井下电网三大保护原理
煤矿井下保护接地、漏电保护和过流保护

煤矿井下保护接地、漏电保护和过流保护保护接地、漏电保护、过流保护,通常称为煤矿井下电气网络的三大保护。
1.保护接地保护接地就是用导体电气设备中所有正常不带电部分的外露金属部分和埋在地下的接地电极连接起来,是预防人身触电的一项极其重要的措施。
它的作用是当设备外壳带电后,电流从接地装置导人地下。
如果电气设备接地良好,则接地电阻会比人体电阻小得多,当人体接触带电外壳时,通过人体的电流就会大大减少,从而减少触电危险性。
电压在36V以上和由于绝缘损坏可能带有危险电压的电气设备的金属外壳、构架,恺装电缆的钢带(或钢丝)、铅皮或屏蔽护套等必须有保护接地。
保护接地主要有:保护接地网、主接地极、局部接地极、接地母线、连接导线与接地导线。
2.漏电保护为了防止电网触电及由此造成的危害,以及人触及带电体时造成的触电事故,应装设漏电动作保护器。
它可以在设备或线路漏电时,通过保护装置的检测机构获得异常信号,经中间机构转换和传递,然后促使执行机构动作,自动切断电源而起到保护作用。
漏电保护的主要作用是:防止人身触电;不间断地监视井下采区低压电网的绝缘状态,以便及时采取措施,防止其绝缘进一步恶化;减少漏电电流引起瓦斯、煤尘爆炸的危险,防止因漏电电流引爆电雷管;防止短路电流所产生的电弧烧穿隔爆型电气设备的外壳.或使其外壳的温度升高超过危险值,引起瓦斯、煤尘爆炸;预防电缆和电气设备因漏电引起的相间短路故障;选择性漏电保护装置的使用,将会缩短漏电的停电范围,并便于寻找漏电故障,及时排除,从而缩短了漏电停电时间。
3.过流保护过流是指电气设备或线路的电流超过规定值。
要使过电流保护装置起到应有的保护作用,应合理选择熔丝的额定电流,选择并调整继电器的动作值。
所有的电气设备和供电线路都必须有可靠的过流保护。
过流保护包括短路保护、过负荷保护(过载保护)和断相保护等。
煤矿井下供电系统的“三大保护”

• 若经校验,两相短路电流不能满足公式⑹时,可采取以 下措施:
• ①加大干线或支线电缆截面。
• ②设法减少低压电缆长度。
• ③采用相敏保护器或软起动等新技术提高可靠动作系数。
• ④换用大容量变压器或采取变压器并联。
• ⑤增设分段保护开关。
• ⑥采用移动变电站或移动变压器。
PPT文档演模板
煤矿井下供电系统的“三大保护”
•
Iz≤Ie
⑺
• 式中:Iz ----电子保护器的过流整定值,取电机额定电 流近似值,A。
• Ie ----电动机的额定电流,A。
• 当运行中电流超过Iz值时,即视为过载,电子保护器延 时动作;当运行中电流达到Iz值的8倍及以上时,即视 为短路,电子保护器瞬时动作。
PPT文档演模板
煤矿井下供电系统的“三大保护”
• 式中: Kb----变压器变压比
• 1.2~1.4----可靠系数
• 对于电子式高压综合保护器,按电流互感器二次额定电 流值(5A)的1、2、3、4、5、6、7、8、9倍分级整定, 其整定值按公式(14)选择:
• n≥
.....(14)
• 式中: n----互感器二次额定电流(5A)的倍数。
• Ige----高压配电装置额定电流,A。
第一节 过电流保护
• ②保护电缆支线的装置按公式⑷选择:
•
IZ≥IQC ......⑷
• 式中:IZ、IQC的含义同公式⑶。
• 目前某些隔爆磁力起动器装有限流热继电器,其热元件按公式⑸ 整定:
•
IZ≤Ie
⑸
• 式中:IZ、Ie的含义同公式⑶。
• 2)按第1条规定选择出来的整定值,还应用两相短路电流值进行 校验,应符合公式⑹的要求:
矿井三大保护的讲解

矿井三大保护的讲解矿井三大保护的讲解一、矿井供电保护1.1 供电系统安全矿井的供电系统是保证矿井正常运转和安全的重要基础。
供电系统应具备独立的电源,并采用双回路设计,以确保在任何情况下都能提供可靠的电力。
此外,供电系统还需具备过载保护、短路保护、欠压保护等功能,以避免发生安全事故。
1.2 停电作业安全在进行停电作业时,必须严格遵守相关规定,确保停电作业的安全。
首先,应提前制定停电计划,并通知相关人员做好准备。
其次,停电时应按照规定的程序进行,先切断电源,然后悬挂警示牌,最后进行作业。
在恢复供电前,还需进行严格的检查和测试,确保供电安全。
1.3 供电设备维护供电设备的维护是保证供电系统正常运行的重要措施。
应定期对供电设备进行检查、维修和更换,确保其工作状态良好。
同时,对于重要设备应建立维护档案,以便及时发现和处理问题。
1.4 电缆线路管理电缆线路是矿井供电系统的重要组成部分。
应加强对电缆线路的管理和维护,避免发生电缆破损、老化等现象。
同时,应对电缆线路进行定期检查和维修,确保其安全可靠。
二、矿井供水保护2.1 水源管理矿井的水源管理是保证供水系统正常运行的重要环节。
应加强对水源的监测和维护,确保水源的安全可靠。
同时,应对水源进行定期清理和消毒,以避免水质问题对矿工的健康造成影响。
2.2 水泵维护水泵是供水系统的重要组成部分。
应定期对水泵进行检查、维修和更换,确保其工作状态良好。
同时,对于重要设备应建立维护档案,以便及时发现和处理问题。
2.3 供水设备安全供水设备的运行安全是保证矿井供水系统正常运行的重要因素。
应加强对供水设备的监测和维护,确保其工作状态良好。
同时,应对供水设备进行定期检修和保养,以避免发生安全事故。
2.4 水质检测与处理水质的好坏直接影响到矿工的健康和矿井的安全。
因此,应定期对水质进行检测和处理,确保水质符合相关标准。
对于不合格的水质,应采取相应的处理措施,如加入消毒剂、过滤等,以保障矿工的健康和矿井的安全。
煤矿供电三大保护

煤矿井下供电三大保护(一)矿井低压电的电流保护一、常见过电流故障的类型低压电网运行中,常见的过电流故障有短路、过负荷(过载)和单相断线三种情况。
什么是短路电流?我们首先通过一个简单的实例来说明这一问题:在正常情况下流过导线、灯的电流为:I=V/R=220/(R1+R2+R3)=220/50.48=4.36A如果在灯头处两根导线相互碰头等于灯泡电阻没有接入,此时流过导线的电流则为:I=V/R=220/(R2+R3)=220/2.08=105.5A1、短路是指供电线路的相与相之间经导线直接逢接成回路。
短路时,流过供电线路的电流称为短路电流。
在井下中性点不接地的供电系统中,短路分为三相、两相两种,而单相接地不属于短路,但可发展为短路。
⑴短路故障发生的原因①线路与电气设备绝缘破坏。
例如,绝缘老化、绝缘受潮,接线(头)工艺不合格,设备内部的电气缺陷和电缆质量低及大气过电压等。
②受机械性破坏。
例如,受到运输机械的撞击,片帮、冒顶物的砸伤,炮崩,电缆敷设半径过小等。
③误接线、误码操作。
例如,相序不同线路的并联,带电进行封装接地线与带封装接地线送电,局部检修送电等。
④严重隐患点。
例如,“鸡爪子”、“羊尾巴”处。
⑤带电检修电气设备。
⑥带电移挪电气设备。
⑵短路故障的危害短路事故是煤矿常见的恶性事故之一,它产生的电流很大,在短路点电弧的中心温度一般在2500℃~4000℃,可在极短的时间内烧毁线路或电气设备,甚至引起火灾。
在遇瓦斯、煤尘时,可以引起燃烧或爆炸.短路可使电网电压急剧下降,影响电气设备的正常工作。
2、过负荷过负荷也称为过载,是指实际流过电气设备的电流超过其额电流,又超过了允许的过流时间。
从过流和时间两个量来说,都是相对量,必须具备过流和超时这两个条件,才称为过负荷。
过负荷常烧坏井下电气设备,造成过负荷的原因有:电源电压过低;重载起动;机械性堵转和单相断相。
其共同表现是:电气设备超允许时间的过电流,设备的温升超过其允许温升,有时会引起线路着火,甚至扩大为火灾或重大事故。
井下供电三大保护

井下三大保护井下过电流保护、保护接地和漏电保护是保证煤矿井下安全供电的三大保护。
它们相辅相成,缺一不可。
第一节漏电保护煤矿井下供电电网发生漏电,不仅会引起人身触电,而且还可能导致瓦斯,煤尘爆炸,甚至使电气雷管提前引爆。
此外,大量的漏电电流,还可能使绝缘材料发热着火,造成火灾及其它更为严重的事故。
因此,研究漏电的发生,掌握人身触电电流的计算方法,采取切实可行的漏电保护措施,对于井下安全供电具有重要意义。
一、漏电与触电的机理1.漏电故障的发生原因、种类和危害1)漏电故障的基本概念在供电系统中,当带电体对大地的绝缘阻抗降低到一定程度,使经该阻抗流入大地的电流增大到一定程度,该供电系统就发生了漏电故障.流入大地的电流,叫做漏电电流。
室外架空线路由于其离地面很高,线路是通过空气与大地绝缘的,其绝缘电阻较高,但沿线对地存在分布电容,所以正常时带电的架空导线上也有微小的泄漏电流经空气入地,只是其值很小,一般可以忽略不计,这种现象不能称做漏电故障。
电缆线路和各种电气设备与架空线路一样,正常运行时也有微小的泄漏电流入地,同样不算是发生了漏电故障。
当入地电流由于某种原因增大至数十毫安、数安培甚至数十安培时,线路或电气设备就已发生了漏电故障。
当入地电流增大至数百安培及以上时,它又超出了漏电故障的范围,进入了短路故障的范围。
漏电电流与正常的泄漏电流之间没有严格的界限,这种界限还与电网的结构、电压等级、电网中性点接地方式等因素有关。
漏电保护装置的动作值是这种界限的标志;同样,漏电电流与短路电流之间也没有严格的界限,而过流保护装置的动作值是这种界限的标志.对于目前国内井下广泛采用的变压器中性点绝缘(不接地)的低压供电系统,漏电故障的明确定义为;在中性点绝缘的低压供电系统中,发生单相接地(包括直接接地和经过过渡阻抗接地)或两相、三相对地的总绝缘阻抗下降到危险值的电气故障就叫做漏电故障,简称漏电.显然,在这种供电系统中,人身触及一相带电导体的情况,属于单相经过渡阻抗接地,对人来说是发生了触电,对整个供电系统来说就是发生了漏电。
井下电器三大保护

煤矿井下供电系统的过流保护、漏电保护、接地保护统称为煤矿井下电器的三大保护。
井下常见的漏电故障可分为集中性漏电和分散性漏电两类。
集中性漏电是指漏电发生在电网的某一处或某一点,其余部分的对地绝缘水平仍保持正常。
分散性漏电是指某条电缆或整个网络对地绝缘水平均匀下降或低于允许绝缘水平。
二、漏电保护方式漏电保护方式有漏电保护、选择性漏电保护、漏电闭锁。
l.漏电保护目前使用的漏电保护装置种类很多,有电子电路的,也有单片计算机控制的。
这里介绍的漏电保护,从原理上也叫附加直流电源漏电保护,如图4—1所示。
其工作原理是:漏电继电器用直流电进行绝缘监视,当人体触电时,绝缘电阻降低,其回路如下:电源接地极人体负荷线C相~SK(三相电抗器)LK(零序电抗器)Ω(欧姆表)ZJ(直流继电器)电源,ZJ吸合ZJ1闭合TQ(跳闸线圈)有电触点断开DW(馈电开关)断开一切断了供电回路。
如果绝缘阻值高于整定值时,直流监测电流小于ZJ的动作电流,馈电开关不会跳闸,正常供电。
2.选择性漏电保护选择性漏电保护大多利用零序电流方向保持原理,如图4—2所示,采用的主要检查元件是零序电流互感器。
零序电流互感器有一个环形铁芯,其上缠有二次绕组,环形铁芯套在电缆上,穿过铁芯电缆中的三根芯线就是它的一次绕组。
3.漏电闭锁漏电闭锁是指在开关合闸前对电网进行绝缘监测,当电网对地绝缘阻值低于闭锁值时开关不能合闸,起闭锁作用。
三、漏电保护装置的整定、维护及检修1.漏电保护装置的整定漏电继电器动作电阻值是以网路绝缘电阻为基准确定的,即当低压电网绝缘水平下降到对人触电有危险时,漏电继电器应动作,并切断电源。
因此,把这个对人身触电有危险的电网极限绝缘电阻值,定为漏电继电器的动作电阻值。
对漏电保护和漏电闭锁装置按表4—1整定。
第二节过电流保护一、过电流故障的危害及原因过电流是指流过电气设备和电缆的电流超过了额定值。
其故障有短路、过负荷和断相。
第三节保护接地漏电保护的侧重点是故障发生后的跳闸时间,一旦发生漏电或人身触电.应尽快切断电源,将故障存在的时间减少到最短。
煤矿井下电网的三大保护
煤矿井下电网的三大保护煤矿井下巷道狭窄,空气潮湿,工作条件恶劣,容易发生各种电气事故,因此需要采取必要的安全措施,设置可靠的保护装置,才能保证矿井生产的安全供电。
井下作业恶劣,很容易发生电气设备及电缆相间短路、漏电而引起电火灾、瓦斯和煤尘爆炸、触电等事故,为了保证煤矿井下供电的安全性,煤矿井下设置三大保护即过流保护,漏电保护和保护接地。
标签:过流;漏电;接地1 过流保护过电流是指实际通过电气设备或电缆的工作电流超过了额定电流值。
引起过流的主要原因有短路、过载和电动机单相运转等,因此过流保护通常包括短路保护、过负荷保护、断相保护等。
目前,煤矿井下低压电网使用的过流保护装置主要有熔断器、过流继电器、热继电器及综合保护装置等。
过流保护装置在保护中应满足四个要求:(1)选择性,只切除故障部分,而其余非故障部分则继续运行。
(2)可靠性,不拒动,不误动。
(3)动作迅速,在故障情况下保护装置迅速动作并切断其供电电源,以免事故进一步扩大。
(4)动作灵敏,保护装置应满足灵敏度的要求。
短路保护、过载保护和断相保护都属于过流保护,但是有本质的区别。
短路保护的动作时间要短,其动作值设定较大,过载保护和断相保护按反时限延时动作,动作时间与过载电流的大小有关,其动作值设定小于短路保护的动作值。
煤矿目前使用的过流保护装置中熔断器只能做电机短路保护,各种继电器必须与接触器或脱扣器配合实现过流保护,其中热继电器只适用于做过载保护和断相保护,而电子继电器具有功能完善、保护齐全、灵敏可靠等优点,特别是计算机技术的发展,用单片机集成电路取代分立电子元件电路使其优点更为突出,在矿井供电控制中得到广泛运用。
2 漏电保护煤矿井下巷道中空气潮湿,在此条件下运行的电气设备,虽然对其绝缘有一些特殊的要求,但漏电故障仍时有发生,特别是采区的低压电缆,还时常被脱落的岩石或煤块砸坏,更会发生漏电事故。
漏电事故不仅会使电气设备进一步损坏,形成短路,而且还可以导致人身触电和瓦斯煤尘爆炸危险,因此,井下设备必须装设作用于开关跳闸的漏电保护装置。
煤矿井下供电系统三大保护全
• 式中: IR----熔体额定电流,A。
•
IQC、∑Ie----含义同公式⑶。
•
1.8~2.5----当容量最大的电动机起动时,保证熔体不熔化
系数。对不经常启动和轻载起动的可取2.5;对于频繁起动和带负
载起动的则可取 1.8~2。
第一节 过电流保护
• ②对保护电缆支线的装置按公式⑽选择:
•
I
QC
第一节 过电流保护
• 3.断相 • 断相是指三相交流电动机的一相供电线路
或一相绕组断线。 • 造成断相原因有:熔断器有一相熔断;电
缆与电动机或开关的接线端子连接不牢而 松动脱落;电缆芯线一相断线;电动机定 子绕组与接线端子连接不牢而脱落等。
第一节 过电流保护
• 二、煤矿井下低压电网短路保护装置整定细则
• 对于电子式高压综合保护器,按电流互感器二次额定电
流值(5A)的1、2、3、4、5、6、7、8、9倍分级整定,
其整定值按公式(14)选择:
•
n≥ I QC K X I e
K Ib ge
.....(14)
• 式中: n----互感器二次额定电流(5A)的倍数。
• Ige----高压配电装置额定电流,A。
I R 1.8 ~ 2.5
........⑽
• 式中 :IQC 、IR 、1.8~2.5----含义同公式⑼。
• ③对保护照明负荷的装置,按公式(11)选择:
•
IR≈Ie ......(11)
• 式中:Ie ----照明负荷的额定电流,A。
• 选择熔体的额定电流应接近于计算值。
• 2)选用的熔体,应按公式(12)进行校验:
第一节 过电流保护
• (二)、电缆线路的短路保护
煤矿井下供电系统的三大保护共74页文档
第一节 过电流保护
2.过负荷
过负荷是指流过电气设备和电路的实际电流超过其额定 电流和允许过负荷时间。其危害是电气设备和电缆出现 过负荷后,温度将超过所用绝缘材料的最高允许温度, 损坏绝缘,如不及时切断电源,将会发展成漏电和短路 事故。过负荷是井下烧毁中、小型电动机的主要原因之 一。
引起电气设备和电缆过负荷的原因主要有以下几方面: 一是电气设备和电缆容量选择过小,致使正常工作时负 荷电流超过了额定电流;二是对生产机械的误操作,例 如在刮板输送机机尾压煤的情况下,连续点动起动,就 会在起动电流的连续冲击下引起电动机过热,甚至烧毁。 此外,电源电压过低或电动机机械性堵转都会引起电动 机过负荷。
第一节 过电流保护
3.断相 断相是指三相交流电动机的一相供电线路或一
相绕组断线。 造成断相原因有:熔断器有一相熔断;电缆与
电动机或开关的接线端子连接不牢而松动脱落; 电缆芯线一相断线;电动机定子绕组与接线端 子连接不牢而脱落等。
第一节 过电流保护
二、煤矿井下低压电网短路保护装置整定细则 (一)、一般规定 1、短路电流的计算方法 1)选择短路保护装置的整定电流时,需要计算两相短路电流值,
KX ----需用系数,取0.5~1。
第一节 过电流保护
②保护电缆支线的装置按公式⑷选择:
IZ≥IQC ......⑷
式中:IZ、IQC的含义同公式⑶。
目前某些隔爆磁力起动器装有限流热继电器,其热元件按公式⑸ 整定:
IZ≤Ie
⑸
式中:IZ、Ie的含义同公式⑶。
2)按第1条规定选择出来的整定值,还应用两相短路电流值进行 校验,应符合公式⑹的要求:
I
/I( 2 )
dZ
≥1.5
⑹
式中: ----被保护电缆干线或支线距变压器最远点
井下三大保护整定细则
井下三大保护整定细则井下三大保护整定细则是指电气保护系统中的过电流保护、接地保护和差动保护三个主要方面的整定细则。
这些细则的制定和实施,是为了确保电气设备的正常运行、防止事故发生、保护人身安全以及维护设备的持续性能。
下面将详细介绍这三个保护整定细则。
首先,过电流保护是保护电气设备免受过电流损害的一种保护措施。
它主要包括过载保护和短路保护两种形式。
过载保护是针对设备长时间工作超负荷而导致设备过热的情况,通常通过在回路中安装过载保护器来实现,其整定主要依据设备的额定电流和额定功率。
短路保护是针对设备遭受外界短路故障而产生的大电流冲击,通常通过在回路中安装熔断器或短路保护器来实现,其整定主要依据设备的短路电流和额定短路开断能力。
接下来,接地保护是为了防止电气设备出现接地故障而对人身和设备的保护措施。
接地保护主要包括人身接地保护和设备接地保护。
人身接地保护是为了在人体接触带电体时,及时切断电源以防止电流通过人体而导致触电事故的保护措施。
其整定主要依据接地电流和接地电阻。
设备接地保护是为了防止设备出现绝缘击穿等故障时,通过接地故障电流的流动将设备及人员保护起来的措施。
其整定主要依据设备的接地故障电流和接地电阻。
综上所述,井下三大保护整定细则是电气保护系统中的重要内容,它们分别是过电流保护、接地保护和差动保护。
通过合理的整定和调试,能有效保护电气设备的安全运行,避免事故的发生,保护人身和设备的安全。
因此,对于井下电气设备的设计、安装和运行维护人员来说,熟悉和掌握这些整定细则,对于确保电气系统的可靠性和安全性具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电压互感器 1-铁心 2- 一次绕组 3-二次绕组
上页 目录 下页
电压互感器的接线方式
上页 目录 下页
电压互感器的接线方式
上页 目录 下页
电压互感器运行中应注意事项
电压互感器的一、二次侧都必须装设熔断器进行短路保
1. 电压互感器工作时其二次侧不得短路 护。 2. 电压互感器的二次侧有一端必须接地
上页 目录 下页
第二节 井下电网过流保护
灵敏度按下式校验:
I KS 2 Ki I op.qb
(2) k
上页 目录 下页
第二节 井下电网过流保护
若高压电动机启动时,在过电流继电器两端并联有分 流器,则动作电流与灵敏度校验分别按下两式计算:
上页 目录 下页
五、电流互感器和电压互感器
(1)将一次回路的高电压和大电流变为二次回路的标准值,通 常额定二次电压为100V,额定二次电流为5A。可使测量仪表和 保护装置标准化,以及二次设备的绝缘水平可按低电压设计, 使结构轻巧,价格便宜。 (2)所有二次设备可用低电压、小电流的控制电缆连接,使屏 内布线简单、安装方便。同时,便于集中管理,可实现远方控 制和测量。 (3)二次回路不受一次回路的限制,可采用星形、三角形等接 法,因而接线灵活方便。同时,对二次设备进行维护、调换及 调整试验时不需要中断一次系统的运行,仅适当地改变二次接 线即可实现。 (4)使二次设备和工作人员与高电压部分隔离,且互感器二次 侧一端必须接地,以防止一次、二次绕组绝缘击穿时,一次侧 高压窜入二次侧,从而保证了设备和人身安全。
3. 电压互感器在连接时也应注意其端子的极性
4.电压互感器套管应清洁,没有碎裂或闪络痕迹;油位指示 应正常,没有渗漏油现象;内部无异常声响。如有不正常现 象,应退出运行,进行检修。
上页 目录 下页
第二节 井下电网过流保护
过电流:流过电气设备或线路的电流超过其额定值或允 许值。 引起过电流的原因:短路、过负荷、电动机单相运 转(断相)等。长时间的过电流运行,将导致电气设备与 井下电缆的迅速损坏,甚至引发严重的安全事故。 为此,对于电气设备和供电线路都必须设置相应的 过流保护,以便能及时地切断故障处的电源,防止事态 的恶化。
图 电流互感器 1-铁心 2- 一次绕
N1
组 3-二次绕组
上页 目录 下页
1、电流互感器的接线方式
三相星形接线和两相星形接线
上页 目录 下页
2、电流互感器的使用注意事项
(1) 电流互感器在工作时其二次侧不得开路 (2) 电流互感器的二次侧有一端必须接地
(3) 电流互感器在连接时,要注意其端子的极性
上页 目录 下页
户内高压LQJ-10型电流互感
器的外形图。 它有两个铁心和两个二次绕
组,分别为0.5级和3级,0.5级
用于测量,3级用于继电保护。
图 LQJ-10型电流互感器 1) 一次接线端子 2) 一次绕组(树脂浇注) 3) 二次接线端子 4) 铁心 5) 二次绕)
上页 目录 下页
第二节 井下电网过流保护
《煤矿安全规程》第421条规定:“井下高压电动机、
动力变压器的高压侧,应有短路、过负荷和欠电压释放
保护。井下由中央变电所、移动变电站或配电点引出的 馈电线上,应装设短路和过负荷保护装置,或至少装短 路保护装置。低压电动机应具备短路、过负荷、单相断 线的保护及远方控制装置。”
上页 目录 下页
灵敏性:
动作灵敏是指保护装置对故障的反应能力要强,对于短路保护, 即使是在保护范围末段发生最小两相短路时,它也能可靠的动作。 衡量短路保护装置这一能力的参数叫灵敏度,又称灵敏系数,用 Krel 表示。
Krel I
(2) k.min
/ Iop
I (2) k.min——保护范围末端最小两相短路电流,kA; Iop ——短路保护装置一次动作电流值,kA 对于主保护,Krel≥1.5;对于后备保护, Krel ≥ 1.2;熔断器保护, Krel ≥ 4~7。
上页 目录 下页
图是户内低压LMZJ1-0.5型 (500~800/5A)电流互感器 的外形图。它不含一次绕组, 穿过其铁心的母线就是其一次 绕组(相当于1匝)。它用于 500V及以下配电装置中。
图 LMZJ1-0.5型电流互感器 1) 铭牌 2) 一次母线穿孔 3) 铁心,外绕二次绕组,树脂浇注 4) 安装板 5) 二次接线端子
上页 目录 下页
二、对继电保护装置的基本要求
四性:可靠性、灵敏性、快速性、选择性 可靠性: 1)要求保护装置本身应具有较高的可靠性,不出问 题,随时处于可靠的准备动作状态; 2)要求保护性能可靠,即当本保护范围内发生过流 故障时,它一定动作(不拒动);当保护范围以外 发生过流故障时,它一定不动作(不误动)。 快速性:指在故障电流没有造成危害之前,将过流故障 切除。 选择性:保护装置只切除故障设备或线路的电源,使事 故停电的范围最小,有利于生产与安全。
上页 目录 下页
第二节 井下电网过流保护
(2)电子保护器的过流值的整定 ①馈电开关中电子短路保护可按过流继电器有关要求进 行整定和灵敏度校验。其整定范围为(3~10)IN;其过载 长延时保护整定值按实际电流整定,其整定范围为
(0.4~1) IN,IN为馈电开关额定电流。
②磁力起动器中电子保护器的过流整定值按下式选择:
上页 目录 下页
电压互感器
电压互感器的基本结构原理图如 图。 它的结构特点是:一次绕组匝数 很多,二次绕组匝数较少,相当于 降压变压器。其接线特点是:一次 绕组并联在一次电路中,而二次绕 组则并联仪表、继电器的电压线圈。 由于电压线圈的阻抗一般都很大, 所以电压互感器工作时其二次侧接 近于空载状态。二次绕组的额定电 压一般为100V。
上页 目录 下页
电流互感器结构特点是: 一次绕组匝数
I1
很少,导体相当粗,有的电流互感器没有一
次绕组,而是利用穿过其铁心的一次电路作 为一次绕组;二次绕组匝数很多,导体较细。 接线特点是:一次绕组串联在被测的一次 电路中,而二次绕组则与仪表、继电器等的 电流线圈串联,形成一个闭合回路。由于这 些电流线圈的阻抗很小,因此电流互感器工 作时其二次回路接近于短路状态。二次绕组 的额定电流一般为5A。
矿山电工学
主讲:董海波
上页 目录 下页
第三章
煤矿井下电网三大保护
煤矿井下电网的三大保护 过流保护 漏电保护 保护接地
上页 目录 下页
第一节
继电保护基础
一、继电保护:为避免故障和不正常运行造成的严重后果, 保证供电安全可靠,在电力系统中必须设置继电保护装置。 1)故障:相间短路、中性点直接接地系统的单相接地短路、 变压器和电动机、电力电容器等可能发生的匝间或层间短路。 危害:产生很大的短路电流,产生很大的热量和电动力, 造成设备损坏,影响其它设备的正常运行,甚至造成系统解 列。 2)不正常运行:过负荷、一相断线、小电流接地系统中的 单相接地等。长时间过负荷会加速设备绝缘老化,甚至损 坏设备,发展成为故障。一相断线会造成电机过负荷。小电 流接地系统的单相接地会造成非故障相电压升高,威胁绝缘, 井下发生容易造成人身触电及瓦斯煤尘爆炸事故。
(4) 电流互感器套管应清洁,没有碎裂、闪络痕迹, 内部没有放电和其它噪声。
上页 目录 下页
图是应用广泛的JDZJ-10型
单相三绕组、环氧树脂浇
注绝缘的户内电压互感器 外形图。
图 JDZJ-10型电压互感器 1- 一次接线端子 2-高压绝缘套管
3- 一、二次绕组,树脂浇注绝缘
4-铁心 5-二次接线端子
上页 目录 下页
继电保护装置
装置作用:能反映电力系统中设备或线路发生故障或 不正常运行状态,并能使断路器跳闸和发出信号的自动 装置。 基本任务: 1)当被保护线路或设备发生故障时,继电保护装置能自 动迅速准确有选择地通过断路器将故障元件断开,保证 系统其他部分正常运行。 2)当被保护线路或设备出现不正常运行时,保护装置能 发出信号,提醒工作人员采取有效措施,消除不正常运 行状态。 3)继电保护装置能够与系统其他自动化装置配合,缩短 事故停电时间,提高系统运行可靠性。
2.井下高压系统过流保护整定 电器不完全星形接法,流过继电器的电流等于电流互感 器二次侧电流,即接线系数为1,所以在整定公式中不
再出现接线系数符号。高压系统与低压系统相比由于是
采用的电流互感器的二次电流作为整定值,因此与低压 相比在整定计算中增加了一个电流互感器的比例系数。
上页 目录 下页
第二节 井下电网过流保护
上页 目录 下页
第二节 井下电网过流保护
1.井下低压系统过流保护整定 (1) 过电流继电器的整定计算 装有电磁型过电流继电器的DW系列自动开关与QC系列 的磁力起动器是按以下方法来整定的(均为速断)。 ①保护支线。保护装置的动作电流(整定电流)应躲开电动机 的启动电流
Iop.qb I st
Iop.qb——继电器的整定电流,A; Ist——电动机的启动电流,A。
上页 目录 下页
第二节 井下电网过流保护
②保护干线。保护装置的动作电流应躲开最大一台 电动机的启动电流与除最大一台电动机外,其余用 电设备的额定电流之和.
Iop.qb I st.max I N
Ist.max——被保护网路中最大一台电动机的启动电 流,A; Σ IN——被保护网路中除最大一台电动机外,其 余用电设备额定电流之和,A。
(1) 高压电动机保护 ①利用瞬时过电流继电器的保护。动作电流按躲过电动 机额定启动电流来整定,即
I op.qb
1.2 ~ 1.4 I st Ki
式中 Iop.qb——瞬时过流继电器动作电流,A(速断); Ist——电动机的额定启动电流,A。 1.2~1.4——可靠性系数; Ki——电流互感器变流比;
Iop.OL I N
上页 目录 下页