R 上的奇函数,当0x >时,()e 3x f x x =+-,则()f x 的零点个数为( ) A .1B .2C .3D .46.函数()2201ln 0x x x xx f x ⎧+-≤=⎨-+>⎩的零点个数为( )A .3B .2C .7D .07.已知函数()1010x x x f x ≤⎧⎪=⎨>⎪⎩,则使方程()x f x m +=有解的实数m 的取值范围是( )A .()1,2B .(],2-∞-C .()(),12,-∞+∞D .(][),12,-∞+∞8.若函数()312f x ax a +-=在区间()1,1-内存在一个零点,则a 的取值范围是( ) A .1,5⎛⎫+∞ ⎪⎝⎭B .()1,1,5⎛⎫-∞-+∞ ⎪⎝⎭C .11,5⎛⎫- ⎪⎝⎭D .(),1-∞-9.已知函数()00exx x f x ≤⎧=⎨>⎩,则使函数()()g x f x x m =+-有零点的实数m 的取值范围是( )对点增分集训A .[)0,1B .(1),-∞C .(](),12,-∞+∞D .(](),01,-∞+∞10.已知()f x 是奇函数且是R 上的单调函数,若函数221()()y f x f x λ++=-只有一个零点,则实数λ 的值是( ) A .14 B .18C .78-D .38-11.已知当[]0,1x ∈时,函数21()y mx =-的图象与y m 的图象有且只有一个交点,则正实数m 的取值范围是( ) A .(0,1][23,+)∞ B .(]0,13[),+∞C .[23,+)∞D .[3,+)∞12.已知函数()y f x =和()y g x =在[]2,2-的图像如下,给出下列四个命题: (1)方程()0f g x =⎡⎤⎣⎦有且只有6个根 (2)方程()0g f x =⎡⎤⎣⎦有且只有3个根 (3)方程()0f f x =⎡⎤⎣⎦有且只有5个根 (4)方程()0g g x =⎡⎤⎣⎦有且只有4个根则正确命题的个数是( ) A .1 B .2 C .3 D .4二、填空题13.函数()052log ||x f x x -=-.的零点个数为________.14.设函数31y x =与2212x y -⎛⎫= ⎪⎝⎭的图象的交点为00(,)x y ,若0,1()x n n ∈+,n ∈N ,则0x 所在的区间是______.15.函数()22026ln 0f x x x x x x ⎧-≤=⎨-+>⎩的零点个数是________.16.已知函数()23||f x x x =+,R x ∈,若方程()1|0|f x a x --=恰有4个互异的实数根,则实数a 的取值范围是________________.三、解答题17.关于x 的二次方程21()10x m x ++-=在区间[]0,2上有解,求实数m 的取值范围.18.设函数()1()10f x x x=->.(1)作出函数()f x 的图象; (2)当0a b <<且()()f a f b =时,求11a b+的值; (3)若方程()f x m =有两个不相等的正根,求m 的取值范围.1.对于()()'0f x a a >≠,可构造()()h x f x ax =-培优点三 含导函数的抽象函数的构造例1:函数()f x 的定义域为R ,()12f -=,对任意R x ∈,()2f x '>,则()24f x x >+的解集为( ) A .()1,1-B .()1-+∞,C .()1-∞-,D .()-∞+∞,2.对于()()'0xf x f x +>,构造()()h x xf x =;对于()()'0xf x f x ->,构造()()f x h x x=例2:已知函数()y f x =的图象关于y 轴对称,且当(),0x ∈-∞,()()0f x xf x '+<成立,()0.20.222a f =,()log 3log 3b f ππ=,()33log 9log 9c f =,则a ,b ,c 的大小关系是( )A .a b c >>B .a c b >>C .c b a >>D .b a c >>3.对于'()()0f x f x +>,构造()()e x h x f x =;对于'()()f x f x >或'()()0f x f x ->,构造()()ex f x h x = 例3:已知()f x 为R 上的可导函数,且R x ∀∈,均有()()f x f x '>,则有( ) A .2016e (2016)(0)f f -<,2016(2016)e (0)f f > B .2016e (2016)(0)f f -<,2016(2016)e (0)f f < C .2016e (2016)(0)f f ->,2016(2016)e (0)f f > D .2016e (2016)(0)f f ->,2016(2016)e (0)f f < 4.()f x 与sin x ,cos x 构造例4:已知函数()y f x =对任意的,22x ππ⎛⎫∈- ⎪⎝⎭满足()()cos sin 0f x x f x x '+>,则( )A .()04f π⎛⎫> ⎪⎝⎭B .()03f f π⎛⎫<2- ⎪⎝⎭C 34f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D 34f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭对点增分集训一、选择题1.若函数()y f x =在R 上可导且满足不等式()()0xf x f x '+>恒成立,对任意正数a 、b ,若a b <, 则必有( ) A .()()af b bf a <B .()()bf a af b <C .()()af a bf b <D .()()bf b af a <2.已知函数()()R f x x ∈满足()11f =,且()12f x '<,则()122x f x <+的解集为( ) A .}{11x x |-<<B .}{1x x |<-C .}{11x x x |<->或 D .}{1x x |>3.已知函数()f x 的定义域为R ,()f x '为()f x 的导函数,且()()()10f x x f x '+->,则( ) A .()10f =B .()0f x <C .()0f x >D .()()10x f x -<4.设函数()f x '是函数()()R f x x ∈的导函数,已知()()f x f x '<,且()()4f x f x ''=-,()40f =,()21f =则使得()2e 0x f x -<成立的x 的取值范围是( ) A .()2-+∞,B .()0+∞,C .()1+∞,D .()4+∞,5.已知函数()1y f x =-的图象关于点()1,0对称,函数()y f x =对于任意的()0,πx ∈满足()()sin cos f x x f x x >'(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( )A .ππ36f ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭B 3ππ42f⎛⎫⎛⎫<-- ⎪ ⎪⎝⎭⎝⎭C ππ223f⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D 5π3π64f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭6.定义在R 上的函数()f x 的导函数为()f x ',若对任意实数x ,有()()f x f x >',且()2018f x +为奇函数,则不等式()2018e 0x f x +<的解集为( ) A .(),0-∞B .()0,+∞C .1e ,⎛⎫-∞ ⎪⎝⎭D .1e ,⎛⎫+∞ ⎪⎝⎭7.已知函数()2f x +是偶函数,且当2x >时满足()()()2xf x f x f x ''>+,则( )A .()()214f f <B .()3232f f ⎛⎫> ⎪⎝⎭C .()5042f f ⎛⎫< ⎪⎝⎭D .()()13f f <8.已知定义域为R 的奇函数()y f x =的导函数为()y f x =',当0x ≠时,()()0f x f x x+'>,若1133a f ⎛⎫=⎪⎝⎭,()33b f =--,11lnln 33c f ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系正确的是( ) A .a b c << B .b c a << C .a c b << D .c a b <<9.已知定义在R 上的函数()f x 的导函数为()f x ',()()222e x f x f x --=(e 为自然对数的底数), 且当1x ≠时,()()()10x f x f x -->⎡⎤⎣⎦',则( ) A .()()10f f <B .()()2e 0f f >C .()()33e 0f f >D .()()44e 0f f <10.定义在R 上的函数()f x 的导函数为()'f x ,()00f =若对任意R x ∈,都有()()'1f x f x >+,则使得()e 1f x x +<成立的x 的取值范围为( )A .(),1∞-B .(),0∞-C .()1,+∞-D .0,+∞()11.已知函数()f x 是定义在区间()0,+∞上的可导函数,满足()0f x >且()()'0f x f x +<(()'f x 为函数的导函数),若01a b <<<且1ab =,则下列不等式一定成立的是( ) A .()()()1f a a f b >+ B .()()()1f b a f a >- C .()()af a bf b >D .()()af b bf a >12.定义在R 上的奇函数()y f x =满足()30f =,且当0x >时,不等式()()'f x xf x >-恒成立,则函数()()lg 1g x xf x x =++的零点的个数为( )A .1B .2C .3D .4二、填空题13.设()f x 是R 上的可导函数,且'()()f x f x ≥-,(0)1f =,21(2)e f =.则(1)f 的值为________.14.已知,22x ⎛⎫∈- ⎪⎝π⎭π,()1y f x =-为奇函数,()()'tan 0f x f x x +>,则不等式()cos f x x >的解集为_________.15.已知定义在实数集R 的函数()f x 满足()27f =,且()f x 导函数()3f x '<,则不等式()ln 3ln 1f x x >+的解集为__________.16.已知函数()f x 是定义在()(),00,-∞+∞上的奇函数,且()10f =.若0x <时,()()'0xf x f x ->,则不等式()0f x >的解集为__________.1.参变分离法例1:已知函数()ln af x x x=-,若()2f x x <在()1,+∞上恒成立,则a 的取值范围是_________.培优点四 恒成立问题2.数形结合法例2:若不等式()log sin 20,1a x x a a >>≠对于任意的π0,4x ⎛⎤∈ ⎥⎝⎦都成立,则实数a 的取值范围是___________.3.最值分析法例3:已知函数()()ln 10f x a x a =+>,在区间()1,e 上,()f x x >恒成立,求a 的取值范围___________.一、选择题1.已知函数()()2ln 1,03,0x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩,若()()20f x m x -+≥,则实数m 的取值范围是( )A .(],1-∞B .[]2,1-C .[]0,3D .[)3,+∞2.已知函数()3224f x x x x =--+,当[],3x ∈-时,()214f x m m ≥-恒成立,则实数m 的取值范围是( ) A .()3,11-B .()3,11C .[]3,11D .[]2,73.若函数()2ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内单调递增,则实数a 的取值范围是( )A .(],2-∞-B .()2,-+∞C .12,8⎛⎫-- ⎪⎝⎭D .1,8⎡⎫-+∞⎪⎢⎣⎭4.已知对任意21,e e x ⎡⎤∈⎢⎥⎣⎦不等式2e xa x >恒成立(其中e 2.71828=,是自然对数的底数),则实数a 的取值范围是( )A .e 0,2⎛⎫⎪⎝⎭B .()0,eC .(),2e -∞-D .24,e ⎛⎫-∞ ⎪⎝⎭5.已知函数()2e x f x x =,当[]1,1x ∈-时,不等式()f x m <恒成立,则实数m 的取值范围是( ) A .1,e ⎡⎫+∞⎪⎢⎣⎭B .1,e ⎛⎫+∞ ⎪⎝⎭C .[)e,+∞D .()e,+∞对点增分集训6.当[]2,1x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[]5,3--B .96,8⎡⎤--⎢⎥⎣⎦C .[]6,2--D .[]4,3--7.函数()2e 1xf x x =-+,若存在(]00,2x ∈使得()00m f x ->成立,则实数m 的范围是( )A .21e 5,⎛⎫-+∞ ⎪⎝⎭B .()1,-+∞C .()1,+∞D .1e,2⎛⎫-+∞ ⎪⎝⎭8.设函数()ln f x x ax =+,若存在()00,x ∈+∞,使()00f x >,则a 的取值范围是( ) A .1,1e ⎛⎫- ⎪⎝⎭B .1,e ⎛⎫-∞ ⎪⎝⎭C .()1,-+∞D .1,e ⎛⎫-+∞ ⎪⎝⎭9.若对于任意实数0x ≥,函数()e x f x ax =+恒大于零,则实数a 的取值范围是( ) A .(),e -∞B .(],e -∞-C .[)e,+∞D .()e,-+∞10.已知函数()()()3f x a x a x a =-++,()22x g x =-,若对任意x ∈R ,总有()0f x <或()0g x <成立,则实数a 的取值范围是( ) A .(),4-∞-B .()4,0-C .[)4,0-D .()4,-+∞11.已知函数()e xf x ax x=-,()0,x ∈+∞,当21x x >时,不等式()()12210f x f x x x -<恒成立,则实数a 的取值范围为( ) A .(],e -∞B .(),e -∞C .e ,2⎛⎫-∞ ⎪⎝⎭D .e ,2⎛⎤-∞ ⎥⎝⎦12.设函数()()e 31x f x x ax a =--+,其中1a <,若有且只有一个整数0x 使得()00f x ≤,则a 的取值范围是( )A .23,e 4⎛⎫⎪⎝⎭B .23,e 4⎡⎫⎪⎢⎣⎭C .2,1e ⎛⎫ ⎪⎝⎭D .2,1e ⎡⎫⎪⎢⎣⎭二、填空题13.设函数()f x x a =+,()1g x x =-,对于任意的x ∈R ,不等式()()f x g x ≥恒成立,则实数a 的取值范围是__________.14.函数()ln 1f x x x ax =-+,其中a ∈R ,若对任意正数x 都有()0f x ≥,则实数a 的取值范围为____________.15.已知函数()21ln 22f x x ax x =--,若函数()f x 在1,22⎡⎤⎢⎥⎣⎦上单调递增,则实数a 的取值范围是__________.16.已知关于x 的不等式21log 02m mx x ⎛⎫+> ⎪⎝⎭-在[]1,2上恒成立,则实数m 的取值范围为___________.三、解答题17.设函数()()()2ln 1f x x a x x =++-,其中a ∈R , (1)讨论函数()f x 极值点的个数,并说明理由; (2)若0x ∀>,()0f x ≥成立,求a 的取值范围.18.设函数()2e mx f x x mx =+-,(1)证明:()f x 在(),0-∞单调递减,在()0,+∞单调递增;(2)若对于任意1x ,[]21,1x ∈-,都有()()12e 1f x f x -≤-,求m 的取值范围.培优点五导数的应用1.利用导数判断单调性例1:求函数()()32333e x=+--的单调区间f x x x x-2.函数的极值例2:求函数()e x f x x -=的极值.3.利用导数判断函数的最值 例3:已知函数()()ln mf x x m x=-∈R 在区间[]1,e 上取得最小值4,则m =___________.一、单选题1.函数()ln f x x x =-的单调递减区间为( ) A .() 0,1B .() 0,+∞对点增分集训C .() 1,+∞D .()() ,01,-∞+∞2.若1x =是函数()ln f x ax x =+的极值点,则( ) A .()f x 有极大值1- B .()f x 有极小值1- C .()f x 有极大值0D .()f x 有极小值03.已知函数()3f x x ax =--在(],1-∞-上单调递减,且()2ag x x x=-在区间(]1,2上既有最大值,又有最小值,则实数a 的取值范围是( ) A .2a >-B .3a ≥-C .32a -≤<-D .32a -≤≤-4.函数321y x x mx =+++是R 上的单调函数....,则m 的范围是( ) A .1,3⎛⎫+∞ ⎪⎝⎭B .1,3⎛⎫-∞ ⎪⎝⎭C .1,3⎡⎫+∞⎪⎢⎣⎭D .1,3⎛⎤-∞ ⎥⎝⎦5.遇见你的那一刻,我的心电图就如函数1ln sin 1x y x x -⎛⎫=+ ⎪+⎝⎭的图象大致为( )A .B .C .D .6.函数()321213f x x ax x =+-+在()1,2x ∈内存在极值点,则( )A .1122a -<<B .1122a -≤≤C .12a <-或12a >D .12a ≤-或12a ≥7.已知()22f x ax x a =++,x ∈R ,若函数()()()322g x x a x f x =---在区间()1,3-上单调递减,则实数a 的取值范围是( ) A .1a <-或3a >B .1a ≤-或3a ≥C .9a <-或3a >D .9a ≤-或3a ≥8.函数()y f x =在定义域3,32⎡⎤-⎢⎥⎣⎦内可导,其图像如图所示.记()y f x =的导函数为()y f x =',则不等式()0f x '≤的解集为( )A .[]1,12,33⎡⎤-⎢⎥⎣⎦B .1481,,233⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦ C .[)31,1,222⎡⎤-⎢⎥⎣⎦D .31144,,,323233⎡⎤⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦9.设函数()()1ln 03f x x x x =->,则()y f x =( )A .在区间1,1e ⎛⎫⎪⎝⎭,()1,e 内均有零点B .在区间1,1e ⎛⎫⎪⎝⎭,()1,e 内均无零点C .在区间1,1e ⎛⎫⎪⎝⎭内有零点,在区间()1,e 内无零点D .在区间1,1e ⎛⎫⎪⎝⎭内无零点,在区间()1,e 内有零点10.若函数()()323321f x x ax a x =++++既有极大值又有极小值,则实数a 的取值范围为( ) A .12a -<<B .12a -≤≤C .1a ≤-或2a ≥D .1a <-或2a >11.已知函数()3223f x x ax bx c =+++的两个极值点分别在()1,0-与()0,1内,则2a b -的取值范围是( )A .33,22⎛⎫- ⎪⎝⎭B .3,12⎛⎫- ⎪⎝⎭C .13,22⎛⎫- ⎪⎝⎭D .31,2⎛⎫ ⎪⎝⎭12.设函数()y f x =在区间(),a b 上的导函数为()f x ',()f x '在区间(),a b 上的导函数为()f x '',若在区间 (),a b 上()0f x ''>,则称函数()f x 在区间(),a b 上为“凹函数”,已知()5421122012f x x mx x =--在区间()1,3上为“凹函数”,则实数m 的取值范围为( )A .31,9⎛⎫-∞ ⎪⎝⎭B .31,59⎡⎤⎢⎥⎣⎦C .(],5-∞D .(],3-∞-二、填空题13.函数()3222f x x x =-在区间[]1,2-上的最大值是___________.14.若函数()32334f x x ax x a =-+-在(),1-∞-,()2,+∞上都是单调增函数,则实数a 的取值集合是______. 15.函数()()2ln 1f x x a x a =--∈R 在[]1,2内不存在极值点,则a 的取值范围是___________. 16.已知函数()e ln x f x a x =+, ①当1a =时,()f x 有最大值;②对于任意的0a >,函数()f x 是()0,+∞上的增函数; ③对于任意的0a <,函数()f x 一定存在最小值; ④对于任意的0a >,都有()0f x >.其中正确结论的序号是_________.(写出所有正确结论的序号)三、解答题17.已知函数()()ln f x x ax a =-∈R (1)讨论函数()f x 在()0,+∞上的单调性; (2)证明:2e e ln 0x x ->恒成立.18.已知函数()()2e ,x f x a x bx a b =+-∈R ,其导函数为()'y f x =.(1)当2b =时,若函数()'y f x =在R 上有且只有一个零点,求实数a 的取值范围;(2)设0a ≠,点()(),,P m n m n ∈R 是曲线()y f x =上的一个定点,是否存在实数()00x x m ≠使得()()000'2x m f x n f x m +⎛⎫-=- ⎪⎝⎭成立?并证明你的结论.1.求三角函数值 例1:已知π3π044βα<<<<,π3cos 45α⎛⎫-= ⎪⎝⎭,3π5sin 413β⎛⎫+= ⎪⎝⎭,求()sin αβ+的值.培优点六 三角函数2.三角函数的值域与最值例2:已知函数()πππcos 22sin sin 344f x x x x ⎛⎫⎛⎫⎛⎫=-+-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, (1)求函数()f x 的最小正周期和图像的对称轴方程; (2)求函数()f x 在区间ππ,122⎡⎤-⎢⎥⎣⎦的值域.3.三角函数的性质例3:函数()2cos2f x x x +( )A .在ππ,36⎛⎫-- ⎪⎝⎭上单调递减B .在ππ,63⎛⎫⎪⎝⎭上单调递增C .在π,06⎛⎫- ⎪⎝⎭上单调递减D .在π0,6⎛⎫⎪⎝⎭上单调递增一、单选题1.若π1sin 63α⎛⎫-= ⎪⎝⎭,则2πcos 23α⎛⎫+⎪⎝⎭的值为( ) A .13-B .79-C .13D .792.函数()π2sin 26f x x ⎛⎫=-+ ⎪⎝⎭的一个单调递增区间是( )A .ππ,63⎡⎤-⎢⎥⎣⎦B .π5π,36⎡⎤⎢⎥⎣⎦C .ππ,36⎡⎤-⎢⎥⎣⎦D .π2π,63⎡⎤⎢⎥⎣⎦3.已知1tan 4tan θθ+=,则2πcos 4θ⎛⎫+= ⎪⎝⎭( )A .15B .14C .13D .124.关于函数()()π3sin 213f x x x ⎛⎫=-+∈ ⎪⎝⎭R ,下列命题正确的是( )A .由()()121f x f x ==可得12x x -是π的整数倍B .()y f x =的表达式可改写成()π3cos 216f x x ⎛⎫=++ ⎪⎝⎭C .()y f x =的图象关于点3π,14⎛⎫⎪⎝⎭对称D .()y f x =的图象关于直线π12x =-对称 5.函数()2πππcos 2sin sin 555f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭的最大值是( ) A .1 B .πsin5C .π2sin5D6.函数()()sin 0y x ωϕω=+>的部分图象如图所示,则ω,ϕ的值分别可以是( )对点增分集训A .1,π3B .1,2π3-C .2,2π3D .2,π3-7.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,π4x =-和π4x =分别是函数()f x 取得零点和最小值点横坐标,且()f x 在ππ,1224⎛⎫- ⎪⎝⎭单调,则ω的最大值是( )A .3B .5C .7D .98.已知函数()cos sin f x x x =⋅,给出下列四个说法:2014π3f ⎛⎫= ⎪⎝⎭①②函数()f x 的周期为π; ()f x ③在区间ππ,44⎡⎤-⎢⎥⎣⎦上单调递增;()f x ④的图象关于点π,02⎛⎫- ⎪⎝⎭中心对称其中正确说法的序号是( ) A .②③B .①③C .①④D .①③④9.已知0ω>,函数()πsin 4f x x ω⎛⎫=+ ⎪⎝⎭在π,π2⎛⎫ ⎪⎝⎭上单调递减,则ω的取值范围是( )A .10,2⎛⎤⎥⎝⎦B .(]0,2C .15,24⎡⎤⎢⎥⎣⎦D .13,24⎡⎤⎢⎥⎣⎦10.同时具有性质:①()f x 最小正周期是π;②()f x 图象关于直线π3x =对称;③()f x 在ππ,63⎡⎤-⎢⎥⎣⎦上是增函数的一个函数是( ) A .πsin 23x y ⎛⎫=+ ⎪⎝⎭B .πsin 26y x ⎛⎫=- ⎪⎝⎭C .πcos 23y x ⎛⎫=+⎪⎝⎭D .πsin 23y x ⎛⎫=+ ⎪⎝⎭11.关于函数()1π2sin 26f x x ⎛⎫=+ ⎪⎝⎭的图像或性质的说法中,正确的个数为( )①函数()f x 的图像关于直线8π3x =对称; ②将函数()f x 的图像向右平移π3个单位所得图像的函数为1π2sin 23y x ⎛⎫=+ ⎪⎝⎭;③函数()f x 在区间π5π,33⎛⎫- ⎪⎝⎭上单调递增;④若()f x a =,则1πcos 233a x ⎛⎫-= ⎪⎝⎭.A .1B .2C .3D .412.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>≤ ⎪⎝⎭的图象关于直线π3x =对称,它的最小正周期为π,则函数()f x 图象的一个对称中心是( ) A .π,012⎛⎫- ⎪⎝⎭B .π,13⎛⎫ ⎪⎝⎭C .5π,012⎛⎫ ⎪⎝⎭D .π,012⎛⎫ ⎪⎝⎭二、填空题13.函数πcos 24y x ⎛⎫=+⎪⎝⎭的单调递减区间是_________. 14.已知()0,πα∈,且3cos 5α=,则πtan 4α⎛⎫-= ⎪⎝⎭_________________.15.函数()sin2f x x x =在π0,2x ⎛⎫∈ ⎪⎝⎭的值域为_________.16.关于()()π4sin 2,3f x x x ⎛⎫+∈ ⎪⎝⎭R =,有下列命题①由()()120f x f x ==可得12x x -是π的整数倍; ②()y f x =的表达式可改写成π4cos 26y x ⎛⎫=- ⎪⎝⎭;③()y f x =图象关于π,06⎛⎫- ⎪⎝⎭对称;④()y f x =图象关于π6x =-对称.其中正确命题的序号为________(将你认为正确的都填上).三、解答题17.已知()π2sin 2cos26f x x a x ⎛⎫=++ ⎪⎝⎭()a ∈R ,其图象在π3x =取得最大值. (1)求函数()f x 的解析式;(2)当π0,3α⎛⎫∈ ⎪⎝⎭,且()65f α=,求sin2α值.18.已知函数()()2πsin sin 02f x x x x ωωωω⎛⎫=++> ⎪⎝⎭的最小正周期为π. (1)求ω的值;(2)求函数()f x 在区间2π0,3⎡⎤⎢⎥⎣⎦上的取值范围.1.解三角形中的要素例1:ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,若c =b =,60B =o ,则C =_____. 2.恒等式背景培优点七 解三角形例2:已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,且有cos sin 0a C C b c --=. (1)求A ;(2)若2a =,且ABC △b ,c .一、单选题1.在ABC △中,1a =,6A π∠=,4B π∠=,则c =( ) ABCD2.在ABC △中,三边长7AB =,5BC =,6AC =,则AB BC ⋅u u u v u u u v等于( )A .19B .19-C .18D .18-3.在ABC △中,角A ,B ,C 所对应的边分别是a ,b ,c ,若2cos c a B =,则三角形一定是( ) A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形4.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若3C π=,c =3b a =,则ABC △的面积为( ) 对点增分集训AB C D 5.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a b bc -=,sin C B =,则A =( ) A .30︒B .60︒C .120︒D .150︒6.设ABC △的三个内角A ,B ,C 所对的边分别为a ,b ,c ,如果()()3a b c b c a bc +++-=,且a =那么ABC △外接圆的半径为( ) A .1BC .2D .47.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且222b c a bc +=+,若2sin sin sin B C A ⋅=, 则ABC △的形状是( ) A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形8.ABC △的内角A ,B ,C 的对边分别是a ,b ,c 且满足cos cos a B b A c -=,则ABC △是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形9.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知ABC △的面积为2b c -=,1cos 4A =-,则a 的值为( ) A .8B .16C .32D .6410.在ABC △中,a ,b ,c 分别为角A ,B ,C 所对的边.若()sin cos 0b a C C +-=, 则A =( ) A .4π B .3π C .34π D .23π 11.在ABC △中,内角A ,B ,C 的对边分别是a ,b ,c ,若c o s c o s c o s a b cA B C==,则ABC △是( ) A .直角三角形B .钝角三角形C .等腰直角三角形D .等边三角形12.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =,c =,tan 21tan A cB b+=, 则C ∠=( ) A .6π B .4π C .4π或34π D .3π二、填空题13.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,c =,2216b a -=,则角C 的最大值为_____; 14.已知ABC △的三边a ,b ,c 成等比数列,a ,b ,c 所对的角分别为A ,B ,C ,则sin cos B B +的取值范围是_________.15.在ABC △中三个内角A ∠,B ∠,C ∠,所对的边分别是a ,b ,c ,若()2si n c o s 2s i n c o s b C A A C+=-,且a =ABC △面积的最大值是________16.在锐角ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且A ,B ,C 成等差数列,b =,则ABC △面积的取值范围是__________.三、解答题17.己知a ,b ,c 分别为ABC △三个内角A ,B ,C cos 2sin A C+=. (1)求角A 的大小;(2)若5b c +=,且ABC △a 的值.18.如图,在ABC △中,点D 在BC 边上,60ADC ∠=︒,AB =,4BD =..(1)求ABD △的面积.(2)若120BAC ∠=o ,求AC 的长.1.代数法例1:已知向量a ,b 满足=3a ,b ()⊥+a a b ,则b 在a 方向上的投影为( )培优点八 平面向量A .3B .3- C. D2.几何法例2:设a ,b 是两个非零向量,且2==+=a b a b ,则=-a b _______. 3.建立直角坐标系例3:在边长为1的正三角形ABC 中,设2BC BD =uu u v uu u v ,3CA CE =uu v uu u v ,则AD BE ⋅=uuu v uu u v__________.一、单选题1.已知向量a ,b 满足1=a ,2=b ,且向量a ,b 的夹角为4π,若λ-a b 与b 垂直,则实数λ的值为( ) A .12-B .12C .2 D2.已知向量a ,b 满足1=a ,2=b,+a b ⋅=a b ( ) A .1BCD .23.如图,平行四边形ABCD 中,2AB =,1AD =,60A ∠=o ,点M 在AB 边上,且13AM AB =, 则DM DB ⋅=uuu u v uu u v( )A .1-B .1C. D4.如图,在ABC △中,BE 是边AC 的中线,O 是BE 边的中点,若AB =uu u v a ,AC =uuu v b ,则AO =uuu v( )对点增分集训A .1122+a bB .1124+a bC .1142+a bD .1144+a b5.在梯形ABCD 中,AB CD ∥,1CD =,2AB BC ==,120BCD ∠=o ,动点P 和Q 分别在线段BC 和CD 上,且BP BC λ=uu v uu u v ,18DQ DC λ=uuuv uuu v ,则AP BQ ⋅u u u v u u u v 的最大值为( ) A .2- B .32-C .34 D .986.已知ABC △中,2AB =,4AC =,60BAC ∠=︒,P 为线段AC 上任意一点,则PB PC ⋅uu v uu u v的范围是( )A .[]14,B .[]04,C .944⎡⎤-⎢⎥⎣⎦, D .[]24-,7.已知非零向量a ,b ,满足=a 且()()320+⋅-=a b a b ,则a 与b 的夹角为( ) A .4πB .2π C .34π D .π8.在Rt ABC △中斜边BC a =,以A 为中点的线段2PQ a =,则BP CQ ⋅u u v u u u v的最大值为( )A .2-B .0C .2D .9.设向量a ,b ,c ,满足1==a b ,12⋅=-a b ,6,0--=o a b c c ,则c 的最大值等于( )A .1B C D .210.已知a 与b 为单位向量,且⊥a b ,向量c 满足2--=c a b ,则c 的取值范围为( )A .1,1⎡⎣B .2⎡⎣C .D .3⎡-+⎣11.平行四边形ABCD 中,AC uuu v ,BD uuu v 在AB uu u v 上投影的数量分别为3,1-,则BD uuu v 在BC uu uv 上的投影的取值范围是( ) A .()1,-+∞B .()1,3-C .()0,+∞D .()0,312.如图,在等腰直角三角形ABC中,AB AC ==D ,E 是线段BC 上的点,且13DE BC =,则AD AE ⋅uuu v uu u v的取值范围是( )A .84,93⎡⎤⎢⎥⎣⎦B .48,33⎡⎤⎢⎥⎣⎦C .88,93⎡⎤⎢⎥⎣⎦D .4,3⎡⎫+∞⎪⎢⎣⎭二、填空题13.已知向量()1,2=a ,()2,2=-b ,()1,λ=c ,若()2+∥c a b ,则λ=________. 14.若向量a ,b 满足1=a ,2=b ()⊥+a a b ,则a 与b 的夹角为__________.15.已知正方形ABCD 的边长为2,E 是CD 上的一个动点,则求AE BD ⋅uu u v uu u v的最大值为________.16.在ABC △中,90C ∠=︒,30B ∠=︒,2AC =,P 为线段AB 上一点,则PB PC +uu v uu u v的取值范围为____.1.简单的线性规划问题应注意取点是否取得到培优点九 线性规划例1:已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是( )A .4B .5C .6D .72.目标函数为二次式例2:若变量x ,y 满足120x x y x y ≤⎧⎪≥⎨⎪++≥⎩,则22z x y =+的最大值为( )AB .7C .9D .103.目标函数为分式例3:设变量x ,y 满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则11y s x +=+的取值范围是( )A .31,2⎡⎤⎢⎥⎣⎦B .1,12⎡⎤⎢⎥⎣⎦C .[]1,2D .1,22⎡⎤⎢⎥⎣⎦4.面积问题例4:若不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线4y kx =+分成面积相等的两部分,则k 的值为( )A .73B .37C .173-D .317-一、单选题1.若实数x ,y 满足0010x y x y ≥⎧⎪≥⎨⎪+-≤⎩,则z x y =-的最大值为( )A .2B .1C .0D .1-对点增分集训2.已知实数x ,y 满足线性约束条件3023004x y x y x +-≤⎧⎪--≤⎨⎪≤≤⎩,则其表示的平面区域的面积为( ) A .94B .274C .9D .2723.已知实数x ,y 满足122022x y x y x y -≤⎧⎪-+≥⎨⎪+≥⎩,若z x a y =-只在点()43,处取得最大值,则a 的取值范围是( ) A .()1-∞-, B .()2-+∞, C .()1-∞,D .12⎛⎫+∞ ⎪⎝⎭,4.已知实数x ,y 满足约束条件222020x x y x y ≤⎧⎪-+≥⎨⎪++≥⎩,则5x z y -=的取值范围为( )A .2433⎡⎤-⎢⎥⎣⎦,B .4233⎡⎤-⎢⎥⎣⎦,C .3324⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U ,,D .3342⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U ,,5.若实数x ,y 满足约束条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则22z x y =+的最大值是( )AB .4C .9D .106.已知点()12A ,,若动点()P x y ,的坐标满足02x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则AP 的最小值为( )AB .1CD7.x ,y 满足约束条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若z y ax =-取得最大值的最优解不唯一,则实数a 的值为( )A .12或1- B .2或12C .2或1D .2或1-8.若x ,y 满足不等式组40240 4x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则215y x ≤+成立的概率为( )A .1556B .1116 C .58D .389.若x ,y 满足不等式组20510080x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩,则32z x y =-+的最小值为( )A .7B .6C .265D .410.已知平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定.若()M x y ,为D 上动点,点A 的坐标为).则z OM OA =⋅u u u v u u v的最大值为( )A.B.C .4D .311.若不等式组20510080x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩所表示的平面区域内存在点()00x y ,,使0020x ay ++≤成立,则实数a 的取值范围是( ) A .[)1,-+∞B .(],1-∞-C .(],1-∞D .[)1,+∞12.已知圆()()22:1C x a y b -+-=,平面区域60:400x y x y y +-≤⎧⎪Ω-+≥⎨⎪≥⎩,若圆心C ∈Ω,且圆C 与x 轴相切,则圆心(),C a b 与点()2,8连线斜率的取值范围是( ) A .77,,35⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭UB .77,,35⎛⎤⎛⎫-∞-+∞ ⎪⎥⎝⎦⎝⎭UC .77,35⎛⎫- ⎪⎝⎭D .77,35⎡⎤-⎢⎥⎣⎦二、填空题13.设x ,y 满足10302x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则21z x y =++的最大值为____________.14.若变量x ,y 满足约束条件210220x x y x y ≤⎧⎪-+≤⎨⎪+-≥⎩,则22z x y =+的最小值为_________.15.已知实数x ,y 满足110x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则22x y x ++的最小值为______.16.某公司计划明年用不超过6千万元的资金投资于本地养鱼场和远洋捕捞队.经过对本地养鱼场年利润率的调研,其结果是:年利润亏损10%的概率为02.,年利润获利30%的概率为0.4,年利润获利50%的概率为0.4,对远洋捕捞队的调研结果是:年利润获利为60%的概率为0.7,持平的概率为0.2,年利润亏损20%的可能性为0.1.为确保本地的鲜鱼供应,市政府要求该公司对远洋捕捞队的投资不得高于本地养鱼场的投资的2倍.根据调研数据,该公司如何分配投资金额,明年两个项目的利润之和最大值为_________千万.1.等差数列的性质培优点十 等差、等比数列例1:已知数列{}n a ,{}n b 为等差数列,若117a b +=,3321a b +=,则55a b +=_______. 2.等比数列的性质例2:已知数列{}n a 为等比数列,若4610a a +=,则()713392a a a a a ++的值为( ) A .10B .20C .100D .2003.等差、等比综合例3:设{}n a 是等差数列,{}n b 为等比数列,其公比1q ≠,且()01,2,3,,i b i n >=L ,若11a b =,1111a b =, 则有( ) A .66a b = B .66a b >C .66a b <D .66a b >或66a b <一、单选题1.我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,中间三尺重几何.”意思是:“现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,且从头到尾,每一尺的重量构成等差数列,问中间三尺共重多少斤.”( ) A .6斤B .7斤C .8斤D .9斤2.设n S 为等差数列{}n a 的前n 项和,若540S =,9126S =,则7S =( ) A .66B .68C .77D .843.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值为( ) A .4B .2C .2-D .4-4.已知等差数列{}n a 的前n 项和为n S ,5714a a +=,则11S =( ) A .140B .70C .154D .775.已知数列{}n a 是公比为q 的等比数列,且1a ,3a ,2a 成等差数列,则公比q 的值为( ) A .12-B .2-C .1或12-D .1-或12对点增分集训6.公比不为1的等比数列{}n a 的前n 项和为n S ,且12a -,212a -,3a 成等差数列,若11a =,则4S =( ) A .5-B .0C .5D .77.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log log a a a +++=L ( ) A .12B .10C .8D .32log 5+8.设公差为2-的等差数列{}n a ,如果1479750a a a a +++=+L ,那么36999a a a a ++++L 等于( ) A .182-B .78-C .148-D .82-9.已知等差数列{}n a 的前n 项和为n S ,且133215S S -=,则数列{}n a 的第三项为( ) A .3B .4-C .5-D .610.等差数列{}n a 的前n 项和为n S ,若81026a a =+,则11S =( ) A .27B .36C .45D .6611.设{}n a 是各项为正数的等比数列,q 是其公比,n K 是其前n 项的积,且56K K <,678K K K =>,则下列结论错误..的是( ) A .01q << B .71a =C .95K K >D .6K 与7K 均为n K 的最大值12.定义函数()f x 如下表,数列{}n a 满足()1n n a f a +=,n *∈N ,若12a =,则1232018a a a a ++++=L ( )A .7042B .7058C .7063D .7262二、填空题13.已知等差数列{}n a ,若2376a a a ++=,则17a a +=________.14.已知等比数列{}n a 的前n 项和为n S ,若公比q 1231a a a ++=,则12S 的值是___________.。

2019年高考数学理试题分类汇编:圆锥曲线(含答案)

2019年高考数学理试题分类汇编:圆锥曲线(含答案)

2019年高考数学理试题分类汇编:圆锥曲线(含答案)2019年高考数学理试题分类汇编——圆锥曲线一、选择题1.(2019年四川高考)设O为坐标原点,P是以F为焦点的抛物线y=2px(p>0)上任意一点,M是线段PF上的点,且PM=2MF,则直线OM的斜率的最大值为2/3.(答案:C)2.(2019年天津高考)已知双曲线x^2/4 - y^2/9 = 1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形ABCD的面积为2b,则双曲线的方程为x^2/4 - y^2/9 = 1.(答案:D)3.(2019年全国I高考)已知方程x^2/n^2 - y^2/m^2 = 1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(-1,3)。

(答案:A)4.(2019年全国I高考)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点。

已知|AB|=42,|DE|=25,则C的焦点到准线的距离为4.(答案:B)5.(2019年全国II高考)圆(x-1)^2 + (y-4)^2 = 13的圆心到直线ax+y-1=0的距离为1,则a=-2/3.(答案:A)6.(2019年全国II高考)已知F1,F2是双曲线E:x^2/4 -y^2/2 = 1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=1/3,则E的离心率为2/3.(答案:A)7.(2019年全国III高考)已知O为坐标原点,F是椭圆C:x^2/a^2 + y^2/b^2 = 1(a>b>0)的左焦点,A、B分别为C的左、右顶点。

P为C上一点,且PF⊥x轴。

过点A的直线l与线段PF交于点M,与y轴交于点E。

若直线BM经过OE的中点,则C的离心率为1/3.(答案:A)8.(2019年浙江高考)已知椭圆 + y^2/(m^2-1) = 1(m>1)与双曲线- y^2/(n^2-1) = 1(n>0)的焦点重合,e1,e2分别为m,n,则e1+e2=3.(答案:C)解析】Ⅰ)由题意可知,椭圆C的离心率为$\frac{\sqrt{3}}{2}$,根据离心率的定义可得:$\frac{c}{a}=\frac{\sqrt{3}}{2}$,其中$c$为椭圆的焦距之一,即$2c$为椭圆的长轴长度,$a$为椭圆的半长轴长度,$b$为椭圆的半短轴长度,则有:$$\frac{2c}{2a}=\frac{\sqrt{3}}{2}$$ 即:$$\frac{c}{a}=\frac{\sqrt{3}}{4}$$ 又因为焦点$F$在椭圆的一个顶点上,所以该顶点的坐标为$(a,0)$,即$2c=2a$,代入上式可得:$$\frac{b}{a}=\frac{1}{2}$$ 又因为椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,代入$\frac{b}{a}=\frac{1}{2}$可得:$$\frac{x^2}{a^2}+\frac{4y^2}{a^2}=1$$ 即:$$x^2+4y^2=a^2$$ (Ⅱ)(i)设椭圆C的另一个顶点为$V$,则$OV$为椭圆的长轴,$OF$为椭圆的短轴,且$OV=2a$,$OF=\sqrt{3}a$。

2019高考真题名校模拟(文数) 圆锥曲线的综合问题(含答案)

2019高考真题名校模拟(文数) 圆锥曲线的综合问题(含答案)

10.5 圆锥曲线的综合问题五年高考A 组统一命题·课标卷题组考点一 圆锥曲线中点定值问题1.(2017课标全国II .20,12分)设O 为坐标原点,动点M 在椭圆12:22=+y x C 上,过M 作x 轴的垂线,垂足为N ,点P 满足= (1)求点P 的轨迹方程;(2)设点Q 在直线x= -3上,且1=⋅证明:过点P 且垂直于OQ 的直线L 过C 的左焦点F .2.(2015课标II ,20,12分.0.247)已知椭圆>>=+b a by a x C (1.:2222)0的离心率为)2,2(,.22点在C 上.(1)求C 的方程;(2)直线O 不过原点O 且不平行于坐标轴,L 与C 有两个交点A ,B ,线段AB 的中点为胍证明:直线OM 的斜率与直线L 的斜率的乘积为定值.考点二 圆锥曲线中最值(范围)问题(2016课标全国Ⅱ.21,12分)已知A 是椭圆134:22=+y x E 的左顶点,斜率为k (k>0)的直线交E 于A ,M 两点,点N 在E 上.MA⊥NA.(1)当︱AM|=|AN|时,求△AMN 的面积; (2)当2|AM |=|AN|时,证明:.23<<kB 组 自主命题·省(区、市)卷题组考点一圆锥曲线中定点定值问题1.(2016北京.19,14分)已知椭圆),0,2(.1:2222A by a x C ≡=+)1,0(B 两点.(1)求椭圆C 的方程及离心率:(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:四边形ABNM 的面积为定值.2.(2014江西,20,13分)如图,已知抛物线,4:2y x C =过点M(O ,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D(O 为坐标原点). (1)证明:动点D 在定直线上:(2)作C 的任意一条切线L (不含x 轴),与直线y=2相交于点,1N 与(1)中的定直线相交于点⋅2N 证明:2122||||MN MN -为定值,并求此定值.考点二圆锥曲线线中最值(范围)问题1.(2018浙江.21,15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线 x y C 4:2=上存在不同的两点A .B 满足PA .PB 的中点均在C 上. (1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆)0(1422<=+x y x 上的动点,求△PAB 面积的取值范围.2.(2016山东.21,14分)已知椭圆)0(1:2222>>=+b a by a x C 的长轴长为4.焦距为.22(1)求椭圆C 的方程;(2)过动点M(O ,m)(m>0)的直线交x 轴于点N ,交c 于点A ,P(P 在第一象限),且M 是线段PN 的中点,过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .(i)设直线PM ,伽的斜率分别为,,/k k 证明/kk为定值:(ii)求直线AB 的斜率的最小值.3.(2017浙江.21,15分)如图,已知抛物线,2y x =点),49,23(),41,21(B A 抛物线上的点),(y x P ⋅<<)2321(x 过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|PA |.|PQ |的最大值.4.(2017山东.21,14分)在平面直角坐标系xOy 中,已知椭圆)0(1:22>>=+b a by a x C 的离心率为,22 椭圆C 截直线y=l 所得线段的长度为.22(2)动直线z :y=kx+m(m≠0)交椭圆C 于A ,B 两点,交y 轴剥点M 点N 是M 关于O 的对称点,ON 的半径为 |NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.考点三圆锥曲线 中存在性问题1.(2015四川.20,13分)如图,椭圆)0(1:2222>>=+b a by a x E 的离心率是,22点P(O ,1)在短轴CD 上,且.1.-= (1)求椭圆E 的方程;(2)设0为坐标原点,过点P 的动直线与椭圆交于A ,B 两点,是否存在常数.λ使得⋅+..λ为定值?若存在,求A 的值:若不存在,请说明理由.2.(2015湖北.22,14分)一种画椭圆的工具如图1所示.o 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且DN=ON=1.MN=3.当栓子D 在滑槽AB 内做往复运动时,带动Ⅳ绕D 转动.M 处的笔尖画出的椭圆记为G .以0为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(1)求椭圆C 的方程;(2)设动直线L 与两定直线02:1=-y x l 和02:2=+y x l 分别交于P ,Q 两点,若直线L 总与椭圆C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.突破方法方法1 圆锥曲线中定点、定值问题的求法例1(2017内蒙古包头一模)已知椭圆14:22=+y x C 与x 轴,y 轴的正半轴分别相交于A ,B 两点,点M ,N 为椭圆C 上相异的两点,其中点M 在第一象限,且直线AM 与直线BN 的斜率互为相反数.(1)证明:直线MN 的斜率为定值; (2)求四边形AMBN 面积的取值范围,1-1(2017黑龙江哈尔滨师大附中三模)椭圆12222=+by a x )0(>>b a 的左、右焦点分别为),0,()0,(21c F c F 、-过椭圆中心的弦PQ 满足Q PF Q PF PQ 22,90,2||∆=∠=且 的面积为1.(1)求椭圆C 的方程;(2)直线L 不经过点A(O ,1),且与椭圆交于M ,N 两点,若MN 为直径的圆经过点A ,求证:直线L 过定点,并求出该定点坐标.例2(2017辽宁鞍山一中最后一模)已知O 为坐标原点),(),,(2211y x N y x M 是椭圆 12422=+y x 上的点,且=+21212y y x x ,0设动点P 满足.2+=(1)求动点P 的轨迹C 的方程;(2)若直线L :y= x+m(m≠O)与曲线C 相交于A ,B 两个不的点,求△OAB 面积的最大值,2-1 (2018黑龙江佳木斯一中五调改编)椭圆E 中心在原点,焦点在y 轴上,21F F 、分别为椭圆上、下焦点,椭圆的离心率为p ,21为椭圆上一点且1.011PF k k PF PF 若=+的延长线与椭圆E 另一交点为A .以PA为直径的圆过点N M ),0,536(为椭圆E 上的动点,求21NF NF ⋅的范围.方法3 圆锥曲线中存在性问题的求法例3(2017内蒙古呼和浩特一模)已知椭圆>=+a by a x (12222)0>b 的离心率,36=e 直线y=bx+2与圆222=+y x 相切.(1)求椭圆的方程;(2)已知定点E(l ,0),若直线y=kx+2(k≠0)与椭圆相交于C ,D 两点,试判断是否存在实数k ,使得以CD 为直径的圆过定点E 若存在,求出k 的值;若不存在,请说明理由,3-1(2017黑龙江大庆二次质检)已知椭圆1:2222=+by a x C )0(>>b a 经过点),2,2(P 离心率,22=e 直线L 的方程为x=4.(1)求椭圆C 的方程;(2)经过椭圆右焦点F 的任一直线(不经过点P )与椭圆交于两点A ,B ,设直线AB 与Z 相交于点M ,记PA ,PB ,PM 的斜率分别为3213212:,,,k k k k k k -+问是不是定值?若是,求出此定值,若不是,请说明理由,三年模拟A 组2016-2018年高考模拟·基础题组考点一圆锥曲线中定点定值问题1.(2018辽宁大连一模)已知抛物线,2:2x y C =过点M(l ,0)任作一条直线和抛物线C 交于A 、B 两点,设点C(2,0),连接AC .BC 并延长,分别和抛物线C 交于点,//B A 和则直线//B A 过定点_______2.(2018新疆第二次适应性(模拟)检测)已知动点P 是圆x G (:32)622=++y 上的任意一点,点P 与点)0,6(A 的连线段的垂直平分线和GP 相交于点0.(1)求点Q 的轨迹C 的方程;(2)过坐标原点D 的直线L 交轨迹C 于点E ,F ,直线EF 与坐标轴不重合,M 是轨迹C 上的一点,若△EFM 的面积是4,试问直线EF ,OM 的斜率之积是不是定值,若是,求出此定值,若不是,请说明理由.3.(2017吉林长白山二模)已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为x=-1.直线L 与抛物线相交于不同的A .B 两点. (1)求抛物线的标准方程;(2)如果直线L 过抛物线的焦点,求.的值:(3)如果,4.-=直线L 是否过一定点?若过一定点,求出该定点:若不过一定点,试说明理由.4.( 2017黑龙江齐齐哈尔一模)如图,已知椭圆>=+a by a x C (1:2222)0>b 的左、右顶点分别为,21A A 、上、下顶点分别为,21B B 、两个焦点分别为,72||,2121=B A F F 四边形2211B A B A 的面积是四边形2211F B F B 的面积的2倍.(1)求椭圆C 的方程;(2)过椭圆C 的右焦点且垂直于x 轴的直线交椭圆C 于P ,Q 两点,A ,B 是椭圆C 上位于直线PQ 两侧的两点,若∠APQ =∠BPQ,求证:直线AB 的斜率AB k 为定值,考点二圆锥曲线中最值(范围)问题1.( 2018陕西西安八校第一次联考)如图,抛物线x y W 4:2=与圆25)1(:22=+-y x C 交于A 、B 两点,点P 为劣弧AB 上不同于A 、B 的一个动点,与x 轴平行的直线PQ 交抛物线W 于点Q ,则△PQC 的周长的取值范围是 ( ))12,10.(A )14,12.(B )14,10.(C )11,9.(D2.(2018海南二模)已知抛物线)0(22>=p px y 的焦点为F ,过点F 作互相垂直的两直线AB ,CD 与抛物线分别相交于A ,B 以及C ,D ,若,1||1||1=+BF AF 则四边形ACBD 的面积的最小值为( ) 18.A 30.B 32.C 36.D3.(2016吉林长春二模.11)过双曲线11522=-y x 的右支上一点P 分别向圆4)4(:221=++y x C 和圆 1)4(:222=+-y x C 作切线,切点分别为M ,N ,则22||||PN PM -的最小值为 ( )10.A 13.B y 19.D4.(2018陕西榆林二模)已知抛物线x y C 4:2=的焦点为F ,),(),,(2211y x N y x M 是抛物线C 上的两个动点,若=++221x x MFN MN ∠则|,|2的最大值为__________5.(2018海南二模)已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为121,NF F F 且垂直于x 轴的直线与该双曲线的左支交于A ,B 两点,22,BF AF 分别交y 轴于P ,Q 两点,若2PQF ∆的周长为16,则1+a b的最大值为_________ 6.(2018新疆乌鲁木齐地区第二次诊断性测验)设椭圆=+22by a x ),0(1>>b a 直线)0(:=/+=m m kx y l 与椭圆交于A ,B 两点,当L 经过椭圆的一个焦点和一个顶点时,.3==m k (1)求椭圆的方程;(2)若直线OA ,AB ,OB 的斜率成等差数列(0是坐标原点),求△OAB 面积的最大值,7.(2018辽宁大连一模)在平面直角坐标系xOy 中,椭圆+22:ax C )0(122>>=b a b y 的离心率为:)23,1(,21kM 在椭圆C 上. (1)求椭圆C 的方程:(2)已知P( -2,O)与Q(2,0)为平面内的两个定点,过点(1,0)的直线L 与椭圆C 交于A ,B 两点,求四边形APBQ 面积的最大值.8.(2017青海西宁二模)已知椭圆)0(1:2222>>=+b a b y a x C 的右焦点为F(l ,0),且点)23,1(P 在椭圆C上.O 为坐标原点.(1)求椭圆C 的标准方程;(2)设过定点T(O ,2)的直线L 与椭圆C 交于不同的两点A 、B ,且∠AOB 为锐角,求直线L 的斜率k 的取值范围,考点三圆锥曲线中存在性问题1.(2018辽宁朝阳一模)已知椭圆)0(1:2222>>=+b a by a x C 的左,右焦点分别为221,F F F 且关于直线x-y+a=0的对称点M 在直线3x+2y=0上.(1)求椭圆的离心率; (2)若C 的长轴长为4且斜率为21的直线L 交椭圆于A .B 两点,问是否存在定点P ,使得PA ,PB 的斜率之和为定值?若存在,求出所有满足条件的P 点坐标;若不存在,说明理由.2.(2018吉林长春十一高中、东北师大附中等五校联考)已知椭圆)0(1:2222>>=+b a by a x C 的两个焦点与短轴的一个端点连线构成等边三角形,且椭圆C 的短轴长为.32(1)求椭圆C 的标准方程:(2)是否存在过点P(O ,2)的直线L 与椭圆C 相交于不同的两点M ,N ,且满足O (2.=为坐标原点),若存在,求出直线L 的方程;若不存在,请说明理由.3.(2018宁夏银川4月检测)已知动点P 到定点F(l .O)和到直线x=2的距离之比为,22设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于A 、B 两点,直线L:y=mx+n 与曲线E 交于C .D 两点,与AB 相交于一点(交点位于线段AB 上,且与A ,B 不重合).(1)求曲线E 的方程:(2)当直线L 与圆122=+y x 相切时,四边形ACBD 的面积是否有最大值?若有,求出其最大值及对应的直线L 的方程;若没有,请说明理由.4.(2017陕西汉中4月模拟)已知直线3:+=kx y l 与y 轴的交点是椭圆)0(1:22>=+m m y x C 的一个焦点.(1)求椭圆C 的方程;(2)若直线L 与椭圆C 交于A 、B 两点,是否存在k 使得以线段AB 为直径的圆恰好经过坐标原点o?若存在,求出k 的值;若不存在,请说明理由.5.(2017重庆质量抽测(第一次)改编)已知21F F 、分别为椭圆123:22=+y x C 的左、右焦点,点 ),(00y x P 在椭圆C 上,若00>y 且,0211=⋅F F 直线L :y=k (x+l )与椭圆C 交于两点A ,B ,过点P 且平行于直线L 的直线交椭圆C 于另一点Q ,问:四边形PABQ 能否成为平行四边形?若能,请求出直线L 的方程;若不能,请说明理由.B 组2016-2018年高考模拟·综合题组一、选择题(共5分)1.(2018宁夏石嘴山三中一模)以抛物线x y 202=的焦点为圆心.且与双曲线191622=-y x 的两条渐近线都相切的圆的方程为( )06420.22=+-+x y x A 03620.22=+-+x y x B01610.22=+-+x y x C 0910.22=+-+x y x D二、填空题(每题5分,共10分)2.(2018辽宁辽南协作校一模)已知过抛物线x y 82=的焦点,的直线交抛物线于A ,B 两点,若|AB |=16.且|AF |<|BF |则|AF |=___________3.(2018黑龙江大庆第二次质检)已知点A(4,0)及抛物线=2y x 4的焦点F .若抛物线上的点 P 满足| PA|=2|PF |,则P 的横坐标为___________三、解答题(共60分)4.(2018吉林长春质量监测(二))已知直线L 过抛物线=2:x C )0(2>p py 的焦点,且垂直于抛物线的对称轴,L 与抛物线两交点间的距离为2.(1)求抛物线C 的方程;(2)若点P(2,2),过点(-2,4)的直线m 与抛物线C 相交于A .B 两点,设直线PA 与PB 的斜率分别为1k 和⋅2k 求证:2k k l 为定值,并求出此定值.5.(2017重庆巴蜀中学三诊)已知点A(l ,0)、B(4,0),动点P 满足|PB |=2|PA |.设动点P 的轨迹为曲线C .将曲线C 上所有点的纵坐标变为原来的一半,横坐标不变,得到曲线E(1)求曲线E 的方程;(2)A ,B 是曲线E 上两点,且|AB |=2,O 为坐标原点,求△AOB 面积的最大值.6.(2017宁夏石嘴山三中三模)已知椭圆)0(1:221>>=+b a by a x C 的焦距为4.左、右焦点分别为,21.F F 、 且1C 与抛物线x y C =22:的交点所在的直线经过⋅2F(1)求椭圆1C 的方程:(2)过1F 的直线L 与1C 交于A .B 两点,与抛物线2C 无公共点,求2ABF ∆的面积的取值范围.7.(2017吉林延边仿真)已知椭圆)0(1:2222>>=+b a by a x E 经过点),23,25(离心率为,552点0为坐标原点.(1)求椭圆E 的标准方程;(2)过椭圆E 的左焦点,任作一条不垂直于坐标轴的直线L .交椭圆E 于P ,p 两点,记弦PQ 的中点为M ,过F 作PQ 的垂线FN 交直线OM 于点N ,证明:点N 在一条定直线上.8.(2017辽宁实验中学六模)已知抛物线C 的方程为,42y x 过点Q(0,2)的一条直线与抛物线C 交于A ,B 两点,若抛物线在A ,B 两点处的切线交于点P .(1)求点P 的轨迹方程:(2)设直线PQ 的斜率存在,取为,pQ k 取直线AB 的斜率为,AB k 请验证AB PQ k k 是不是定值,若是,计算出该值:若不是,请说明理由.答 案。

2019年高三数学理一轮复习典型题专项训练:圆锥曲线

2019年高三数学理一轮复习典型题专项训练:圆锥曲线

7、(广州市海珠区2018届高三综合测试(一)且过点.()2,1A (Ⅰ) 求椭圆的方程;C (Ⅱ) 若不经过点的直线A l PQ是椭圆上的动点,从原点向圆的斜率存在,并分别记为在平面直角坐标系中,已知点,,动点不在轴上,直线、的斜率之积.(Ⅰ)求动点的轨迹方程;(Ⅱ)经过点的两直线与动点的轨迹分别相交于、两点。

是否存在常数,使得任意满足的直线恒过线段的中点?请说明理由.的离心率为是和)求曲线的方程;)倾斜角为的直线过原点且与交于两点,倾斜角为的直线过且与交于若,求)因为,,故,所以,故.又圆的标准方程为,从而,所以.由题设得,,,由椭圆定义可得点的轨迹方程为:())当与轴不垂直时设的方程为,,.由得.则,.所以.过点且与垂直的直线:,到的距离为,所以.故四边形的面积.可得当与轴不垂直时,四边形面积的取值范围为.当与轴垂直时,其方程为,,,四边形的面积为12.综上,四边形面积的取值范围为.4、5、、14、解:(Ⅰ)设(),则,,……2分由得,,……4分化简整理得,动点的轨迹方程为()……5分(Ⅱ)动点的轨迹与轴的两个交点为、,猜想时,直线恒过线段的中点……7分(猜想存在1分,猜想存在且2分)记,则直线:,解得……9分当时,,则直线:,同理可得……11分线段的中点是线段的中点,所以直线恒过线段的中点……12分15、【解析】(1)由题可知,椭圆中,解得,所以椭圆的方程是;。

5分(2)设倾斜角为的直线为,倾斜角为的直线,①当时,由,知,则,于是,此时;。

6分)当时,由,知,且这两条直线的斜率互为相反数,设,则,由,可得,则,由可得:,由于,设与椭圆的两个交点坐标依次为,于是,∴。

,综上所述总有.16、解:。

2019-2020年高考数学专题练习——圆锥曲线

2019-2020年高考数学专题练习——圆锥曲线

该双曲线的离心率为( )24.已知抛物线 y 2 4x 的焦点为 F ,准线为 l ,P 是 l 上一点,直线 PF 与抛物线交于 M ,N 两 uuur 点, 若 PF uuuur 3MF,则 MN()16 A . 3B .8C .16D .83 35.知双曲线 2x2 a 2b y 2 1(ab0,b 0) , A 1、A 2 是实轴顶点, F 是右焦点,B (0,b ) 是虚轴端点,若在线段 BF 上(不含端点)存在不同的两点 P i i 1,2 ,使得 P i A 1A 2 i 1,2 构成 以 A 1A 2为斜边的直角三角形,则双曲线离心率e 的取值范围是( )2019-2020 年高考数学专题练习圆锥曲线(一)、选择题 2 x 1.设双曲线 C: 2 a 2 y 2 1 a 0,b b 10 的左、右焦点分别为 F 1,F 2,过点 F 1 且斜率为3的直线与双曲线的两渐近线分别交于点 A ,B ,并且 F 2A F 2B ,则双曲线的离心率为A . 52B . 2 D .2 x 2.设 F 1,F 2 分别为双曲线 C : 2 a 2 b y 2 1(ab 0,b 0) 的左、右焦点, A 为双曲线的左顶点,以 F 1F 2 为直径的圆交双曲线某条渐近线于 M 、N 两点,且满足:MAN 120o ,则 7A .3B . 19 321 C .3D . 7333.双曲线 2x2a 2y2 1 a 0,bb0 的左、右焦点分别为 F 1,F 2,过 F 1 作倾斜角为 60°的直线与y 轴和双曲线的右支分别交于 A , B 两点,若点 A 平分线段F 1B ,则该双曲线的离心率是 A . 3B . 2+ 3 C. 2 D . 2 1B .( 2, 52 1) 51D . ( 52 126.已知过抛 物线 y 2 2px(p 0)的 焦点 F 的 直线与 抛物线 交于 A ,B 两点,且 uuur uuurAF 3FB ,抛物线的准线 l 与 x 轴交于点 C , AA 1 l 于点 A 1,若四边形 AA 1CF 的面积 为12 3 ,则准线 l 的方程为A . x2 B . x 2 2 C . x 2 D . x 17.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90 °的正角 .已知双曲线22 E: a x 2 b y 21(a ab0,b 0) ,当其离心率e [ 2,2] 时,对应双曲线的渐近线的夹角的取值范围为( )A .[0, 6]B . [ , ]63C .[ 4, 3]D .[3, 2]8.已知直角坐标原点22xy O 为椭圆 C : 2 2ab 1(a b 0) 的中心,F 1,F 2 为左、右焦点,在区间 (0,2)任取一个数 e ,则事件 “以 e 为离心率的椭圆 C 与圆 O : x 2 y 2 a 2 b 2 没有 交点 ”的概率为( )A .2442 B . 4C .2 2 D .22 29.已知直线 y 1x 与双曲线 ax 2 by 21(a 0, b 0 )的渐近线交于A ,B 两点,且过原点和线段AB 中点的直线的斜率为3, a则()2b23 A .3 B .C . 93D . 2327223210.过双曲线 x 22 y1的右焦点且与 x 轴垂直的直线交该双曲线的两条渐近线于 A ,B 两3点,则AB)A.4 33B.2 3 C.6 D.4 311.已知抛物线C:4x的焦点为F,过F的直线交C于A,B 两点,点A在第一象限,P(0,6),O 为坐标原点,则四边形OPAB面积的最小值为(7 A.4 13B.4C.3D.412.若双曲线2x3m1的一条渐近线方程为2x 3y 0 ,则m 的值为()233C.2213.已知双曲线a x2 b y2 1 的左右焦点分别为F1,F2,O 为双曲线的中心,P 是双曲线的右支上的点,PF1F2的内切圆的圆心为I,且圆I 与x 轴相切于点A,过F2作直线PI 的垂线,垂足为B,若 e 为双曲线的离心率,则()A.|OB | e|OA| C.|OB| |OA| B.|OA| e|OB|D.|OA|与|OB |关系不确定14.已知 F 是椭圆C:2y1 的左焦点,5P为C上一点,A(1,4),则|PA| |PF |的3最小值为()10 A.3 11B.3C.4 D.13315.已知F1,F2 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且F1PF2 3,则椭圆和双曲线的离心率的倒数之和的最大值为A.4 3 B.2 3C.3 D.22216.双曲线x2y21(a a2b2A(. 1,2)b 0)离心率的范围是()B(. 1,)C(. 2,)D(. 1,22)17.如图,过抛物线 y 2px(p 0)的焦点 F 的直线 l 交抛物线于点 A ,B ,交其准线于点8 C . 3为( )2x 2 2 py 的焦点,点 F 2为抛物线 C 的对称轴与其准线的交点,过 F 2 作抛物线 C 的切线,切点为 A ,若点 A 恰好在以 F 1,F 2 为焦点的双曲线上,则双曲线 的离心率为( ▲ )两点, MN 中点的横坐标为 1,则此椭圆的方程是( )2A . y32 B. 2 x32 2y1 522yx C. 1 36 92 xD . 362y1 921. 已知双曲线 C :2 x 2 ay 2 b 21a 0,b 0 的虚轴长为 8 ,右顶点 (a ,0)到双曲线的一16D .318.已知过椭圆 2x 2a2y2 1(a b 0)b 2的左焦点且斜率为 a 的直线 l 与椭圆交于 A ,B 两点 .若椭圆上存在一点 P ,满足 OA OB OP 0 (其中点O 为坐标原点),则椭圆的离心率A . 22B .C. 321D .219.已知点 F 1 是抛物线 C :A .6 22B . 2 1C . 2 1D .6 2220.已知椭圆中心在原点,且一个焦点为 F(0 ,3 3) ,直线 4x3y 13 0 与其相交于 M 、N34,则 p 为(条渐近线的距离为 12,则双曲线 C 的方程为(2 x A . 9 2 y 216 x 2C. 25 y 2 16 22. 已知圆C : x 2 y 2 2x 2 3y 线相切,则双曲线的离心率为( ) A . 2 6 3 B .23323.设双曲线2 x 2 a 2 y b 2 1(a 0, b 0) 2x 2y2 16 92 2xy 216 2522yx2ab 243 F , 过点 B. D.1(a C . 的右焦点为0,b 0) 的一条渐近D . 7 作与 x 轴垂直的直线 l 交 且与双曲线在第一象限的交点为P , 设 O 为坐标原点,若 uu ur OP uur OA uuur OB( , R), A . 23B . 3 5 35 两渐近线于 A ,B 两点, 2 x 2 y3 16 ,则双曲线的离心率为( C.3 2 2 9 D . 8 2 24.设 F 为双曲线 C : ab 21(a 0,b 0) 的右焦点, O 为坐标原点,以 OF 为直径的圆与圆 x y a 交于 P ,Q 两点.若 PQ OF ,则 C 的离心率为( A . 2 B . 3.C 2)25.数学中有许多形状优美、寓意美好的曲线,曲线 22C : x 2 y 21 |x| y 就是其中之一 (如图) .给出下列三个结论: ① 曲线 C 恰好经过 6 个整点(即横、纵坐标均为整数的点);② 曲线 C 上任意一点到原点的距离都不超过 2 ; ③ 曲线 C 所围成的 “心形 ”区域的面积小于 3. 其中,所有正确结论的序号是( ) A. ① B. ② C. ①②D.①②③、填空题26.过点Mx20,1 的直线l交椭圆x81于A,B两点,F为椭圆的右焦点,当△ABF的周长最大时,△ABF的面积为27.已知F1,F2 分别为双曲线2C:x242 y12 1的左、右焦点,点P在双曲线C上,G,I 分别为F1PF2的重心、内心,若GI∥x 轴,则F1PF2 的外接圆半径R=2 28.已知点P在离心率为2 的双曲线x2 a2y2 1(a 0,b 0) 上,F1,F2为双曲线的两个buuur 焦点,且PF1uuuurPF20 ,则PF1F2的内切圆半径r 与外接圆半径R之比为29.已知双曲线2C:x2a2yb2 1 a 0,b 0 的实轴长为16,左焦点为F,M 是双曲线 C 的一条渐近线上的点,且OM MF ,O为坐标原点,若S OMF 16 ,则双曲线C的离心率2 x 30.设点M 是椭圆2 a 2 yb2 1(a b 0) 上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F,圆M 与y 轴相交于不同的两点P、Q,若PMQ 为锐角三角形,则椭圆的离心率的取值范围为2 31. 平面直角坐标系xOy 中,椭圆x2 a2by2 1( a b 0 )的离心率e23,A1,A2分别是椭圆的左、右两个顶点,圆A1的半径为a,过点A2 作圆A1的切线,切点为P,在x 轴的上方交椭圆于点Q.则P P A Q232.如图所示,椭圆中心在坐标原点,为椭圆的右顶点和上顶点,当FB515 1,此类椭圆被称为“黄金椭圆”2算出“黄金双曲线 ”的离心率 e 等于 .22C: x 2 y 21(a b 0)33.已知椭圆 a b,A ,B 是 C 的长轴的两个端点,点 M 是 C 上的一点,满足 MAB 30 , MBA 45 ,设椭圆 C 的离心率为 e ,则 e 2 ________________________ .234.已知抛物线 y 2 2px(p 0)的焦点为 F ,O 为坐标原点,点 M ,N 为抛物线准线上相 异的两点,且 M ,N 两点的纵坐标之积为 - 4,直线 OM , ON 分别交抛物线于 A , B 两点,若A , F ,B 三点共线,则 p ______________ .235.已知抛物线 y 2 8x 上有一条长为 9 的动弦 AB ,则 AB 中点到36.如图:以等边三角形两顶点为焦点且过另两腰中点的椭圆的离心率 e= .等腰三角形,则 M 的坐标为 __________22x 2y 2 139.已知椭圆 9 5 的左焦点为 F ,点 P 在椭圆上且在 x 轴的上方,若线段 PF 的中点在以原点 O 为圆心, OF 为半径的圆上,则直线 PF 的斜率是 ________ .240. 设抛物线 y 2px(p 0)的焦点为 F,已知 A , B 为抛物线上的两个动点,且满足| MN |AFB60,过弦 AB 的中点 M 作抛物线准线的垂线 MN,垂足为 N,则 |AB| 的最大值为41. 已知 F 为抛物线 C: y 2 4x 的焦点, E 为其标准线与 x 轴的交点,过 F 的直线交抛物线37.已知双曲线 C :2x2 a的两条渐近线分别交于2y21(a 0,b 0) 的左、右焦点分别为 F 1,F 2,过 F 1 的直线与 C buuur uuur uuur uuuurA ,B 两点.若 F 1A AB , F 1B F 2B 0,则C 的离心率为38.设 F 1,F 2 为椭圆1的两个焦点,M 为 C 上一点且在第一象限 .若△MF 1F2为C:36 20C 于 A ,B 两点, M 为线段 AB 的中点,且 |ME | 20,则|AB|参考答案0,易知F (1,0),设直线AB : x my 1x my 1 2由 2y 2 4my 4 0, 所以 y 1 y 2 4 y 2y 2 4x易知 f (x) 在 0,1 上为减函数,所以当12. A22双曲线 x y1的一条渐近线方程为 2x 3y 0 ,可得3 m m 1(3 m)(m 1) 0 ,解得 m ( 1,3),因为 m 1x 3 m y3 解得 m ,故选A.13,内切圆与 x 轴的切点是A ,∵ ,由圆切线长定理有 , 设内切圆的圆心横坐标为x ,则,即3y 12 4 1 2y 12( y 1 0) y1f (x) 3 x2 1 2 3x3 x 2 24 ( x 1)(3x 24x 4)2 x 2 2x 22x 2设A(x 1, y 1), B(x 2,y 2)且x 1,y 1S OPABS OPASOFA SOFB32 1 2f ( x) x x (x 0)4 2 x4y 1y 1 1时, ( S OPAB )min 13,故选4B0 是双曲线的渐近线方程,所以∴ ,即 A 为右顶点,在中,由条件有,在中,有∴.设椭圆的右焦点为,由,则,根据椭圆的定义可得,所以22e2 ,由焦点三角形面积公式得b12 3b22,即设椭圆离心率e1 ,双曲线离心率a12 3a22 4c2,即1232e12 e22 4 ,设1 12 2 m ,n 即m 3n 4 ,e1 e2由柯西不等式得m n最大值为43 3设的中点,由题意知两式相减得,而,所以所以直线的方程为,联立,解得又因为,所以所以点代入椭圆的方程,得,所以,故选 A.,易得:∴此椭圆的方程是 故选: C∵ |PQ| |OF | c ,∴ POQ 90o , 又|OP| |OQ | a ,∴a 2 a 2 c 2 解得 c 2,即 e 2.a由题意,得 ,设过 的抛物线 的切线方程为 ,联立,令,解得 , 即 ,不妨设 ,由双曲线的定义得.故选 C.,则该双曲线的离心率为设椭圆方程为联立方程: ,整理得:, ,则,即 ,化简得:1,0),(-1,1)六个整点,结论① 正确.22由x2y21 x y 得,x2y2, 1x y,解得x2点的距离都不超过2 . 结论② 正确.如图所示,易知A 0, 1 ,B 1,0 ,C 1,1, ,D心形”区域的面积大于3,说法③ 错误.由x2y21 x y得,y2x y 1 x2, |x|y234x2 ,1423x2 2 4厔0,x243所以x可为的整数有0,-1,1,从而曲线C:x2y21 x y 恰好经过(0,1),(0,-1),(1,0),(1,1), (-4 1026.3628.229. 526230.2 , 所以曲线C 上任意一点到原0,1 ,四边形ABCD 的面积S ABCD 11 123,很明显2心形”区域的面积大于2 S ABCD ,即231.37如图所示,设,,椭圆方程为圆的方程为,直线与圆相切,则:,直线是斜率为,直线方程为:联立直线方程与椭圆方程:整理可得:即,由弦长公式可得:,在中,,故5132.2“黄金椭圆”的性质是,可得“黄金双曲线”也满足这个性质.如图,设“黄金双曲线”的方程为,22则,,∵, ∴, ∴, ∴,解得 或 (舍去),∴黄金双曲线 ”的离心率 e 等于1333. 35 35.2易知抛物线 的准线方程为 ,设 ,且 的中点为 ,分别 过点 作直线 的垂线,垂足分别为 ,则 ,由抛物线定义,得 (当且仅当 三点共线时取等号),即 中点 到 轴的最短距离为 .36. 3 1OA 为中位线且 OA BF 1 ,所以 OB OF 1 ,因此 F 1OA BOA ,又根据两渐近线对uuur uuur uuur uuuur由F 1A AB, F 1B F 2B 0知 A 是 BF 1的中点, uuu r F Buuuur F 2B ,又 O 是 F 1, F 2的中点,所称, F 1OA F 2OB ,所以 F 2OB 60 , e1 (b )21 tan2 60 2.39. 15方法 1:由题意可知 |OF|=|OM |= c = 2,由中位线定理可得 PF 1 2|OM | 4,设 P(x,y)可得 (x 2)2 y 2 16,2联立方程 xy 2519 可解得 x32,x 21 2 (舍),点 P 在椭圆上且在 x 轴的上方,1515求得 P3, ,所以 k P F 2152 2F 138. (3, 15)22已知椭圆 C :x y36 20 1可知, a 6,c 4,由 M 为 C 上一点且在第一象限,故等腰三角形 MF 1F 2中 MF 1 F 1F 2 8,MF 2 2a MF 1 4 , sin F 1F 2M4 , y MMF 2 sin F 1F 2 M 15 ,22代入C :3x6 2y0 1可得 x M3.故 M 的坐标为 (3, 15 ) .82方法 2:焦半径公式应用解析 1:由题意可知 |OF |=|OM |= c= 2 , 由中位线定理可得 PF 1 2|OM | 4 ,即 aex p 4 x p15求得 P 3, 15 ,所以 k PF215 . 2 2 PF 12F (1,0)为抛物线 C :y 2=4x 的焦点,E (-1,0)为其准线与 x 轴的交点, 设过F 的直线为 y=k (x-1), 代入抛物线方程 y 2=4x ,可得 k 2x 2-( 2k 2+4) x+k 2=0,设 A ( x 1, y 1), B (x 2,y 2),解得k 2=1,则 x 1+x 2=6,由抛物线的定义可得 |AB|=x 1+x 2+2=8.。

2019年高考理科数学一轮单元卷:第十九单元圆锥曲线A卷(含答案)

2019年高考理科数学一轮单元卷:第十九单元圆锥曲线A卷(含答案)

一轮单元训练金卷▪高三▪数学卷(A )第十九单元 圆锥曲线注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.双曲线22=13x y -的焦点坐标是( )A .(),)B .()2,0-,()2,0C .(0,,D .()02-,,()0,22.若双曲线22(0)5y x m m -=>的焦距等于离心率,则m =( )A .120B .110C .15D .143.若双曲线()222109y x a a -=>的一条渐近线与直线13y x =垂直,则此双曲线的实轴长为( )A .2B .4C .18D .364.设椭圆22:14x C y +=的左焦点为F ,直线():0l y kx k =≠与椭圆C 交于A ,B 两点,则AF BF+的值是( )A .2B .C .4D .5.设1F 、2F 是椭圆的两个焦点,点P 为椭圆上的点,且128F F =,1210PF PF +=,则椭圆的短轴长为( ) A .6B .8C .9D .106.双曲线()2222:10,0x y C a b a b-=>>的离心率为2,则双曲线的渐近线方程是( )A .20x y ±=B .20x y ±=C 0y ±=D .0x ±=7.已知抛物线24y x =的焦点为F ,准线l 与x 轴的交点为K ,抛物线上一点P ,若5PF =,则PFK △的面积为( ) A .4B .5C .8D .108.已知双曲线2222:1-=x y C ,其左焦点为()15,0F -,则双曲线C 的方程为( )A C D 9的一条渐近线方程为20x y +=,1F ,2F 分别是双曲线C 的左、右焦点,点P 在双曲线C 上,且 ) A .1B .3C .1或9D .3或710.双曲线22221(00x y E a b a b-=>>:,),过右焦点F 作渐近线l 的垂线,垂足为M ,若OFM △的面积是1,则双曲线E 的实轴长是( )A B .C .1D .211.如图,AB 为经过抛物线22(0)y px p =>焦点F 的弦,点A ,B 在直线2px =-上的射影分别为1A ,1B ,且113AA BB =,则直线AB 的倾斜角为( )A .6π B .4π C .3π D .512π 12.已知抛物线28x y =,过点(),4P b 作该抛物线的切线PA ,PB ,切点为A ,B ,若直线AB 恒过A .()4,0B .()3,2C .()0,4-D .()4,1二、填空题(本大题有4小题,每小题5分,共20分.请把答案填在题中横线上)13.抛物线2y =的焦点到准线的距离为__________.14.已知F 为双曲线220()3C x my m m :-=>的一个焦点,则点F 到C 的一条渐近线的距离为______.15.设椭圆22221(0)x y a b a b +=>>的右焦点与抛物线216y x =方程为__________.16.设抛物线22(0)y px p =>的焦点为F ,过点F 且倾斜角为4π的直线l 与抛物线相交于A ,B 两点,4AB =,则该抛物线的方程为__________.三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)设命题p :对任意实数x ,不等式220x x m -+≥恒成立;命题q :22x y 表示焦点在x 轴上的双曲线.(1)若命题p 为真命题,求实数m 的取值范围; (2)若p 是q 的充分条件,求实数t 的取值范围.18.(12分)已知椭圆C :的左、右焦点分别为1F 、2F ,焦距为2,过点2F 作直线交椭圆C 于M 、N 两点,1F MN △的周长为 (1)求椭圆C 的方程;(219.(12分)已知点()1,P m 在抛物线()2:20C y px p =>上,F 为焦点,且3PF =.(1)求抛物线C 的方程;(2)过点()4,0T 的直线l 交抛物线C 于A ,B 两点,O 为坐标原点,求OA OB ⋅的值.20.(12分)抛物线22(0)y px p =>上的点P 到点,02p F ⎛⎫ ⎪⎝⎭的距离与到直线0x =的距离之差为1,过点(),0M p 的直线l 交抛物线于A ,B 两点. (1)求抛物线的方程;(2)若ABO △的面积为l 的方程.21.(12分)如图,过抛物线()220y px p =>的焦点F 作一条倾斜角为的直线与抛物线相交于A ,B 两点.(1)用p 表示(2)若3OA OB ⋅=-求这个抛物线的方程.22.(12分)已知中心在原点的双曲线C 的右焦点为()20,,右顶点为(O 为原点)(1)求双曲线C 的方程;(2)若直线1l :与双曲线恒有两个不同的交点A 和B ,且2⋅>OA OB ,求k 的取值范围.一轮单元训练金卷▪高三▪数学卷答案(A )第十九单元 圆锥曲线一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】因为双曲线方程为2213x y -=,所以焦点坐标可设为(),0c ±,因为222314c a b =+=+=,2c =,所以焦点坐标为()2,0±,选B . 2.【答案】A【解析】双曲线2205y x m m -=(>)的焦距等于离心率.可得:=e即e =120m =.故选A . 3.【答案】C【解析】由双曲线的方程22219y x a -=,可得一条渐近线的方程为3a y x =-, 所以1133a -⨯=-,解得9a =,所以双曲线的实轴长为218a =,故选C .4.【答案】C【解析】设椭圆的右焦点为2F 连接2AF ,2BF ,因为OA OB =,2 OF OF =,所以四边形2AFBF 是平行四边形.所以2BF AF =,所以224AF BF AF AF a +=+==,故选C . 5.【答案】A【解析】由题意,椭圆满足1210PF PF +=,128F F =, 由椭圆的定义可得210a =,28c =,解得5a =,4c =,又22222549b a c =-=-=,解得3b =,所以椭圆的短轴为26b =,故选A . 6.【答案】C【解析】由题意得2c e a ===,∴b a = 又双曲线()222210,0x y a b a b-=>>的渐近线方程为b y x a =±,∴双曲线的渐近线方程是y =0y ±=,故选C . 7.【答案】A【解析】由抛物线的方程24y x =,可得()1,0F ,()1,0K -,准线方程为1x =-, 设()00,P x y ,则015PF x =+=,即04x =,不妨设()00,P x y 在第一象限,则()4,4P ,所以01124422PKF S FK y =⨯=⨯⨯=△,故选A .8.【答案】D【解析】,其左焦点为()15,0F -,∴5c =,,∴3a =,∵222c a b =+,∴216b =,∴双曲线C 的标准方程为D .9.【答案】C【解析】因为222415c a b =+=+=,所以或9,故选C . 10.【答案】D【解析】因为FM b =,OF c =,所以OM a =,故12ab=,即2ab =, 由5c a =,所以2225a b a +=,即2b a =,故1a =,2b =,双曲线的实轴长为2.故选D . 11.【答案】C【解析】由抛物线定义可知:1F AA A =,1BB BF =,设1BB t =, ∵113AA BB =,∴4AB t =,作1BH AA ⊥交1AA 于H ,则2AH t = 在Rt ABH △中,cos 3HAB π∠=,∴直线AB 的倾斜角为3π,故选C . 12.【答案】C【解析】设A ,B 的坐标为()11x y ,,()22x y ,,28x y =,4x y '=,PA ,PB 的方程为()1114x y y x x -=-,()2224xy y x x -=-由22118x y =,22228x y =,可得114x y x y =-,224x y x y =-切线PA ,PB 都过点(),4P b ,(),4P b ,2244xb y =⨯-,故可知过A ,B 两点的直线方程为44bx y =-,当0x =时,4y =,直线AB 恒过定点()04-,,故选C . 二、填空题(本大题有4小题,每小题5分,共20分.请把答案填在题中横线上)13.【解析】根据题意,抛物线2y =的标准方程为2x y =,其焦点坐标为(,准线方程为y =,则其焦点到准线的距离为4,故答案为4.14.【解析】双曲线2230C x my m m =>:﹣()可化为22133x y m -=,∴一个焦点为),一条渐近线方程为0x =,∴点F 到C =15.【答案】221248x y +=【解析】由题意知抛物线216y x =的焦点为4,0(),∴4c =,∵4c e a a ===,∴a = ∴2228b a c =-=,∴椭圆的方程为221248x y +=.故答案为221248x y +=. 16.【答案】22y x =【解析】直线AB 方程为2p y x =-,代入抛物线方程并整理得22304p x px -+=, 设()11,A x y ,()22,B x y ,则123x x p +=,又12AB x x p =++,∴34p p +=,1p =, ∴抛物线方程为22y x =,故答案为22y x =.三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1)1m ≥;(2)(]0,1.【解析】(1)∵不等式220x x m -+≥恒成立,∴440m ∆=-≤,1m ≥, ∴当1m ≥时,p 为真命题.(2表示焦点在x 轴上的双曲线.∴0 0->>⎧⎨⎩m t m ,得>m t ; ∴当m t >时,q 为真命题.∵p 是q 的充分条件,∴,∴1t ≤ 综上,t 的取值范围是(]0,1.18.【答案】(1(2. 【解析】(1)因为焦距为2,所以22c =,即1c =.又因为1F MN △的周长为,于是椭圆C 的方程(2,所以直线MN 的方程为1y x =-,y 可得2340x x -=.设()11,M x y ,()22,N x y ,则,210x x =,19.【答案】(1)28y x =;(2)16-.【解析】(1)抛物线()2:20C y px p =>,焦点,02p F ⎛⎫ ⎪⎝⎭,由132p PF =+=得4p =.∴抛物线C 得方程为28y x =.(2)依题意,可设过点()4,0T 的直线l 的方程为4x ty =+,由28 4y xx ty =+⎧⎨⎩=得28320y ty --=,设()11,A x y ,()22,B x y ,则1232y y =-, ∴222212111688x x y y =⨯=,∴121216OA OB x x y y ⋅=+=-. 20.【答案】(1)24y x =;(2)2=-y x 或2=--y x . 【解析】(1)设()00,P x y ,由定义知02p PF x =+,所以,0012p x x ⎛⎫+-= ⎪⎝⎭,所以2p =,所以,抛物线方程为24y x =;(2)设()11,A x y ,()22,B x y ,由(1)知()2,0M ;若直线l 的斜率不存在,则方程为2x =,此时AB =ABO △的面积为l 的斜率存在;设直线l 的方程为()2y k x =-,带入抛物线方程得:()22224140k x k x k -++=()222161160k k ∆=+->,所以,12244xx k +=+,124x x =,所以AB =, 点O 到直线l的距离为=d=1=±k . 所以,直线l 的方程为2=-y x 或2=--y x . 21.【答案】(1)4=AB p ;(2)24=y x .【解析】(1,过点F且倾斜角为 设()11,A x y ,()22,B x y∴213+=x x p ,2124=p x x ,∴124=++=AB x x p p(2)由(1)知,123+=x x p ,2124=p x x∴12⋅=OA OB x x ,解得24=p ,∴2=p∴这个抛物线的方程为24=y x .22.【答案】(1(2313,⎫⎛⎫⎪ ⎪⎪ ⎪⎭⎝⎭. )0,0>b ,由2⋅>OA OB 得2+>A B A B x x y y ,故k 的取值范围为313,⎫⎛⎫⎪ ⎪⎪ ⎪⎭⎝⎭.。

专题19 圆锥曲线综合-2019年高考理数母题题源系列(全国Ⅰ专版)(解析版)

专题19 圆锥曲线综合【母题来源一】【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若|AF |+|BF |=4,求l 的方程; (2)若,求|AB |. 【答案】(1)3728y x =-;(2413【解析】设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --=,得78t =-. 所以l 的方程为3728y x =-. (2)由3AP PB =u u u r u u u r可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.323AP PB =u u u r u u u r故413||AB =. 【名师点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及平面向量、弦长的求解方法,解题关键是能够通过直线与抛物线方程的联立,利用根与系数的关系构造等量关系.【母题来源二】【2018年高考全国Ⅰ卷理数】设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 【答案】(1)222y x =-222y x =-;(2)见解析. 【解析】(1)由已知得(1,0)F ,l 的方程为x =1. 由已知可得,点A 的坐标为2)或2(1,, 所以AM 的方程为222y x =-+222y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B , 则122,2x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得2222(21)4220k x k x k +-+-=.所以21221222422,2121x x x k k k x k -+==++,则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.【母题来源三】已知椭圆C :22221()0x y a b a b +=>>,四点P 1(1,1),P 2(0,1),P 3(–13,P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【答案】(1)2214x y +=;(2)见解析. 【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b+>+知,C 不经过点P 1,所以点P 2在C 上. 因此222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩,故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,242t -),(t ,242t--).则221242421t t k k ---++==-,得2t =,不符合题设,从而可设l :y kx m =+(1m ≠). 将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=,由题设可知2216(41)0k m ∆=-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841km k -+,x 1x 2=224441m k -+. 而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=. 由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=,即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++,解得12m k +=-, 当且仅当1m >-时0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简.【命题意图】(1)了解椭圆或抛物线的实际背景,了解椭圆或抛物线在刻画现实世界和解决实际问题中的作用. (2)掌握椭圆或抛物线的定义、几何图形、标准方程及简单性质. (3)了解圆锥曲线的简单应用. (4)理解数形结合的思想. 【命题规律】解析几何的解答题一般难度较大,多为试卷的压轴题之一,常考查直线与圆锥曲线的位置关系及最值范围、定点、定值、存在性问题及证明问题,多涉及最值求法,综合性强.从近三年高考情况来看,多考查直线与椭圆或抛物线的位置关系,常与向量、圆等知识相结合,解题时,充分利用数形结合思想,转化与化归思想.同时注重数学思想在解题中的指导作用,以及注重对运算能力的培养. 【方法总结】(一)求椭圆的方程有两种方法:(1)定义法.根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程. (2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是:第一步,做判断.根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22221(0)x y a b a b +=>>或22221(0)y x a b a b+=>>.第三步,找关系.根据已知条件,建立关于,,a b c 的方程组(注意椭圆中固有的等式关系222c a b =-). 第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.【注意】用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,可进行分类讨论或把椭圆的方程设为22100()mx ny m n m n >>+≠=,且. (二)用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程. (三)直线与圆锥曲线的弦长问题有三种解法:(1)过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义可优化解题.(2)将直线的方程与圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长. (3)它体现了解析几何中的设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系.(四)圆锥曲线中的定点、定值问题定点、定值问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.解决此类问题的关键是引进参变量表示所求问题,根据等式的恒成立、数式变换等寻找不受参数影响的量.可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定点、定值问题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等.1.【河北省保定市2019届高三第二次模拟考试数学试题】已知抛物线E :28y x =,直线l :4y kx =-. (1)若直线l 与抛物线E 相切,求直线l 的方程;(2)设(4,0)Q ,0k >,直线l 与抛物线E 交于不同的两点()11,A x y ,()22,B x y ,若存在点C ,使得四边形OACB 为平行四边形(O 为原点),且AC QC ⊥,求2x 的取值范围. 【答案】(1)142y x =--;(2)204(21)x <≤. 【解析】(1)由248y kx y x=-⎧⎨=⎩得228(1)160k x k x -++=,由0k ≠及2264(1)640k k ∆=+-=,得12k =-. ∴所求的切线方程为142y x =--. (2)由248y kx y x=-⎧⎨=⎩得228(1)160k x k x -++=, 2264(1)640,k k ∆=+->Q 且0k ≠,12k ∴>-,1228(1),k x x k+∴+= ∴12128()8y y k x x k+=+-=, ∵四边形OACB 为平行四边形,1212=(,)OC OA OB x x y y ∴+=++u u u r u u u r u u u r 28(1)8(,)k kk+=,即C 28(1)8(,)k kk+, ∵AC QC ⊥,0QC AC ∴⋅=u u u r u u u r,又222228(1)8(4,),(,)(,4)k QC AC OB x y x kx k k +=-===-u u u r u u ur u u u r 2228(1)8[4](4)0k QC AC x kx k k +∴⋅=-+-=u u u r u u u r ,即2822k x k =++, ∵0k >, ∴282222(21)x ≥=,当且仅当2k = 此时,204(21)x <≤.【名师点睛】本题考查了直线与抛物线的位置关系,根与系数关系的应用,也考查平行四边形的性质、数量积和不等式的运算,属于中档题.(1)由248y kx y x =-⎧⎨=⎩得228(1)160k x k x -++=,由题意得00k ≠⎧⎨∆=⎩,解出k 即可.(2)由四边形OACB 为平行四边形,得1212=(,)OC OA OB x x y y +=++u u u r u u u r u u u r,利用根与系数的关系得点C ,又由AC QC ⊥,0QC AC ⋅=u u u r u u u r,通过数量积和不等式的运算,求出2x 的范围即可.2.【山东省安丘市、诸城市、五莲县、兰山区2019届高三5月校际联合考试数学试题】已知椭圆()2222:10x y E a b a b +=>>经过点()0,1C ,且离心率为22. (1)求椭圆E 的方程; (2)若直线1:3l y kx =-与椭圆E 相交于A ,B 两点,线段AB 的中点为M ,是否存在常数λ,使∠∠AMC ABC =⋅λ恒成立,并说明理由.【答案】(1)2212x y +=;(2)存在. 【解析】(1)由题意知1b =,22c a =. 又因为222a b c =+, 所以解得2a =所以椭圆方程为2212x y +=.(2)存在常数λ,使∠∠AMC ABC =⋅λ恒成立. 理由如下:由221312y kx x y ⎧=-⎪⎪⎨⎪+=⎪⎩得()2291812160k x kx +--=,且>0∆. 设()11,A x y ,()22,B x y ,则1221221291816918k x x k x x k ⎧+=⎪⎪+⎨⎪=-⎪+⎩,又因为()11,1CA x y =-u u u r ,()22,1CB x y =-u u u r,()()()()2121212121212444161113339CA CB x x y y x x kx kx k x x k x x ⎛⎫⎛⎫⋅=+--=+--=+-++⎪⎪⎝⎭⎝⎭u u u r u u u r ()22216412161091839189k k k k k -=+-⋅+=++,所以CA CB ⊥u u u r u u u r . 因为线段AB 的中点为M ,所以MC MB =, 所以2AMC ABC ∠=∠.所以存在常数2=λ,使∠∠AMC ABC =⋅λ恒成立.【名师点睛】本题主要考查求椭圆的方程以及椭圆的应用,熟记椭圆的标准方程与椭圆的简单性质即可,属于常考题型.(1)根据题意得到1b =,22c a =,求出2a = (2)先由题意判断出结果,再证明,联立直线与椭圆方程,设()11,A x y ,()22,B x y ,根据根与系数的关系,以及向量数量积运算,得到0CA CB ⋅=u u u r u u u r,进而可得出结果.3.【山西省晋城市2019届高三第三次模拟考试数学试题】已知△ABC 的周长为6,B ,C 关于原点对称,且(1,0)B -,点A 的轨迹为Γ. (1)求Γ的方程;(2)若(2,0)D -,直线l :(1)(0)y k x k =-≠与Γ交于E ,F 两点,若1DEk ,k λ,1DFk 成等差数列,求λ的值.【答案】(1)()221243x y x +=≠±;(2)2. 【解析】(1)依题意,(1,0)B -,(1,0)C ,故2BC =, 则42AB AC BC +=>=,故点A 的轨迹是以B ,C 为焦点的椭圆(不含左、右两顶点),故Γ的方程为221(2)43x y x +=≠±.(2)依题意,112DE DF kk k ⋅=+λ,故2DE DFk kk k =+λ. 联立22(1)34120y k x x y =-⎧⎨+-=⎩,整理得()22223484120k x k x k +-+-=. 设11(,)E x y ,22(,)F x y ,则2122834k x x k+=+,212241234k x x k -=+. 故()()121222DE DF k x k x k kk k y y +++=+ ()()()()12122211k x k x k x k x ++=+--1233211x x =++-- ()()()121232211x x x x +-=+--()()1212123221x x x x x x +-=+-++222222832342412813434k k k kk k⎛⎫- ⎪+⎝⎭=+--+++ ()2222238682412834k k k k k--=+--++2242=+==λ,则2=λ.【名师点睛】本题考查椭圆的方程、直线与椭圆的综合性问题,考查运算求解能力、推理论证能力. (1)由椭圆定义得轨迹方程即可; (2)依题意得112DE DF kk k ⋅=+λ,得2DE DF k k k k =+λ,联立22(1)34120y k x x y =-⎧⎨+-=⎩消去y ,整理()()121222DE DF k x k x k kk k y y +++=+结合根与系数关系得λ的值即可. 4.【安徽省泗县第一中学2019届高三高考最后一模数学试题】已知椭圆M :22221(0)x y a b a b +=>>的离心率为32,且椭圆上一点P 的坐标为22,2⎫⎪⎪⎭. (1)求椭圆M 的方程;(2)设直线l 与椭圆M 交于A ,B 两点,且以线段AB 为直径的圆过椭圆的右顶点C ,求△ABC 面积的最大值.【答案】(1)2214x y +=;(2)1625. 【解析】(1)由已知3c e a ==又222a b c =+,则2a b =.∴椭圆方程为222214x y b b +=,将2(2,)代入方程得1b =,2a =,故椭圆的方程为2214x y +=.(2)不妨设直线AB 的方程为x ky m =+,联立2214x y x ky m ⎧+=⎪⎨⎪=+⎩消去x 得()2224240k y kmy m +++-=.设11(,)A x y ,22(,)B x y ,则有12224km y y k -+=+,212244m y y k -⋅=+,①又以线段AB 为直径的圆过椭圆的右顶点(2,0)C , ∴0CA CB ⋅=u u u r u u u r,由11(2,)CA x y =-u u u r ,22(2,)CB x y =-u u u r得()()1212220x x y y --+=,将11x ky m =+,22x ky m =+代入上式得()()2212121(2)(2)0k y y k m y y m ++-++-=,将①代入上式求得65m =或2m =(舍), 则直线l 恒过点6(,0)5D .∴()2121212114||4225△ABCS DC y y y y y y =--=+⋅()()222254368254k k +-=+ 设211(0)44t t k =<≤+,则28362525△ABC S t t =-+1(0,]4t ∈上单调递增, 当14t =时,△ABC S 取得最大值1625. 【名师点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆相交的弦长公式,考查直线和椭圆的位置关系,考查三角形面积最大值的求法,运算量较大,属于中档题.(1)将P 点坐标代入椭圆方程,结合椭圆的离心率列方程,解方程求得,a b 的值,由此求得椭圆方程. (2)设直线AB 的方程为x ky m =+,联立直线AB 的方程和椭圆的方程,消去x ,得到关于y 的一元二次方程,写出根与系数关系,根据0CA CB ⋅=u u u r u u u r列方程,解方程求得m 的值.由此判断出直线l 过定点6,05⎛⎫ ⎪⎝⎭,由121||2△ABC S DC y y =-求得三角形面积的表达式,利用换元法,结合二次函数的单调性,求得三角形面积的最大值.5.【江西省南昌市江西师范大学附属中学20193()2222:10x y C a b a b +=>>过点22,⎭,,A B 分别为椭圆C 的右顶点和上顶点,点P 在椭圆C 上且不与四个顶点重合. (1)求椭圆C 的标准方程;(2)若直线PA 与y 轴交于N ,直线PB 与x 轴交于M ,试探究AM BN ⋅是否为定值?若是,请求出该定值;若不是,请说明理由.【答案】(1)2214x y +=;(2)AM BN ⋅是定值,定值为4. 【解析】(1)由题意得:22222322112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2241a b ⎧=⎨=⎩,∴椭圆C 的标准方程为:2214x y +=. (2)Q 点P 不与四个顶点重合,∴直线,PA PB 的斜率存在且不为0,设()00,P x y ,且()2,0A ,()0,1B ,∴直线PA 的方程为:()0022y y x x =--,则0020,2y N x ⎛⎫- ⎪-⎝⎭. 直线PB 的方程为:0011y y x x -=+,则00,01xM y ⎛⎫- ⎪-⎝⎭. 2200000000000000244448211222x y x y x y x y AM BN y x x y x y +++--∴⋅=+⋅+=----+,P Q 在椭圆上,220044x y ∴+=.0000000000000000844822442222x y x y x y x y AM BN x y x y x y x y +----+∴⋅==⨯=--+--+.4AM BN ∴⋅=,为定值.【名师点睛】本题考查椭圆标准方程的求解、椭圆中的定值问题的求解.解决定值类问题的关键是将所求量利用变量进行表示,通过变量间的关系进行化简、消元,从而整理出所求的定值.(1)根据离心率、点22,2⎫⎪⎪⎭在椭圆上和222a b c =+建立方程组,解方程求得结果,从而得到椭圆方程;(2)设()00,P x y ,从而可得,PA PB 方程,求得,M N 的坐标,从而可得AM BN ⋅,根据点()00,P x y 在椭圆上得到220044x y +=,代入AM BN ⋅整理可得定值.6.【福建省厦门市厦门外国语学校2019届高三最后一模数学试题】如图,椭圆C :22143x y +=的右焦点为F ,过点F 的直线l 与椭圆C 交于A 、B 两点,直线n :x =4与x 轴相交于点E ,点M 在直线n 上,且满足BM ∥x 轴.(1)当直线l 与x 轴垂直时,求直线AM 的方程; (2)证明:直线AM 经过线段EF 的中点. 【答案】(1)直线AM 的方程为y =-x +52或y =x -52;(2)见解析. 【解析】(1)由c 43-=1,得F (1,0), ∵直线l 与x 轴垂直, ∴x =1,由221143x x y=⎧⎪⎨+=⎪⎩,解得:113322或x x y y ==⎧⎧⎪⎪⎨⎨==-⎪⎪⎩⎩, 当点A 坐标为31,2⎛⎫⎪⎝⎭,则点M 坐标为34,2⎛⎫-⎪⎝⎭,此时直线AM 的斜率为33()22114--=--,∴直线AM 的方程为31(1)2y x -=-⋅-,即y =-x +52;当点A 坐标为31,2⎛⎫-⎪⎝⎭,则点M 坐标为34,2⎛⎫ ⎪⎝⎭, 此时直线AM 的斜率为33()22141--=-,∴直线AM 的方程为31(4)2y x -=⋅-,即y =x -52.故直线AM 的方程为y =-x +52或y =x -52.(2)当AB 直线方程为0y =时,直线BM 与x 轴重合,不满足题意;故可设直线l 的方程为x =my +1,由221143x my x y =+⎧⎪⎨+=⎪⎩,得3(my +1)2+4y 2=12,即(3m 2+4)y 2+6my -9=0,设A (x 1,y 1),B (x 2,y 2), 由根与系数关系可得,y 1+y 2=2634m m -+,y 1y 2=2934m -+, ∵EF 的中点N 502,⎛⎫ ⎪⎝⎭,点M (4,y 2), ∴NA u u u r =11112533,,,,222x y my y NM y ⎛⎫⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭u u u u r ,∵132my ⎛⎫-⎪⎝⎭×y 2-32y 1=my 1y 2-32(y 1+y 2)=2934m m -+-32×2634m m -+=0. ∴∥NA NM u u u r u u u u r, 故A ,N ,M 三点共线,所以直线AM 经过线段EF 的中点.【名师点睛】本题考查了直线与椭圆的位置关系问题,直线与圆锥曲线问题常见解法是借助根与系数的关系,将多元问题转化为少元(单元)问题,属于中档题.(1)由直线l 与x 轴垂直,可得直线l 的方程,从而求解出点、A B 的坐标,由BM ∥x 轴可得M 点坐标,从而得出直线AM 的方程;(2)要证直线AM 经过线段EF 的中点N ,即证A ,N ,M 三点共线,即证∥NA NM u u u r u u u u r,设出、A B 两点,联立直线与椭圆的方程,借助根与系数关系,从而得证.7.【湖南省株洲市2019届高三第二次教学质量检测(二模)数学试题】已知抛物线()2:20E y px p =>经过点()1,2A ,过A 作两条不同直线12,l l ,其中直线12,l l 关于直线1x =对称. (1)求抛物线E 的方程及准线方程;(2)设直线12,l l 分别交抛物线E 于、B C 两点(均不与A 重合),若以线段BC 为直径的圆与抛物线E 的准线相切,求直线BC 的方程.【答案】(1)24y x =;准线方程为1x =-;(2)10x y +-=.【解析】(1)∵抛物线E 过点()1,2A , ∴24p =,解得2p =,∴抛物线的方程为24y x =,准线方程为1x =-.(2)方法一:不妨设B 在C 的左边,从而可设直线AB 的方程为()12(0)x m y m -=->,即21x my m =-+,由2214x my m y x=-+⎧⎨=⎩消去x 整理得24840y my m -+-=. 设(),B B B x y ,则24B y m +=,故42B y m =-,∴2441B x m m =-+,∴点()2441,42B m m m -+-.又由条件得AB 与AC 的倾斜角互补,以m -代替点B 坐标中的m , 可得点()2441,42C m m m ++--. ∴()()228882BC m m m =-+=,且BC 中点的横坐标为2412B Cx x m +=+, ∵以线段BC 为直径的圆与抛物线E 的准线相切, ∴2411422BC m m ++==,解得22m =∴()322,222B --,()322,222C +-, ∴1BC k =-,∴直线BC 的方程为()(222322y x -=--+,即10x y +-=. 方法二:设()()1122,,,B x y C x y , 因为直线12,l l 关于1x =对称, 所以AB 与AC 的倾斜角互补, 所以12122212121222224411221144AB AC y y y y k k y y x x y y ----+=+=+=+=--++--, 所以124y y +=-,所以1212221212124144BC y y y y k y y x x y y --====--+-. 设直线BC 的方程为y x m =-+,由24y x m y x=-+⎧⎨=⎩消去y 整理得()22240x m x m -++=, 所以2121224,x x m x x m +=+=,所以122421BC x m =-=+BC 中点D 的横坐标为1222x x m +=+. 因为以线段BC 为直径的圆与抛物线的准线1x =-相切, 所以12122BC x x ++=, 即3221m m +=+1m =,所以直线BC 的方程为1y x =-+,即10x y +-=.【名师点睛】由于在解答圆锥曲线问题中需要涉及大量的计算,所以在解题时要注意“设而不求”、“整体代换”等方法的利用,另外还应注意巧设直线的方程,以达到简化运算的目的,考查直线和圆锥曲线的位置关系及计算能力,属于中档题.(1)将点()1,2A 坐标代入曲线方程求出2p =,于是可得曲线方程.(2)方法一:由题意设出直线AB 的方程,与抛物线方程联立消元后,根据根与系数的关系求出点B 的坐标,同理得到点C 的坐标,然后根据以线段BC 为直径的圆与抛物线E 的准线相切可求得点,B C 中的参数,进而可得所求方程.方法二:由题意得AB 与AC 的倾斜角互补,由此可得1BC k =-,于是可设直线BC 的方程为y x m =-+,与曲线方程联立消元后,再根据题意求得参数m ,进而得到直线方程. 8.【河南省开封市2019届高三上学期第一次模拟考试数学试题】已知抛物线2:2(0)C y px p =>的焦点F与椭圆22143x y +=的右焦点重合,抛物线C 的动弦AB 过点F ,过点F 且垂直于弦AB 的直线交抛物线的准线于点M .(1)求抛物线的标准方程; (2)求AB MF的最小值.【答案】(1)24y x =;(2)2.【解析】(1)由椭圆方程得,椭圆的右焦点为()1,0, ∴抛物线的焦点为()1,0F , ∴2p =,∴抛物线的标准方程为24y x =.(2)①当动弦AB 所在直线的斜率不存在时,易得:24AB p ==,2MF =,2AB MF=.②当动弦AB 所在直线的斜率存在时,易知AB 的斜率不为0. 设AB 所在直线方程为()1y k x =-,且()11,A x y ,()22,B x y .联立方程:()241y xy k x ⎧=⎪⎨=-⎪⎩,得()2222220k x k x k -++=,∴()212222k x x k ++=,121x x ⋅=,()21610k ∆=+>,∴2121AB kx =+-= ()222222412414k k k k k +⎛⎫++-= ⎪⎝⎭.∵FM 所在的直线方程为()11y x k =--,联立方程()111y x k x ⎧=--⎪⎨⎪=-⎩,得点21,M k ⎛⎫- ⎪⎝⎭, ∴22224122k MF k k +=+=∴()2222241121212k ABk MF k k k +==+>+,综上所述:AB MF的最小值为2.【名师点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑: ①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ③利用基本不等式求出参数的取值范围; ④利用函数的值域的求法,确定参数的取值范围.。

2019年高考理数——圆锥曲线(解答)

2019年高考理数——圆锥曲线1.(19全国一理19.(12分))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若3AP PB u u u r u u u r,求|AB |.2.(19全国二理21.(12分))已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.3.(19全国三理21.)已知曲线C:y=22x,D为直线y=12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.4.(19北京理(18)(本小题14分))已知抛物线C:x2=−2py经过点(2,−1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.设椭圆22 221(0)x ya ba b+=>>的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心率为55.(Ⅰ)求椭圆的方程;(Ⅱ)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N在y轴的负半轴上.若||||ON OF=(O为原点),且OP MN⊥,求直线PB的斜率.6.(19浙江21.(本小题满分15分))如图,已知点(10)F,为抛物线22(0)y px p=>的焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得ABC△的重心G在x轴上,直线AC交x轴于点Q,且Q 在点F的右侧.记,AFG CQG△△的面积分别为12,S S.(1)求p的值及抛物线的准线方程;(2)求12SS的最小值及此时点G的坐标.如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.参考答案:1.解:设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --=,得78t =-.所以l 的方程为3728y x =-. (2)由3AP PB =u u u r u u u r 可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.故||3AB =.2.解:(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-.由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22222(2)280k x uk x k u +-+-=.① 设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uk y k=+. 从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+. 所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =22||2PG k=+,所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号. 因为2812tS t=+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169.因此,△PQG 面积的最大值为169.3.解:(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- . 整理得112 2 +1=0. tx y - 设()22,B x y ,同理可得222 2 +1=0tx y -.故直线AB 的方程为2210tx y -+=.所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()212||21AB x t =-==+.设12,d d 分别为点D ,E 到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+. 设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭.由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,S =3;当1t =±时,S =因此,四边形ADBE的面积为3或4.解:(Ⅰ)由抛物线2:2C x py =-经过点(2,1)-,得2p =.所以抛物线C 的方程为24x y =-,其准线方程为1y =.(Ⅱ)抛物线C 的焦点为(0,1)F -.设直线l 的方程为1(0)y kx k =-≠.由21,4y kx x y=-⎧⎨=-⎩得2440x kx +-=.设()()1122,,,M x y N x y ,则124x x =-. 直线OM 的方程为11y y x x =.令1y =-,得点A 的横坐标11A x x y =-. 同理得点B 的横坐标22B x x y =-.设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=---=--- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r ,21212(1)x x DA DB n y y ⋅=++u u u r u u u r 2122212(1)44x x n x x =++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭21216(1)n x x =++24(1)n =-++ 令0DA DB ⋅=u u u r u u u r ,即24(1)0n -++=,则1n =或3n =-.综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)-.5. (Ⅰ)解:设椭圆的半焦距为c ,依题意,24,5c b a ==,又222a b c =+,可得a =, 2,b =1c =.所以,椭圆的方程为22154x y +=. (Ⅱ)解:由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠,又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P kx k=-+,代入2y kx =+得2281045P k y k -=+,进而直线OP 的斜率24510P p y k x k -=-.在2y kx =+中,令0y =,得2M x k =-.由题意得()0,1N -,所以直线MN 的斜率为2k-.由OP MN ⊥,得2451102k k k -⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而k =所以,直线PB或.6.(1)由题意得12p=,即p =2.所以,抛物线的准线方程为x =−1. (2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得 ()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故 220c t y t -+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t -=-,得()21,0Q t -. 由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A c t t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-. 令22m t =-,则m >0,1221222134324S m S m m m m =-=-=+++++….当m =12S S取得最小值1+,此时G (2,0).7.解:(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 232==, 因此2a =DF 1+DF 2=4,从而a =2.由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=,解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B ,所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E是线段BF2与椭圆的交点,所以32 y=-.因此3(1,)2E--.11。

高考数学 专题十九 圆锥曲线综合精准培优专练 理-人教版高三全册数学试题

培优点十九 圆锥曲线综合例1:已知O 为坐标原点,A ,B 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右顶点,点P 在椭圆C 上且位于第一象限,点P 在x 轴上的投影为P ',且有OP OP c OP '⋅='(其中222c a b =-),AP 的连线与y 轴交于点M ,BM 与PP '的交点N 恰为线段PP '的中点,则椭圆C 的离心率为()AB C .23D .13【答案】D【解析】设00(,)P x y ,则0(,0)P x ',(1,0)OP OP '=',由题意OP OP c OP '⋅=',得P 的横坐标为c ,由22221c y a b +=,得2b y a =±,∴2(,)b P c a, ∵(,0)A a -,(,0)B a ,∴直线PA 的方程为2()()b y x a a ac =++, 令0x =,则2b y a c =+,∴2(0,)b M a c+,∴直线BM 的方程为2()()b y x a a a c =--+, ∵直线PP '的方程为x c =,∴点2)(,))((b a c N c a a c -+, ∵N 恰为线段PP '的中点,∴22)2(()b a c b a a c a-⨯=+,一、圆锥曲线综合整理可得3a c =,则13c e a ==. 例2:设1F ,2F 是双曲线2222:1x y C a b-=(a >0,0b >)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P ,若1PF =,则C 的离心率为()A B .2 C D 【答案】C【解析】双曲线2222:1x y C a b-=(a >0,0b >)的一条渐近线方程为by x a =,∴点2F 到渐近线的距离d b ==,即2PF b =,∴OP a =,2cos bPF O c∠=,∵1PF =,∴1PF =,在三角形12F PF 中,由余弦定理可得222121221222cos PF PF F F PF F F PF O =+-⋅∠, ∴2222222264224343()ba b c b c c b c c a c=+-⨯⨯⨯=-=--,即223a c =c =,∴ce a==C . 例3:已知定点3(1,)2A -,点M 是抛物线2:4C y x =上的动点,则MA MF (其中F 为抛物线C 的焦点)的最大值为()A .2B .52CD .3【答案】C【解析】如图,作MN ⊥准线l 于点N ,则1cos MA MA MFMNNMA==∠,设M A 的倾斜角为θ,则22222211sin cos 1cos cos cos k NMA θθθθ+===+∠(AM k k =), 当M A 与24y x =相切时,2k 取最大值,由3(1)2:MA l y k x -=+,可得312y x k k=--, 代入抛物线24y x =,得234(1)2y y k k=--,即24640y y k k -++=,0Δ=,可得21664(4)0k k -+=,解得2k =-或12k =,故2k 的最大值为4,即22()1MA k MF=+的最大值为5,即MA MF.一、选择题1.已知双曲线22221(,0)x y a b a b-=>的渐近线被圆22(2)4x y -+=截得的弦长等于,则双曲线两条渐近对点增分集训线相夹所成的锐角为() A .π6B .π3C .π2D .2π3【答案】B【解析】过圆心(2,0)A 作渐近线by x a=的垂线,设垂足为B ,由题意知圆心(2,0)A 到渐近线的距离1d ,则易知π6AOB ∠=, 所以两渐近线相夹所成的锐角为π3.2.如图,过抛物线22(0)y px p =>的焦点F 的直线与抛物线交于A ,B 两点,交准线l 于点C ,若2CB BF =,6AF =,则抛物线的方程为()A .2y x =B .23y x =C .26y x =D .29y x =【答案】C【解析】作AM ,BN 垂直准线l ,垂足分别为M ,N ,2CB BF =,即2BC BF =,可得2BC BN =,则30BCN ∠=︒,6AF AM ==,212AC AM ==,所以F 是线段AC 中点,所以1232OF p AM ===,则26y x =.3.已知点1F ,2F 是椭圆22221(0)x y a b a b+=>>的左右焦点,椭圆上存在不同两点A ,B 使得122F A F B =,则椭圆的离心率的取值X 围是() A .1(,1)3B .1(0,)3C .1(,1)2D .1(0,)2【答案】A【解析】极限法:当,A B 重合于右顶点时,有2()a c a c +=-,此时13e =, 当13e >时,椭圆越扁,显然存在,故1(,1)3e ∈.或:如图,E 为线段1AF 中点,设(,)A m n ,则(,)22m c nE -,122F A F B =, 可知12F E F B =,则3(,)22m c nB +, 点,A B 在椭圆上,有22221m n a b+=,代入222222691444m cm c n a a b +++=,可得2223cm c a +=, 即有2232a c m a c -=<,解得13e >,又01e <<,所以1(,1)3e ∈.4.已知过抛物线2:4C y x =焦点F 的直线与C 交于,P Q 两点,交圆2220x y x +-=于M ,N 两点,其中,P M 位于第一象限,则14PM QN+的值不可能为() A .3B .4C .5D .6 【答案】A【解析】如图,设PF m =,QF n =,由焦点弦的性质有1121m n p+==,即有mn m n =+, 又1PM m =-,1QN n =-,1414454511()1m n m n PM QN m n mn m n +-+=+==+----++, 114(4)()59n mm n m n m n++=++≥,当2n m =时取等号, 所以144PM QN+≥,不可能等于3.5.已知两点,A B 在椭圆22163x y +=上,若0OA OB ⋅=,则OA OB ⋅的最小值为()A ..4C ..【答案】B【解析】设点A 在第一象限,直线OA 的倾斜角为θ, 则(cos ,sin )A OA OA θθ,ππ(cos(),sin())22B OB OB θθ±±,点在椭圆上,则2222cos sin 163OA OA +=θθ,即222cos sin 163OA+=θθ,同理有222sin cos 163OB +=θθ,则2211111632OA OB+=+=,22112OA OBOAOB+≥,所以4OA OB ≥,当2OA OB ==时取等号,此时A .6.已知点(,0)F c -是的双曲线22221(0)x y C b a a b-=>>:的左焦点,过F 且斜率为1的直线与双曲线的渐近线分别交于点A ,B ,若线段AB 中点为D ,且22FO FD c ⋅=(O 为原点),则双曲线C 的离心率e 等于()A 【答案】A【解析】设11(,)A x y ,22(,)B x y ,00(,)D x y , 点A ,B 在渐近线上,即22111122x y x y a b a b=⇒=,同理222222x y a b =,所以2222121222x x y y a b --=,即1212121222()()()()x x x x y y y y a b -+-+=, 因为12121y y x x -=-,1202x x x +=,1202y y y +=,则有0022x y a b=,得2020y b a x =,如图,易知点D在第一象限,2πcos4FO FD c FD ⋅=⋅⋅=,得2FD c =, π14AB k AFO =⇒∠=,则1))D c ,所以20202y b a x ===+e =二、填空题7.已知点(,0)F c 是椭圆2222:1(0)x y E a b a b +=>>的右焦点,点A 是原点O 关于直线1x y c b+=的对称点,且AF x ⊥轴,则椭圆E 的离心率等于__________.【解析】由题意可知直线:AF x c =,直线:c AO y x b =,联立得2(,)c A c b ,则线段AO 中点为2(,)22c c B b,则有221122c b+=,即b c =,所以a =,则e =.8.设1F ,2F 是双曲线C 的左右焦点,过焦点1F 的直线与曲线C 的左支交于点A ,B ,若212AF F F =,且113AF F B =,则双曲线C 的渐近线方程为__________.【答案】y =【解析】如图,设12AF =,16BF =,由双曲线的定义知21222a AF AF c =-=-,即1a c =-,212BF BF a -=,则21224BF BF a c =+=+,设D 为线段1AF 中点,则12AF DF ⊥,7BD =,11F D =,由勾股定理得2222222121BF BD DF F F DF -==-,即22(24)49(2)1c c +-=-,解得2c =,11a c =-=,所以b =,渐近线方程为y =.9.已知点F 是抛物线21:4C y x =的焦点,点A ,B 在抛物线C 上,满足4OA OB ⋅=-,则AOF BOF S S +△△的最小值为.【答案】【解析】知(0,1)F ,设11(,)A x y ,22(,)B x y ,2121212121()416OA OB x x y y x x x x ⋅=+=+=-,解得128x x =-,1212111()222AOF BOF S S OF x OF x x x +=+=+=△△当12x x ==10.已知点1(,0)F c -,2(,0)F c 是离心率32e =的双曲线C 的两个焦点,直线:4340l x y c --= 与双曲线C 交于A ,B 两点,设E ,F 分别是12AF F △,12BF F △的内心,且5EF =,则双曲线C 的标准 方程是__________. 【答案】2211620x y -=【解析】直线:4340l x y c --=过右焦点2(,0)F c ,3423b e a =⇒=<, 所以直线l 与双曲线的右支有两个交点,如图,设右顶点D ,EM AB ⊥,1EN AF ⊥,12EH F F ⊥,垂足分别为M ,N ,H ,由双曲线的定义及三角形内心特点,有1212122AF AF NF MF HF HF a -=-=-=,则可得D ,H 重合,同理,12DF F F ⊥,垂足为D ,设直线l 的倾斜角为θ,由题意知4tan 3=θ,π((0,))2θ∈, 则2219cos 1tan 25==+θθ,则4sin 5=θ,由角平分线特点知21(π)2EF D θ∠=-, 22FF D ∠=θ,可知2(,()tan )E a c a EF D -∠,2(,()tan )F a c a FF D --∠,5EF =,则22()(tan tan )5c a EF D FF D -∠+∠=,2221tan 1252tan tan tan22sin 2tan2tan 22EF D FF D +∠+∠=+=⨯==θθθθθ, 所以2c a -=,又32e =,解得4a =,6c =,b =C 的标准方程是2211620x y -=.三、解答题11.已知抛物线2:4C y x =的焦点为F ,A 为C 上位于第一象限的任意一点,过点A 的直线l 交曲线C 于另一点B ,交x 轴的正半轴于点001(,0)()2D x x ≥,记点B 关于x 轴的对称点为点E ,AE 交x 轴于点P ,且AP BP ⊥.(1)求证:点P ,D 关于原点对称; (2)求点P 到直线AB 的距离d 的取值X 围. 【答案】(1)证明见解析;(2)2⎫⎪⎪⎣⎭. 【解析】设直线0:(0)l x my x m =+≠,11(,)A x y ,22(,)B x y ,则22(,)E x y -,由204y x x my x ⎧=⎪⎨=+⎪⎩,消x ,得20440y my x --=,得1212044y y m y y x +=⎧⎨=-⎩,(1)设(,0)P P x ,知A ,E ,P 三点共线,又22(,)P PE x x y =--,11(,)P PA x x y =-,则有2121()()0P P x x y y x x -+-=,即2112121201212()4()P x y x y y y y y x x y y y y ++===-++,所以点P ,D 关于原点对称.(2)因为AP BP ⊥,所以1AE k =,即1212122212124()14y y y y y y x x y y ++==⇒-=--, 即21212()416y y y y +-=,得2010m x =->,则01,12x ⎡⎫∈⎪⎢⎣⎭,d ==设t ⎛= ⎝⎦,则24242t d t t t -==-,函数42y t t =-在⎛ ⎝⎦上递减,所以d ⎫∈⎪⎪⎣⎭. 12.已知椭圆2222:1(0)x y C a b a b+=>>经过点,离心率e =.(1)求椭圆的标准方程;(2)过点(1,0)作两条相互垂直的直线12,l l ,分别与椭圆C 交于点,P Q 和,M N 四点,若,T S 分别是线段,PQ MN 的中点,判断直线ST 是否过定点?若是,请求出定点坐标,若不是请说明理由.【答案】(1)22142x y +=;(2)是过定点,定点为2(,0)3. 【解析】(1)由题意知222223214c aa b a b c ⎧=⎪⎪⎪+=⎨⎪⎪=+⎪⎩,解得2a b c =⎧⎪⎨==⎪⎩椭圆的标准方程为22142x y +=.(2)当直线PQ ,MN 的斜率存在且不为0时,设1:(1)l y k x =-,与椭圆方程联立并消去y 得2222(12)4240k x k x k +-+-=,设11(,)P x y ,22(,)Q x y ,则有2122412k x x k +=+,21222412k x x k-=+, 线段PQ 的中点2222,1212k k T k k ⎛⎫- ⎪++⎝⎭, 同理可得线段MN 的中点222,22k S k k ⎛⎫ ⎪++⎝⎭,当1k =±时,21(,)33T ,21(,)33S ±,2:3TS l x =;当1k ≠±时,232(1)TS k k k -=-,则222232:()122(1)12TS k k k l y x k k k -+=-+-+, 即232:()2(1)3TS k l y x k -=--,即直线ST过定点2(,0)3; 当直线PQ ,MN 的斜率一个为0一个不存在时,可知直线ST 的方程为0y ,过定点2(,0)3,综上,直线ST 过定点2(,0)3.。

最新的年高考数学(理科)专题十九圆锥曲线综合精准培优专练(含答案)

培优点十九锥曲线综合1.直线过定点例1:已知中心在原点,焦点在X轴上的椭圆c的离心率为它,过左焦点厂且垂直于X轴的直线交椭2 圆C于P,。

两点,且|PQ| = 2&.(1)求C的方程:(2)若直线/是圆/ 十寸=8上的点(2,2)处的切线,点M是直线/上任一点,过点M作椭圆。

的切线MA, MB,切点分别为A, B,设切线的斜率都存在.求证:直线回过定点,并求出该定点的坐标.【答案】(1)「+ : = 1:(2)证明见解析,(2,1). 8 4【解析】(1)由已知,设椭圆C的方程为* + / =因为阀| = 2日不妨设点咱词,代入椭圆方程得2又因为?二上二,^,所以,+二r=l, b = c 9所以/)2=4, a2 = 2/?2 = 8 »。

2 2 /所以C的方程为1+t=1. 8 4(2)依题设,得直线/的方程为y-2 = -(x-2),即x+y-4 = 0,设A(x1,y), B(x2.y2),由切线妨的斜率存在,设其方程为y - y = k (x - %,3f =Ff)联立{ / / 得,(次2 +1)/ + 软(y -kx、)x + 2(y -依J -8 = 0 ,--+ -- = 118 4由相切得」=1(y - 村y - 8 (2k 2 +1)[(% - 例『- 4] = 0 ,化简得(H —心"=止 + 4 ,即(X: _8)代一“y】k +),J — 4 = 0 ,因为方程只有一解,所以& =车' = 绰=-兴,所以切线M4的方程为y-y「8 - 2);2y\2);即x l x + 2y l y = 8,同理,切线MB的方程为9x + 2y2y = 8 ,又因为两切线都经过点"(・%,%),所以+ 所以直线钻的方程为x o x + 2%v = 8,上飞+2力%=8又% +%=4 »所以直线的方程可化为~/ + 2(4-玉))〉,=8 ,即飞(x-2y) + 8y-8 = 0,令{ J , 得仁一1,所以直线/W恒过定点(2,1).2.面积问题例2:已知椭圆£ +奈=1(“>〃>0)的左、右焦点分别为小F,,焦距为4,直线《:),= %与椭圆相交于A、B两点,F,关于直线4的对称点E在椭圆上.斜率为-1的直线,,与线段回相交于点P, 与椭圆相交于C、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

培优点十九 圆锥曲线综合1.直线过定点例1:已知中心在原点,焦点在x 轴上的椭圆C,过左焦点F 且垂直于x 轴的直线交椭圆C 于P ,Q两点,且PQ =.(1)求C 的方程;(2)若直线l 是圆228x y +=上的点()2,2处的切线,点M 是直线l 上任一点,过点M 作椭圆C 的切线MA ,MB ,切点分别为A ,B ,设切线的斜率都存在.求证:直线AB 过定点,并求出该定点的坐标.【答案】(1)22184x y +=;(2)证明见解析,()2,1.【解析】(1)由已知,设椭圆C 的方程为()222210x y a b a b +=>>,因为22PQ =(2P c -,代入椭圆方程得22221c a b+=,又因为2c e a ==,所以21212b+=,b c =,所以24b =,2228a b ==,所以C 的方程为22184x y +=.(2)依题设,得直线l 的方程为()22y x -=--,即40x y +-=,设()00,M x y ,()11,A x y ,()22,B x y ,由切线MA 的斜率存在,设其方程为()11y y k x x -=-,联立()1122184y y k x x x y -=-+=⎧⎪⎨⎪⎩得,()()()2221111214280k x k y kx x y kx ++-+--=,由相切得()()()222211111682140Δk y kx k y kx ⎡⎤=--+--=⎣⎦,化简得()221184y kx k -=+,即()22211118240x k x y k y --+-=,因为方程只有一解,所以1111122111822x y x y x k x y y ===---,所以切线MA 的方程为()11112x y y x x y -=--,即1128x x y y +=,同理,切线MB 的方程为2228x x y y +=,又因为两切线都经过点()00,M x y ,所以101020202828x x y y x x y y +=+=⎧⎨⎩,所以直线AB 的方程为0028x x y y +=,又004x y +=,所以直线AB 的方程可化为()00248x x x y +-=,即()02880x x y y -+-=,令20880x y y -=-=⎧⎨⎩,得21x y ==⎧⎨⎩,所以直线AB 恒过定点()2,1.2.面积问题例2:已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,焦距为4,直线1:bl y x c =与椭圆相交于A 、B 两点,2F 关于直线1l 的对称点E 在椭圆上.斜率为1-的直线2l 与线段AB 相交于点P ,与椭圆相交于C 、D两点.(1)求椭圆的标准方程;(2)求四边形ACBD 面积的取值范围.【答案】(1)22184x y +=;(2)3232,93⎛⎤⎥⎝⎦.【解析】(1)由椭圆焦距为4,设()12,0F -,()22,0F ,连结1EF ,设12EF F α∠=,则tan b c α=,又222a b c =+,得sin b a α=,cos c aα=,()12122sin 9012||sin sin 90F F c a c e b c a EF EF b c aa aαα︒∴======++︒-++,解得222a bc c b c =+⇒==,28a =,所以椭圆方程为22184x y +=.(2)设直线2l 方程:+y x m =-,()11,C x y 、()22,D x y ,由22184x y y x m+==-+⎧⎪⎨⎪⎩,得2234280x mx m -+-=,所以1221243283x x m m x x +=-=⎧⎪⎪⎨⎪⎪⎩,由(1)知直线1l :y x =,代入椭圆得A ⎛ ⎝,B,得AB =,由直线2l 与线段AB 相交于点P,得m ⎛∈ ⎝,()()22221212124281642282+12933m m CD x x x x x x m -=-=+-=-=-而21l k =-与11l k =,知21l l ⊥,21163+1229ACBD S AB CD m ∴=⨯=-,由446,633m ⎛∈ ⎝,得232,03m ⎛⎤-∈- ⎥⎝⎦21633232+12,993m ⎛⎤- ⎥⎝⎦,∴四边形ACBD 面积的取值范围3232,93⎛⎤⎥⎝⎦.3.参数的值与范围例3:已知抛物线()2:20C y px p =>的焦点()1,0F ,点()1,2A 在抛物线C 上,过焦点F 的直线l 交抛物线C 于M ,N 两点.(1)求抛物线C 的方程以及AF 的值;(2)记抛物线C 的准线与x 轴交于点B ,若MF FN λ= ,2240BM BN +=,求λ的值.【答案】(1)24y x =,2AF =;(2)2λ=.【解析】(1) 抛物线()2:20C y px p =>的焦点()1,0F ,12p∴=,则24p =,抛物线方程为24y x =; 点()1,2A 在抛物线C 上,122pAF ∴=+=.(2)依题意,()1,0F ,设:1l x my =+,设()11,M x y 、()22,N x y ,联立方程241y xx my ==+⎧⎨⎩,消去x ,得2440y my -=-.所以121244y y m y y +==-⎧⎨⎩ ①,且112211x my x my =+=+⎧⎨⎩,又MF FN λ=,则()()11221,1,x y x y λ--=-,即12y y λ=-,代入①得()222414y y mλλ⎧-=--=⎪⎨⎪⎩,消去2y 得2142m λλ=+-,()1,0B -,则()111,BM x y =+ ,()221,BN x y =+,则()()222222221122||11BM BN BM BN x y x y +=+=+++++ ()222212121222x x x x y y =++++++()2222121212(1)(1)222my my my my y y =+++++++++()()()2221212148m y y m y y =+++++()()22421168448164016m m m m m m =+++⋅+=++,当4216401640m m ++=,解得212m =,故23λ=±.4.弦长类问题例4:已知椭圆()22122:10x y C a b a b +=>>的左右顶点是双曲线222:13x C y -=的顶点,且椭圆1C 的上顶点到双曲线2C(1)求椭圆1C 的方程;(2)若直线l 与1C 相交于1M ,2M 两点,与2C 相交于1Q ,2Q 两点,且125OQ OQ ⋅=-,求12M M 的取值范围.【答案】(1)2213x y +=;(2)(.【解析】(1)由题意可知:23a =,又椭圆1C 的上顶点为()0,b ,双曲线2C的渐近线为:0y x =⇔=,1b =,∴椭圆方程2213x y +=.(2)易知直线的斜率存在,设直线的方程为y kx m =+,代入2213xy -=,消去y 并整理l l 得:()222136330k xkmx m ----=,要与2C 相交于两点,则应有:()()222222221301303641333013k k k m k m m k -≠⎧-≠⎪⇒⎨----->+>⎧⎪⎨⎪⎩⎪⎩,设()111,Q x y ,()222,Q x y ,则有:122613kmx x k +=-,21223313m x x k --⋅=-.又()()()()22121212121212121OQ OQ x x y y x x kx m kx m k x x km x x m ⋅=+=+++=++++.又:125OQ OQ ⋅=-,所以有:()()()22222221133613513k m k m m k k⎡⎤+--++-=-⎣⎦-,2219m k ⇒=-,②将y kx m =+,代入2213x y +=,消去y 并整理得:()222136330k x kmx m +++-=,要有两交点,则()()2222223641333031Δk m k m k m =-+->⇒+>.③由①②③有2109k <≤.设()133,M x y 、()244,M x y .有342613kmx x k -+=+,23423313m x x k -⋅=+,12M M==将2219mk =-代入有1212M M M M =⇒=12M M ⇒=,令2t k =,10,9t ⎛⎤∈ ⎥⎝⎦,令()()()()()2311'1313t t tf t f t t t +-=⇒=++,10,9t ⎛⎤∈ ⎥⎝⎦.所以()'0f t >在10,9t ⎛⎤∈ ⎥⎝⎦内恒成立,故函数()f t 在10,9t ⎛⎤∈ ⎝⎦内单调递增,故()(1250,72f t M M ⎛⎤∈⇒∈ ⎥⎝⎦.5.存在性问题例5:已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()11,0F -,()21,0F ,点2A ⎛ ⎝在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线l ,使得当直线l 与椭圆C 有两个不同交点M ,N 时,能在直线53y =上找到一点P ,在椭圆C 上找到一点Q ,满足PM NQ = ?若存在,求出直线l 的方程;若不存在,说明理由.【答案】(1)2212x y +=;(2)不存在,见解析.【解析】(1)设椭圆C 的焦距为2c ,则1c =,∵2A ⎛ ⎝在椭圆C 上,∴122222a AF AF =+=+=∴a =2221b a c =-=,故椭圆C 的方程为2212x y +=.(2)假设这样的直线存在,设直线l 的方程为2y x t =+,设()11,M x y ,()22,N x y ,353,P x ⎛⎫⎪⎝⎭,()44,Q x y ,MN 的中点为()00,D x y ,由22222y x t x y =++=⎧⎨⎩,消去x ,得229280y ty t -+-=,∴1229ty y +=,且()2243680Δt t =-->,故12029y y t y +==且33t -<<,由PM NQ =,知四边形PMQN 为平行四边形,而D 为线段MN 的中点,因此D 为线段PQ 的中点,∴405329y t y +==,得42159t y -=,又33t -<<,可得4713y -<<-,∴点Q 不在椭圆上,故不存在满足题意的直线l .一、解答题1.已知动圆P 过点()22,0F 并且与圆()221:24F x y ++=相外切,动圆圆心P 的轨迹为C .(1)求曲线C 的轨迹方程;(2)过点()22,0F 的直线1l 与轨迹C 交于A 、B 两点,设直线1:2l x =,设点()1,0D -,直线AD 交l 于M ,求证:直线BM 经过定点.【答案】(1)()22103y x x -=>;(2)见解析.【解析】(1)由已知12| | 2PF PF =+,12| | 2PF PF -=,P 轨迹C 为双曲线的右支,22a =,1a =,12| 24F F c ==,2c =∴曲线C 标准方程()22103y x x -=>.(2)由对称性可知,直线BM 必过x 轴的定点,当直线1l 的斜率不存在时,()2,3A ,()2,3B -,13,22M ⎛⎫⎪⎝⎭,知直线BM 经过点()1,0P ,当直线1l 的斜率存在时,不妨设直线()1:2l y k x =-,()11,A x y ,()22,B x y ,对点增分集训直线()11:11y AD y x x =++,当12x =时,()11321M y y x =+,()1131,221y M x ⎛⎫ ⎪ ⎪+⎝⎭,()22233y k x x y =--=⎧⎪⎨⎪⎩得()()222234430k x k x k -+-+=,212243k x x k -+=-,2122433k x x k +=-,下面证明直线BM 经过点()1,0P ,即证PM PB k k =,即1212311y yx x -=+-,即12112233y x y x y y -+=+,由112y kx k =-,222y kx k =-,整理得,()12124540x x x x -++=,即()22222243434450333k k k k k k -+⋅-⋅+=---即证BM 经过点()1,0P ,直线BM 过定点()1,0.2.已知点31,2⎛⎫⎪⎝⎭在椭圆()2222:10x y E a b a b +=>>上,设A ,B 分别为椭圆的左顶点、下顶点,原点O 到直线AB 221(1)求椭圆E 的方程;(2)设P 为椭圆E 在第一象限内一点,直线PA ,PB 分别交y 轴、x 轴于D ,C 两点,求四边形ABCD 的面积.【答案】(1)22143x y +=;(2)3.【解析】(1)因为椭圆()2222:10x y E a b a b +=>>经过点31,2⎛⎫⎪⎝⎭,有229141a b +=,由等面积法,可得原点O 到直线AB=联立两方程解得2a =,b =,所以椭圆E 的方程为22:143x y E +=.(2)设点()()00000,,0P x y x y >>,则2200143x y +=,即2203412x y +=.直线()00:22y PA y x x =++,令0x =,得0022D yy x =+.从而有0022y BD x =+=+,同理,可得AC =.所以四边形的面积为1122AC BD ⋅=1122====.所以四边形ABCD 的面积为23.3.已知点C 为圆()2218x y ++=的圆心,P 是圆上的动点,点Q 在圆的半径CP 上,且有点()1,0A 和AP 上的点M ,满足0MQ AP ⋅= ,2AP AM = .(1)当点P 在圆上运动时,判断Q 点的轨迹是什么?并求出其方程;(2)若斜率为k 的直线l 与圆221x y +=相切,与(1)中所求点Q 的轨迹交于不同的两点F ,H ,且3445OF OF ≤⋅≤ (其中O 是坐标原点),求k 的取值范围.【答案】(1)是以点C ,A 为焦点,焦距为2,长轴长为222212x y +=;(2)2332⎡⎡⎢⎢⎣ .【解析】(1)由题意MQ 是线段AP 的垂直平分线,所以2CP QC QP QC QA CA =+=+=>=,所以点Q 的轨迹是以点C ,A 为焦点,焦距为2,长轴长为∴a =1c =,1b ==,故点Q 的轨迹方程是2212x y +=.(2)设直线l :y kx b =+,()11,F x y ,()22,H x y ,直线l 与圆221x y +=1=,即221b k =+,联立2212x y y kx b +==+⎧⎪⎨⎪⎩,消去y 得:()222124220k x kbx b +++-=,()()()2222222164122182180Δk b k b k b k =-+-=-+=>,得0k ≠,122412kbx x k +=-+,21222212b x x k -=+,∴()()()()()222221212121222122411212k b kb OF OH x x y y k x x kb x x b kb b k k +--⋅=+=++++=++++ ()()222222222124111121212k kk k k k kk k+++=-++=+++,所以223144125k k +≤≤+,得21132k ≤≤,32k ≤≤,解得23k ≤≤32k ≤≤,故所求范围为2332⎡⎡⎢⎢⎣ .4.已知椭圆()2222:10x y C a b a b +=>>的焦距为2c ,离心率为12,圆222:O x y c +=,1A ,2A 是椭圆的左右顶点,AB 是圆O 的任意一条直径,1A AB △面积的最大值为2.(1)求椭圆C 及圆O 的方程;(2)若l 为圆O 的任意一条切线,l 与椭圆E 交于两点P ,Q ,求PQ 的取值范围.【答案】(1)22143x y +=,221x y +=;(2)⎡⎢⎣.【解析】(1)设B 点到x 轴距离为h ,则1111222A AB A OBS SA O h a h ==⋅⋅⋅=⋅△△,易知当线段AB 在y 轴时,max h BO c ==,12A AB S a c ∴=⋅=△,12c e a == ,2a c ∴=,2a ∴=,1c =,b =所以椭圆方程为22143x y +=,圆的方程为221x y +=.(2)当直线L 的斜率不存在时,直线L 的方程为1x =±,此时223b PQ a==;设直线L 方程为:y kx m =+,直线为圆的切线,1d ∴==,221m k ∴=+,直线与椭圆联立,22143y kx m x y ⎧=++=⎪⎨⎪⎩,得()2224384120k x kmx m +++-=,判别式()248320Δk =+>,由韦达定理得:122212284341243km x x k m x x k -+=+-⋅=+⎧⎪⎪⎨⎪⎪⎩,所以弦长2PQ x =-=,令2433t k =+≥,所以2124633PQ t t ⎛⎛⎫=-++ ⎪ ⎝⎭⎝;综上,46PQ ⎡∈⎢⎣,5.如图,己知1F 、2F 是椭圆()2222:10x y G a b a b+=>>的左、右焦点,直线():1l y k x =+经过左焦点1F ,且与椭圆G 交A ,B 两点,2ABF △的周长为43.(1)求椭圆G 的标准方程;(2)是否存在直线I ,使得2ABF △为等腰直角三角形?若存在,求出直线l 的方程;若不存在,请说明理由.【答案】(1)22132x y +=;(2)不存在,见解析.【解析】(1)设椭圆G 的半焦距为c ,因为直线l 与x 轴的交点为()1,0-,故1c =.又2ABF △的周长为,即224AB AF BF a ++==,故a =222312b a c =-=-=.因此,椭圆G 的标准方程为22132x y +=.(2)不存在.理由如下:先用反证法证明AB 不可能为底边,即22AF BF ≠.由题意知()21,0F ,设()11,A x y ,()22,B x y ,假设22AF BF =,则=又2211132x y +=,2222132x y +=,代入上式,消去21y ,22y 得:()()121260x x x x -+-=.因为直线l 斜率存在,所以直线l 不垂直于x 轴,所以12x x ≠,故126x x +=.(与13x ≤,23x ,12236x x +≤<矛盾)联立方程()221321x y y k x +==+⎧⎪⎨⎪⎩,得:()2222326360k x k x k +++-=,所以21226632k x x k +=-=+矛盾.故22AF BF ≠.再证明AB 不可能为等腰直角三角形的直角腰.假设2ABF △为等腰直角三角形,不妨设A 为直角顶点.设1AF m =,则223AF m =-,在12AF F △中,由勾股定理得:()22234m m +=,此方程无解.故不存在这样的等腰直角三角形.。

相关文档
最新文档