2019年连云港市连云区八年级上册期末数学试卷(有答案)[精品]
2019-2020学年江苏省连云港八年级上册期末数学试卷

2019-2020学年江苏省连云港八年级上册期末数学试卷题号一二三四总分得分第I卷(选择题)一、选择题(本大题共8小题,共24.0分)1.如图所示,图中不是轴对称图形的是().A. B.C. D.2.下列各点中,位于第四象限的点是()A. (3,4)B. (−3,4)C. (3,−4)D. (−3,−4)3.下列四组线段中,可以构成直角三角形的是()A. 4cm、5cm、6cmB. 1cm、√2cm、3cmC. 2cm、3cm、4cmD. 1.5cm、2cm、2.5cm4.如图,某同学把三角形玻璃打碎成三片,现在他要去配一块完全一样的,他想了一想,结果带第3片去.理由是根据三角形全等的判定方法中()A. SSSB. SASC. ASAD. AAS5.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A. 9cmB. 12cmC. 15cmD. 12cm或15cm6.一次函数y=3x+2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.下列说法中正确的有()①零是最小的实数;②无理数就是带根号的数;③不带根号的数是有理数;④无限小数不能化成分数;⑤无限不循环小数就是无理数.A. 0个B. 1个C. 2个D. 3个8.若点M(m,n)在一次函数y=−5x+b的图像上,且5m+n<3,则b的取值范围为()A. b>3B. b>−3C. b<3D. b<−3第II卷(非选择题)二、填空题(本大题共8小题,共24.0分)9.16的平方根是___________.10.若一次函数y=2x+b的图象经过A(−1,1),则b=______,该函数图象经过点B(1,______)和点C(______,0).11. 6.4358精确到0.01的近似数是______.12.已知点A(x1,y1)、点B(x2,y2)都在直线y=−4x+3上,且x1<x2,则y1与y2的大小关系是_______.13.如图,在平面直角坐标系中,函数y=2x−3和y=kx+b的图象交于点P(m,1),则关于x的不等式2x−3>kx+b的解集是______.14.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的表示的数为______.15.如图,在△ABC中,AB=AC=13,BC=10,D是AB的中点,过点D作DE⊥AC于点E,则DE的长是______.16. 如图,已知正方形ABCD ,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2016次变换后,正方形ABCD 的对角线交点M 的坐标变为_______________. 三、计算题(本大题共1小题,共8.0分)17. 已知一次函数图象经过点(3,5),(−4,−9)两点.(1)求一次函数解析式;(2)求该函数图象与坐标轴围成的三角形的面积.四、解答题(本大题共9小题,共94.0分)18. 计算或求x 的值:(1)√36−√643+√916(2)2(x −13)2=1819. 如图,在△ABC 中,AB =AC ,点D 在BC 边上,AE//BC ,AE =BD.求证:AD =CE .20.如图,在长度为1个单位的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线MN成轴对称的△A1B1C1;(不写画法)(2)请你判断△ABC的形状,并求出AC边上的高.21.如图,一架长为5米的梯子AB斜靠在与地面OM垂直的墙ON上,梯子底端距离墙ON有3米.(1)求梯子顶端与地面的距离OA的长.(2)若梯子顶点A下滑1米到C点,求梯子的底端向右滑到D的距离.22.如图所示,△ABC中,点D在BC边上,且BD=AD=AC.(1)用尺规作图作出线段DC的垂直平分线AE,交DC于E点.(保留作图痕迹不要求写出作法和证明)(2)若∠CAE=16°,求∠B的度数.23.某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价−购买原材料成本−水费)24.如图,已知AB=CD,∠B=∠C,AC和BD交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.25.26.甲、乙两地相距480km,一辆货车从甲地匀速驶往乙地,货车出发一段时间后,一辆汽车从乙地匀速驶往甲地,设货车行驶的时间为xh.线段OA表示货车离甲地的距离y1km与xh的函数图象;折线BCDE表示汽车距离甲地的距离y2km与x(ℎ)的函数图象.(1)求线段OA与线段CD所表示的函数表达式;(2)若OA与CD相交于点F,求点F的坐标,并解释点F的实际意义;(3)当x为何值时,两车相距100千米?26.综合与探究:如图在平面直角坐标系中,O为坐标原点,矩形OABC的顶点A(12,0)、C(0,9),将矩形OABC的一个角沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与x轴交于点D.(1)线段OB的长度为____________;(2)求直线BD所对应的函数表达式;(3)若点Q在线段BD上,在线段BC上是否存在点P,使以D、E、P、Q为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】【分析】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.结合轴对称图形的概念进行求解即可.【解答】解:A、是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项不符合题意;C、不是轴对称图形,本选项符合题意;D、是轴对称图形,本选项不符合题意;故选C.2.【答案】C【解析】【分析】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).根据各象限内点的坐标特征对各选项分析判断即可得解.【解答】解:A.(3,4)在第一象限;B.(−3,4)在第二象限;C. (3,−4)在第四象限;D.(−3,−4)在第三象限.故选C.3.【答案】D【解析】【分析】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A.52+42≠62,不能构成直角三角形,故不符合题意;B.12+(√2)2≠32,不能构成直角三角形,故不符合题意;C.22+32≠42,不能构成直角三角形,故不符合题意;D.1.52+22=2.52,能构成直角三角形,故符合题意.故选D.4.【答案】C【解析】【分析】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.根据全等三角形的判定定理即可得到结论.【解答】解:理由是根据三角形全等的判定方法中的ASA.故选:C.5.【答案】C【解析】解:(1)当3cm为腰时,因为3+3=6cm,不能构成三角形,故舍去;(2)当6cm为腰时,符合三角形三边关系,所以其周长=6+6+3=15cm.故选:C.题中没有指明哪个是底哪个是腰,则应该分两种情况进行分析,从而得到答案.本题考查了三角形三边关系与周长的求解.6.【答案】D【解析】解:∵k=3>0,b=2>0,∴直线y=3x+2经过一、二、三象限,不经过第四象限.故选:D.一次函数y=kx+b的图象经过第几象限,取决于k和b.当k>0,b>O时,图象过1,2,3象限,据此作答.本题考查一次函数的k>0,b>0的图象性质.一次函数的图象经过第几象限,取决于x的系数和常数项.7.【答案】B【解析】【分析】此题主要考查了实数、无理数、有理数的定义.①根据实数的定义即可判定;②根据无理数的定义即可判定;③根据无理数、有理数的定义即可判定;④根据分数和无限小数的关系即可判定;⑤根据无理数的概念即可解答.【解答】解:①没有最小的实数,故说法错误;②无理数就是无限不循环小数,其中有开方开不尽的数,故说法错误;③不带根号的数不一定是有理数,例π就不带根号但它是无理数,故说法错误;④无限循环小数能化成分数,故说法错误;⑤无限不循环小数是无理数,故说法正确;故选B.8.【答案】C【解析】【分析】本题考查了一次函数图象与系数的关系,根据一次函数图象上点满足函数解析式这一特点,结合5m+n<3,确定b<3是解题的关键.由点M的坐标结合一次函数图象上点的坐标特征,可得出−5m+b=n,再由5m+n<3,即可得出结论.【解答】解:∵点M(m,n)在一次函数y=−5x+b的图象上,∴−5m+b=n.∵5m+n<3,∴5m−5m+b<3,即b<3.故选C.9.【答案】±4【解析】【分析】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为±4.10.【答案】3;5;−32【解析】解:将A(−1,1)代入函数解析式,得1=−2+b,解得b=3,函数解析式为y=2x+3,当x=1时,y=2+3=5,,当y=0时,0=2x+3,x=−32.故答案为:3,5,−32根据待定系数法,可得函数解析式,根据自变量与函数值的对应关系,可得答案.本题考查了一次函数图象上点的坐标特征,利用图象上点的坐标满足函数解析式是解题关键.11.【答案】6.44【解析】解:6.4358精确到0.01的近似数为6.44.故答案为6.44.把千分位上的数字5进行四舍五入即可.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.12.【答案】y1>y2【解析】【试题解析】【分析】本题考查的是一次函数图象上点的坐标特点,一次函数的性质,属于基础题.先根据一次函数的解析式判断出函数的增减性,再由x1<x2即可得出结论.【解答】解:∵直线y=−4x+3中,k=−4<0,∴y随x的增大而减小.∵x1<x2,∴y1>y2.故答案为y1>y2.13.【答案】x>2【解析】解:把P(m,1)代入y=2x−3得2m−3=1,解得m=2,即P点(2,1),当x>2时,2x−3>kx+b,即不等式2x−3>kx+b的解集为x>2.故答案为x>2.先利用一次函数图象上点的坐标特征确定P点坐标,然后写出直线y=2x−3在直线y=kx+b上方所对应的自变量的范围即可.本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14.【答案】√10−1【解析】【分析】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边边长的平方.首先根据勾股定理计算出AC的长,进而得到AM的长,再根据A点表示−1,可得M点表示的数.【解答】解:AC=√AB2+CB2=√32+12=√10,则AM=√10,∵A点表示−1,∴M点表示√10−1,故答案为:√10−1.15.【答案】6013【解析】【分析】此题主要考查了等腰三角形的性质、勾股定理、三角形面积的求法等知识的综合应用能力.过A作BC的垂线,由勾股定理易求得此垂线的长,即可求出△ABC的面积;连接CD,由于AD=BD,则△ADC、△BCD等底同高,它们的面积相等,由此可得到△ACD的面积;进而可根据△ACD的面积求出DE的长.【解答】解:过A作AF⊥BC于F,连接CD.∵△ABC中,AB=AC=13,AF⊥BC,BC=5.∴BF=FC=12在Rt△ABF中,由勾股定理,得AF=√132−52=12,BC⋅AF=60,∴S△ABC=12∵AD=BD,S△ABC=30,∴S△ADC=S△BCD=12AC⋅DE=30,∵S△ADC=12∴DE =2×30AC =6013. 故答案为:6013. 16.【答案】(−2014,2)【解析】【分析】此题考查了点的坐标变化,对称与平移的性质.得到规律:第n 次变换后的对角线交点M 的对应点的坐标为:当n 为奇数时为(2−n,−2),当n 为偶数时为(2−n,2)是解此题的关键.首先由正方形ABCD ,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M 的对应点的坐标,即可得规律:第n 次变换后的点M 的对应点的为:当n 为奇数时为(2−n,−2),当n 为偶数时为(2−n,2),继而求得把正方形ABCD 连续经过2015次这样的变换得到正方形ABCD 的对角线交点M 的坐标.【解答】解:∵正方形ABCD ,顶点A(1,3)、B(1,1)、C(3,1),∴对角线交点M 的坐标为(2,2),根据题意得:第1次变换后的点M 的对应点的坐标为(2−1,−2),即(1,−2), 第2次变换后的点M 的对应点的坐标为:(2−2,2),即(0,2),第3次变换后的点M 的对应点的坐标为(2−3,−2),即(−1,−2),第n 次变换后的点M 的对应点的为:当n 为奇数时为(2−n,−2),当n 为偶数时为(2−n,2),∴连续经过2016次变换后,正方形ABCD 的对角线交点M 的坐标变为(−2014,2), 故答案为(−2014,2).17.【答案】解:(1)设一次函数解析式为y =kx +b ,把(3,5),(−4,−9)代入得:{3k +b =5−4k +b =−9,解得:{k =2b =−1, 则一次函数解析式为y =2x −1;(2)对于y =2x −1,令x =0,得到y =−1,令y =0,得到x =12,∴函数图象与两坐标轴交点坐标为(0,−1),(12,0),则函数图象与坐标轴围成的三角形面积S =12×1×12=14.【解析】本题考查了待定系数法求一次函数解析式,以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.(1)设一次函数解析式为y =kx +b ,把已知两点坐标代入求出k 与b 的值,即可确定出解析式;(2)分别令x 与y 为0求出y 与x 的值,确定出一次函数与坐标轴的交点坐标,确定出函数图象与坐标轴围成三角形的面积即可.18.【答案】解:(1)√36−√643+√916=6−4+34=234;(2)2(x −13)2=18 x −13=±√9,即x −13=±3,解得:x 1=103,x 2=−83.【解析】(1)直接利用立方根以及算术平方根的性质化简各数得出答案;(2)直接利用平方根的定义化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.【答案】 证明:∵ AB =AC ,∴∠B =∠ACB ,∵AE//BC,∴∠EAC=∠ACB,∴∠EAC=∠B,在△ABD和△CAE中,{AB=CA∠ABC=BD=AE∠CAE,∴△ABD≌△CAE(SAS),∴AD=CE.【解析】本题考查全等三角形的判定和性质、平行线的性质.等腰三角形的性质等知识,解题的关键是正确寻找全等的条件,属于基础题中考常考题型.欲证明AD=CE,只要证明△ABD≌△CAE即可.20.【答案】解:(1)△A1B1C1如图所示.(2)∵AB=√12+42=√17,BC=√12+42=√17,AC=√32+52=√34,∴AB2+BC2=AC2,AB=BC,∴△ABC是等腰直角三角形.设AC边上的高为h,则有:12⋅√17⋅√17=12√34⋅ℎ,∴ℎ=√342.∴AC边上的高为√34.2【解析】本题考查作图−轴对称变换,勾股定理,勾股定理的逆定理、三角形的面积公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)利用勾股定理以及勾股定理的逆定理判断出三角形ABC的形状,利用三角形的面积公式求出AC边上的高;21.【答案】解:(1)AO=√52−32=4(米);(2)OD=√52−(4−1)2=4(米),BD=OD−OB=4−3=1(米).【解析】能够运用数学知识解决实际生活中的问题,考查了勾股定理的应用.(1)已知直角三角形的斜边和一条直角边,可以运用勾股定理计算另一条直角边;(2)在直角三角形OCD中,已知斜边仍然是5,OC=4−1=3(米),再根据勾股定理求得OD的长即可.22.【答案】解:(1)如图所示,线段AE即为所求.(2)∵AD=AC,AE垂直平分DC,∴∠DAC=2∠CAE=32°,∴∠ADC=∠ACD=74°,∵AD=BD,∴∠B=1∠ADC=37°.2【解析】本题主要考查作图−复杂作图,解题的关键是掌握等腰三角形的三线合一的性质与三角形的内角和定理、外角的性质等知识点.(1)由AD=AC,利用等腰三角形三线合一的性质作∠DAC平分线即可得;(2)先由等腰三角形三线合一的性质得∠DAC=32°,利用三角形内角和定理得出∠ADC 度数,继而根据AD=BD可得答案.23.【答案】解:设甲车间用x箱原材料生产A产品,则乙车间用(60−x)箱原材料生产A产品,由题意得:4x+2(60−x)≤200,解得:x≤40,w=30[12x+10(60−x)]−80×60−5[4x+2(60−x)]=50x+12600,∵50>0,∴w随x的增大而增大,∴当x=40时,w取得最大值,为14600元,答:甲车间用40箱原材料生产A产品,乙车间用20箱原材料生产A产品,使这次生产所能获取的利润w最大,最大利润是14600元.【解析】本题考查了一次函数的应用,一元一次不等式的应用,解决本题的关键是根据题意列出关系式,利用一次函数的性质解决问题.设甲车间用x箱原材料生产A产品,则乙车间用(60−x)箱原材料生产A产品,根据题意列出不等式,确定x的取值范围,从而得到w=50x+12600,根据一次函数的性质即可解答.24.【答案】证明:(1)在△AOB和△DOC中,∴△AOB≌△DOC(AAS);解:(2)∵△AOB≌△DOC,∴AO=DO.∵E是AD的中点,∴AE=DE.在△AOE和△DOE中,{AO=DO, AE=DE, OE=OE,∴△AOE≌△DOE(SSS).∴∠AEO=∠DEO.∵∠AEO +∠DEO =180°,∴∠AEO =∠DEO =90°.【解析】此题考查了对全等三角形的判定和性质的掌握,要熟练掌握全等三角形的判定和性质是解题的关键,并能灵活运用.(1)由已知条件可以利用AAS 来判定其全等;(2)根据△AOB≌△DOC 得到AO =DO ,再由E 是AD 的中点,得到AE =DE ,证明△AOE≌△DOE ,得到∠AEO =∠DEO ,又因为∠AEO +∠DEO =180°,即可得到∠AEO =∠DEO =90°.25.【答案】(1)线段OA 对应的函数关系式为y 1=80x(0≤x ≤6),线段CD 对应的函数关系式为y 2=−120x +624(1.2≤x ≤5.2);(2)点F 的坐标为(3.12,249.6),点F 的实际意义是:在货车出发3.21小时时,距离甲地249.6千米,此时与汽车相遇;(3)x 为2.62或x =3.62时,两车相距100千米.【解析】【分析】(1)根据函数图象中的数据可以求得相应的函数解析式;(2)根据(1)中的函数解析式可以求得点F 的坐标,并写出点F 表示的实际意义;(3)根据题意可以得到相应的方程,从而可以解答本题.【详解】(1)设线段OA 对应的函数关系式为y 1=kx ,6k =480,得k =80,即线段OA 对应的函数关系式为y 1=80x(0≤x ≤6),设线段CD 对应的函数关系式为y 2=ax +b ,{5.2a +b =01.2a+b=480,得{b =624a=−120,即线段CD对应的函数关系式为y2=−120x+624(1.2≤x≤5.2);y=80x,(2){y=−120x+624x=3.12,解得,{y=249.6∴点F的坐标为(3.12,249.6),点F的实际意义是:在货车出发3.21小时时,距离甲地249.6千米,此时与汽车相遇;(3)由题意可得,|80x−(−120x+624)|=100,解得,x1=2.62,x2=3.62,答:x为2.62或x=3.62时,两车相距100千.【点睛】考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.26.【答案】解:(1)15;(2)如图,设AD=x,则OD=OA=AD=12−x,根据轴对称的性质,DE=x,BE=AB=9,又OB=15,∴OE=OB−BE=15−9=6,在Rt△OED中,OE2+DE2=OD2,即62+x 2=(12−x)2,解得 x =92,∴OD =OA −AD =12−92=152,∴点D(152,0),设直线BD 所对应的函数表达式为:y =kx +b(k ≠0)则{12k +b =9152k +b =0,解得{k =2b =−15, ∴直线BD 所对应的函数表达式为:y =2x −15;(3)过点E 作EP//BD 交BC 于点P ,过点P 作PQ//DE 交BD 于点Q ,则四边形DEPQ 是平行四边形,再过点E 作EF ⊥OD 于点F ,由12·OE ·DE =12·DO ·EF ,得EF =6×92152=185,即点E 的纵坐标为185, 又点E 在直线OB :y =34x 上,∴185=34x ,解得x =245, ∴E(245,185), 由于PE//BD ,所以可设直线PE :y =2x +n ,∵E(245,185),在直线EP 上 ∴185=2×245+n ,解得 n =−6,∴直线EP :y =2x −6,令y =9,则9=2x −6,解得x =152,∴P(152,9).【解析】本题考查一次函数综合题、矩形的性质、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握待定系数法,学会构建一次函数解决问题,属于中考压轴题.(1)根据勾股定理即可解决问题;(2)设AD=x,则OD=OA=AD=12−x,根据轴对称的性质,DE=x,BE=AB=9,又OB=15,可得OE=OB−BE=15−9=6,在Rt△OED中,根据OE2+DE2=OD2,构建方程即可解决问题;(3)过点E作EP//BD交BC于点P,过点P作PQ//DE交BD于点Q,则四边形DEPQ 是平行四边形,再过点E作EF⊥OD于点F,想办法求出最小PE的解析式即可解决问题.【解答】解:(1)在Rt△ABC中,∵OA=12,AB=9,∴OB=√OA2+AB2=√92+122=15,故答案为15;(2)见答案;(3)见答案.。
江苏省连云港市八年级上学期期末数学试卷 (解析版)

C.精确到千分位 D.精确到千位
4.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;
③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中能使△ABC≌△DEF 的条
件有( )
A.1 组
B.2 组
C.3 组
D.4 组
5.64 的立方根是( )
12.若等腰三角形的两边长为10cm, 5cm ,则周长为__________ cm .
13.如图,在 Rt△ABO 中,∠OBA=90°,AB=OB,点 C 在边 AB 上,且 C(6,4),点 D 为 OB 的中点,点 P 为边 OA 上的动点,当∠APC=∠DPO 时,点 P 的坐标为 ____.
A.4
B.±4
C.8
D.±8
6.如图,一次函数 y kx b(k 0) 的图象过点 (0, 2) ,则不等式 kx b 2 0 的解集是
()
A. x 0
B. x 0
C. x 2
D. x 2
7.在平面直角坐标系的第二象限内有一点 M ,点 M 到 x 轴的距离为 3,到 y 轴的距离为
4,则点 M 的坐标是( )
A. (3, 4)
B. (4, 3)
C. (4,3)
D. (3, 4)
8.如图,正方形 ABCD 的边长为 10,AG=CH=8,BG=DH=6,连接 GH,则线段 GH 的长为
()
A.2.8
B. 2 2
C.2.4
D.3.5
9.如图,已知 AB AD ,下列条件中,不能作为判定 ABC ≌ ADC 条件的是
14.如图,在 Rt△ABC 中,∠C=90°,AC=3,BC=5,分别以点 A、B 为圆心,大于 1 AB 的 2
连云港市八年级上第一学期期末数学试卷

连云港市八年级上第一学期期末数学试卷 一、选择题 1.下列图书馆的馆徽不是..轴对称图形的是( ) A . B . C . D .2.下列长度的三条线段能组成直角三角形的是( )A .3,4,4B .3,4,5C .3,4,6D .3,4,83.对函数31y x =-,下列说法正确的是( )A .它的图象过点(3,1)-B .y 值随着x 值增大而减小C .它的图象经过第二象限D .它的图象与y 轴交于负半轴 4.分式221x x -+的值为0,则x 的值为( ) A .0 B .2 C .﹣2 D .125.以下列各组线段为边作三角形,不能构成直角三角形的是( )A .1,2,5B .3,4,5C .3,6,9D .23,7,616.下列图形是轴对称图形的是( )A .B .C .D .7.如图,在△ABC 中,分别以点A ,B 为圆心,大于12AB 长为半径画弧,两弧相交于点E ,F ,连接AE ,BE ,作直线EF 交AB 于点M ,连接CM ,则下列判断不正确...的是A .AM =BMB .AE =BEC .EF ⊥ABD .AB =2CM8.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣1 9.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .22C .2.4D .3.5 10.若2x -在实数范围内有意义,则x 的取值范围( ) A .x≥2 B .x≤2C .x >2D .x <2 二、填空题11.如图,在平面直角坐标系中,长方形OABC 的顶点O 在坐标原点,顶点A 、C 分别在x 、y 轴的正半轴上:OA =3,OC =4,D 为OC 边的中点,E 是OA 边上的一个动点,当△BDE 的周长最小时,E 点坐标为_____.12.将函数y=3x+1的图象沿y 轴向下平移2个单位长度,所得直线的函数表达式为_____.13.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.14.如图,在ABC 中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,且50A ∠=︒,则EBC ∠的度数是__________.15.如图,在ABC ∆中,AB AC =,4BC =,其面积为12,AC 的垂直平分线EF 分别交AB ,AC 边于点E ,F .若点D 为BC 边的中点,点P 为线段EF 上的一个动点,则PCD ∆周长的最小值为______.16.等腰三角形的顶角为76°,则底角等于__________.17.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.18.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______19.平行四边形的周长是20,两条对角线相交于O ,△AOB 的周长比△BOC 的周长大2,则AB 的长为_____.20.如图,在△ABC 中,AB = AC ,∠BAC = 120º,AD ⊥BC ,则∠BAD = _____°.三、解答题21.如图,在边长为12cm 的正方形ABCD 中,M 是AD 边的中点,点P 从点A 出发,在正方形边上沿A B C D →→→的方向以大于1 cm/s 的速度匀速移动,点Q 从点D 出发,在CD 边上沿D C →方向以1 cm/s 的速度匀速移动,P 、Q 两点同时出发,当点P 、Q 相遇时即停止移动.设点P 移动的时间为t(s),正方形ABCD 与PMQ ∠的内部重叠部分面积为y (cm 2).已知点P 移动到点B 处,y 的值为96(即此时正方形ABCD 与PMQ ∠的内部重叠部分面积为96cm 2).(1)求点P 的速度:(2)求y 与t 的函数关系式,并直接写出的取值范围.22.如图,在平面直角坐标系中,点B 坐标为()6,0-,点A 是y 轴正半轴上一点,且10AB =,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为()0m ,.(1)点A 的坐标为___________;(2)当ABP △是等腰三角形时,求P 点的坐标;(3)如图2,过点P 作PE AB ⊥交线段AB 于点E ,连接OE ,若点A 关于直线OE 的对称点为A ',当点A '恰好落在直线PE 上时,BE =_____________.(直接写出答案)23.如图1,已知ED 垂直平分BC ,垂足为D ,AB 与EK 相交于点F ,连接CF .(1)求证:∠AFE=∠CFD;(2)如图2.在△GMN中,P为MN上的任意一点.在GN边上求作点Q,使得∠GQM=∠PQN,保留作图痕迹,写出作法并作简要证明.24.阅读下列材料:∵4<5<9,即2<5<3∴5的整数部分为2,小数部分为5﹣2请根据材料提示,进行解答:(1)7的整数部分是.(2)7的小数部分为m,11的整数部分为n,求m+n﹣7的值.25.如图,正比例函数y=34x与一次函数y=ax+7的图象相交于点P(4,n),过点A(2,0)作x轴的垂线,交一次函数的图象于点B,连接OB.(1)求a值;(2)求△OBP的面积;(3)在坐标轴的正半轴上存在点Q,使△POQ是以OP为腰的等腰三角形,请直接写出Q 点的坐标.四、压轴题26.在平面直角坐标系中,点A、B在坐标轴上,其中A(0,a)、B(b,0)满足:222110a b a b--+-=.(1)直接写出A 、B 两点的坐标;(2)将线段AB平移到CD,点A的对应点为C(-3,m),如图(1)所示.若SΔABC=16,求点D 的坐标;(3)平移线段AB到CD,若点C、D也在坐标轴上,如图(2)所示,P为线段AB上一动点(不与A、B重合),连接OP,PE平分∠OPB,交x轴于点M,且满足∠BCE=2∠ECD.求证:∠BCD=3(∠CEP-∠OPE).27.如图,直线l 1:y 1=﹣x +2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=12x +b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式;②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.28.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).29.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫ ⎪⎝⎭都是“白马有理数对”. (1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________; (2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)30.如图,以ABC 的边AB 和AC ,向外作等腰直角三角形ABE △和ACF ,连接 EF ,AD 是ABC 的高,延长DA 交EF 于点G ,过点F 作DG 的垂线交DG 于点H .(1)求证:FHA ADC ≌△△;(2)求证:点G 是EF 的中点.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A 、是轴对称图形,不符合题意;B 、是轴对称图形,不符合题意;C 、是轴对称图形,不符合题意;D 、因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不是轴对称图形,符合题意;故选:D .【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B解析:B【解析】【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误;B 、∵2223+4=5,∴三条线段能组成直角三角形,正确;C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误;D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误;故选:B .【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.3.D解析:D【解析】【分析】根据一次函数的性质,对每一项进行判断筛选即可.【详解】A 将x=3代入31y x =-得:3×3-1=8,A 选项错;B .一次函数k >0,y 值随着x 值增大而增大,B 选项错;C .一次函数k >0,y 值随着x 值增大而增大,当x=0时,y=-1,故此函数的图像经过一、三、四象限,C 选项错;D .当x=0时,y=-1,一次函数的图象与y 轴交于负半轴,D 项正确.【点睛】本题考查了一次函数的性质,解决本题的关键是正确理解题意,熟练掌握一次函数的性质. 4.B解析:B【解析】【分析】直接利用分式的值为零,则分子为零进而得出答案.【详解】解:∵分式22 1x x -+的值为0,∴x﹣2=0,解得:x=2.故选:B.【点睛】此题主要考查了分式为零的条件,正确把握分式为零的条件是解题关键.5.C解析:C【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A、∵12+222,故A选项能构成直角三角形;B、∵32+42=52,故B选项能构成直角三角形;C、∵32+62≠92,故C选项不能构成直角三角形;D、∵72+()22,故D选项能构成直角三角形.故选:C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.B解析:B【解析】【分析】根据轴对称图形的概念,一个图形沿一条直线对折后,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形. 据此进行选择即可.【详解】根据轴对称图形定义,图形A、C、D中不是轴对称图形,而B是轴对称图形.【点睛】本题主要考查了轴对称图形的辨识,解答本题的关键是熟练掌握轴对称图形的概念.7.D解析:D【解析】【分析】由作图可知EF 是AB 的垂直平分线,据此对各项进行分析可得答案.【详解】解:由作图可知EF 是AB 的垂直平分线,所以AM =BM ,AE =BE ,EF ⊥AB ,即选项A,B,C 均正确,CM 是AB 边上的中线,AB =2CM 错误.故选:D【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.8.D解析:D【解析】因为函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-可求出1m =-,所以点A (-1,2),然后把点A 代入23y ax =+解得1a =, 不等式23x ax ->+, 可化为23x x ->+,解不等式可得:1x <-,故选D.9.B解析:B【解析】【分析】延长BG 交CH 于点E ,根据正方形的性质证明△ABG ≌△CDH ≌△BCE ,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH 的长.【详解】解:如图,延长BG 交CH 于点E ,∵四边形ABCD 是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,GH===故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.10.A解析:A【解析】【分析】二次根式有意义,被开方数为非负数,即x-2≥0,解不等式求x的取值范围.【详解】∴x−2≥0,解得x≥2.故答案选A.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.二、填空题11.(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD解析:(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD'的解析式,然后求直线BD'与x轴的交点即得答案.【详解】解:如图,作D关于x轴的对称点D′,连接D′B交x轴于点E,连接DE,则DE= D′E,此时△BDE的周长最小,∵D为CO的中点,∴CD=OD=2,∵D和D′关于x轴对称,∴D′(0,﹣2),由题意知:点B(3,4),∴设直线BD'的解析式为y=kx+b,把B(3,4),D′(0,﹣2)代入解析式,得:342k bb+=⎧⎨=-⎩,解得,22kb=⎧⎨=-⎩,∴直线BD'的解析式为y=2x﹣2,当y=0时,x=1,故E点坐标为(1,0).故答案为:(1,0).【点睛】本题考查的是利用待定系数法求直线的解析式和两线段之和最小问题,属于常考题型,熟练掌握求解的方法是解题关键.12.y=3x-1∵y=3x+1的图象沿y 轴向下平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x ﹣1.故答案为y=3x ﹣1.解析:y=3x-1【解析】∵y=3x +1的图象沿y 轴向下平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x ﹣1.故答案为y=3x ﹣1.13..【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k1x+b1与y =k2x+b2的图象的交点坐标为(2,1),∴关于x ,y 的方程组的解是.解析:21x y =⎧⎨=⎩. 【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 14.15°【解析】【分析】根据等边对等角和三角形的内角和定理,即可求出∠ABC,然后根据垂直平分线的性质和等边对等角即可求出∠EBA,从而求出的度数.【详解】∴∠ABC=∠ACB=(解析:15°【解析】【分析】根据等边对等角和三角形的内角和定理,即可求出∠ABC ,然后根据垂直平分线的性质和等边对等角即可求出∠EBA ,从而求出EBC ∠的度数.【详解】解:∵AB AC =,50A ∠=︒∴∠ABC=∠ACB=12(180°-∠A )=65° ∵ED 垂直平分线段AB∴EA=EB ∴∠EBA=∠A=50°∴EBC ∠=∠ABC -∠EBA=15°故答案为:15°.【点睛】此题考查的是等腰三角形的性质、垂直平分线的性质和三角形的内角和,掌握等边对等角、垂直平分线的性质和三角形的内角和定理是解决此题的关键.15.8【解析】【分析】连接AP ,AD ,根据等腰三角形三线合一可知AD 为△ABC 的高线,求出AD 的长度.根据垂直平分线的性质AP=PC,由两点之间线段最短可知AP+PD 最短AD,由此可求周长的最小值解析:8【解析】【分析】连接AP ,AD ,根据等腰三角形三线合一可知AD 为△ABC 的高线,求出AD 的长度.根据垂直平分线的性质AP=PC,由两点之间线段最短可知AP+PD 最短AD,由此可求PCD ∆周长的最小值【详解】解:如下图,连接AP ,AD.∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,DC=122BC =, 1141222ABC S BC AD AD ∴=⋅=⨯⨯=, 解得AD=6, ∵EF 是线段AC 的垂直平分线,∴AP=PC,∴DP+PC=DP+AP≥AD=6.∴PCD ∆周长=DP+PC+DC,当DP+PC=6时周长最短,最短为6+2=8.故答案为:8.【点睛】本题考查等腰三角形的性质,垂直平分线的性质,两点之间线段最短.能根据垂直平分线的性质和两点之间线段最短求得DP+PC 的最小值是解决此题的关键.16.52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:,故答案为:52°.【点睛】本题考查了等腰三角形性解析:52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:11=104=5222⨯︒︒⨯︒︒(180-76), 故答案为:52°.【点睛】 本题考查了等腰三角形性质,以及三角形内角和定理,解题的关键是掌握等腰三角形等边对等角计算角度.17.【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析:1y x =+【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k 的值不变.18.—1【解析】【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得E 点表示的数.【详解】∵AD 长为2,AB 长为1,∴AC=,∵A 点表示-1,∴E 点表示的数为:1【解析】【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得E 点表示的数.【详解】∵AD 长为2,AB 长为1,∴=∵A 点表示-1,∴E ,【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.19.6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-解析:6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-OC-BC=2,∵ABCD是平行四边形,∴OA=OC,∴AB-BC=2,∵平行四边形ABCD的周长是20,∴AB+BC=10,∴AB=6.故答案为:6.【点睛】此题主要考查学生对平行四边形的性质的理解及运用,熟记性质是解题的关键.20.60°【解析】【分析】根据等腰三角形三线合一的性质得:AD平分∠BAC,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC,AD⊥BC,∴AD平分∠BAC,∴∠BAD=∠BA解析:60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC ,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC ,AD ⊥BC ,∴AD 平分∠BAC ,∴∠BAD=12∠BAC , ∵∠BAC=120°, ∴∠BAD=12×120°=60°, 故答案为:60°.【点睛】 本题考查的知识点是等腰三角形的性质,解题关键是熟记等腰三角形三线合一的性质.三、解答题21.(1)3 cm/s ;(2)()()()144120418021481081289t t y t t t t ⎧-≤≤⎪=-<≤⎨⎪-<≤⎩. 【解析】【分析】(1)由于P 的速度比Q 的速度大,因此P 到达B 点时,Q 在DC 边上,此时重叠部分面积为正方形的面积减去△DQM 和△ABM 的面积,求解即可;(2)分三种情况讨论:当点P 在边AB 上时,当点P 在边BC 上时,当点P 在边CD 上时,根据题意列函数关系式即可.【详解】解:(1)由已知得,AB=AD=CD=BC=12,∵M 是AD 边的中点,∴AM=MD=6,由题意可知当P 到达B 点时Q 在DC 边上,DQ=t ,∴ABM DMQ ABCD y S S S =--△△正方形 , ∴11961212612622t =⨯-⨯⨯-⨯⨯, 解得,t=4,∴ P 点的速度为12÷4=3 cm/s ;(2)当点P 在边AB 上时,04t ≤≤,APM DMQ ABCD y S S S =--△△正方形,111212636=144-1222y t t t =⨯-⨯⨯-⨯⨯ 当点P 在边BC 上时,48t <≤,DMQ ABCD AMPB y S S S =--△正方形梯形()1112123126126=180-2122y t t t =⨯-⨯-+⨯-⨯⨯ 当点P 在边CD 上时,8t <≤9,MQ y S =△P ,()112336=108-122y t t t =⨯⨯--⨯; 综上所述,y 与t 的函数关系式为()()()144120418021481081289t t y t t t t ⎧-≤≤⎪=-<≤⎨⎪-<≤⎩. 【点睛】本题考查了四边形的动点问题,注意分类讨论是解题的关键.22.(1)()0,8;(2)()4,0或()6,0或7,03⎛⎫ ⎪⎝⎭;(3)425 【解析】【分析】(1)根据勾股定理可以求出AO 的长,则可得出A 的坐标; (2)分三种情况讨论等腰三角形的情况,得出点P 的坐标; (3)根据PE AB ⊥,点A '在直线PE 上,得到EAG OPG ,利用点A ,A '关于直线OE 对称点,根据对称性,可证'OPG EAO ,可得'8OP OA ,82AP , 设BE x =,则有6AEx ,根据勾股定理,有:22222BP BE EP AP AE 解之即可.【详解】解:(1)∵点B 坐标为6,0,点A 是y 轴正半轴上一点,且10AB =, ∴ABO 是直角三角形,根据勾股定理有: 22221068AO AB BO ,∴点A 的坐标为()0,8;(2)∵ABP △是等腰三角形,当BP AB 时,如图一所示:OP BP BO,∴1064∴P点的坐标是()4,0;=时,如图二所示:当AP ABOP BO∴6∴P点的坐标是()6,0;=时,如图三所示:当AP BP设OP x =,则有6AP x∴根据勾股定理有:222OP AO AP += 即:22286x x解之得:73x = ∴P 点的坐标是7,03; (3)当ABP △是钝角三角形时,点A '不存在;当ABP △是锐角三角形时,如图四示:连接'OA ,∵PE AB ⊥,点A '在直线PE 上,∴AEG △和GOP 是直角三角形,EGA OGP ∴EAG OPG ,∵点A ,A '关于直线OE 对称点, 根据对称性,有'8OA OA ,'EAEA ∴'FAO FAO,'FAE FAE ∴'EAG EAO则有:'OPG EAO ∴'AOP 是等腰三角形,则有'8OP OA , ∴22228882AP AO OP ,设BE x ,则有6AEx ,根据勾股定理,有: 22222BP BE EP AP AE 即:2222688210x x 解之得:425BEx 【点睛】 本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.23.(1)证明见解析;(2)答案见解析.【解析】【分析】(1)根据垂直平分线的性质证明三角形CFB 是等腰三角形,进而证明∠AFE =∠CFD ; (2)作点P 关于GN 的对称点P ′,连接P ′M 交GN 于点Q ,结合(1)即可证明∠GQM =∠PQN .【详解】(1)∵ED 垂直平分BC ,∴FC =FB ,∴△FCB 是等腰三角形.∵FD ⊥BC ,由等腰三角形三线合一可知:FD 是∠CFB 的角平分线,∴∠CFD =∠BFD .∵∠AFE =∠BFD ,∴∠AFE =∠CFD .(2)作点P 关于GN 的对称点P ',连接P 'M 交GN 于点Q ,点Q 即为所求.∵QP =QP ',∴△QPP '是等腰三角形.∵QN ⊥PP ',∴QN 是∠PQP '的角平分线,∴∠PQN =∠P 'QN .∵∠GQM =∠P 'QN ,∴∠GQM =∠PQN .【点睛】本题考查了作图−复杂作图,解决本题的关键是掌握线段垂直平分线的性质.24.(1)2;(2)1【解析】【分析】(1<(2<<,进而得出答案.【详解】解:(1<∴23<<,2.故答案为:2;(2)由(1)可得出,2m =,<,∴n =3,∴231m n +-=+=.【点睛】本题考查的知识点是估算无理数的大小,估算无理数的大小要用逼近法,同时也考查了平方根.25.(1)a=-1;(2)7;(3)点Q 的坐标为(5,0)或(8,0)或(0,5)或(0,6)【解析】【分析】(1)先由点P 在正比例函数图象上求得n 的值,再把点P 坐标代入一次函数的解析式即可求出结果;(2)易求点B 坐标,设直线AB 与OP 交于点C ,如图,则点C 坐标可得,然后利用△OBP 的面积=S △BCO +S △BCP 代入相关数据计算即可求出结果;(3)先根据勾股定理求出OP 的长,再分两种情况:当OP=OQ 时,以O 为圆心,OP 为半径作圆分别交y 轴和x 轴的正半轴于点Q 1、Q 2,如图2,则点Q 1、Q 2即为所求,然后利用等腰三角形的定义即可求出结果;当PO=PQ 时,以P 为圆心,OP 为半径作圆分别交y 轴和x 轴的正半轴于点Q 4、Q 3,如图3,则点Q 4、Q 3也为所求,然后利用等腰三角形的性质即可求得结果.【详解】解:(1)把点P(4,n)代入y=34x,得:n=34×4=3,∴P(4,3),把P(4,3)代入y=ax+7得,3=4a+7,∴a=﹣1;(2)∵A(2,0),AB⊥x轴,∴B点的横坐标为2,∵点B在y=﹣x+7上,∴B(2,5),设直线AB与OP交于点C,如图1,当x=2时,33242y=⨯=,∴C(2,32),∴△OBP的面积=S△BCO+S△BCP=12⨯2×(5﹣32)+12⨯(4﹣2)×(5﹣32)=7;(3)过点P作PD⊥x轴于点D,∵P(4,3),∴OD=4,PD=3,∴22345OP=+=,当OP=OQ时,以O为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q1、Q2,如图2,则点Q1、Q2即为所求,且Q2(5,0)、Q1(0,5);当PO=PQ时,以P为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q4、Q3,如图3,则点Q4、Q3也为所求,由于PO=PQ 3,∴DQ 3=DO =4,∴Q 3(8,0),过点P 作PF ⊥y 轴于点F ,同理可得:FQ 4=FO =3,∴Q 4(0,6).综上所述,在坐标轴的正半轴上存在点Q ,使△POQ 是以OP 为腰的等腰三角形,点Q 的坐标为(5,0)或(8,0)或(0,5)或(0,6).【点睛】本题考查了一次函数图象上点的坐标特征、勾股定理、三角形的面积和等腰三角形的性质等知识,属于常考题型,熟练掌握一次函数的相关知识和等腰三角形的性质是解题的关键.四、压轴题26.(1)A (0,3),B (4,0);(2)D (1,-265);(3)见解析 【解析】【分析】(1)根据非负数的性质求解;(2)如图1中,设直线CD 交y 轴于E .首先求出点E 的坐标,再求出直线CD 的解析式以及点C 坐标,利用平移的性质得到点D 坐标;(3)如图2中,延长AB 交CE 的延长线于M .利用平行线的性质以及三角形的外角的性质求证;【详解】(1)∵222110a b a b --++-=,∴220,2110a b a b --=+-=,∴2202110a b a b --=⎧⎨+-=⎩ , ∴34a b =⎧⎨=⎩, ∴A (0,3),B (4,0);(2)如图1中,设直线CD 交y 轴于E .∵CD//AB ,∴S △ACB =S △ABE , ∴12AE×BO=16, ∴12×AE×4=16, ∴AE=8,∴E (0,-5),设直线AB 的解析式为y=kx+b ,将点A (0,3),(4,0)代入解析式中得:343k b ⎧=-⎪⎨⎪=⎩ , ∴直线AB 的解析式为y=334x -+, ∵AB//CD , ∴直线CD 的解析式为y=34x c -+, 又∵点E (0,-5)在直线CD 上,∴c=5,即直线CD 的解析式为y=354x --, 又∵点C (-3,m )在直线CD 上,∴m=115, ∴C (-3, 115), ∵点A (0,3)平移后的对应点为C (-3, 115), ∴直线AB 向下平移了265个单位,向左平移了3个单位, 又∵B (4,0)的对应点为点D ,∴点D 的坐标为(1,-265); (3)如图2中,延长AB 交CE 的延长线于点M .∵AM ∥CD ,∴∠DCM=∠M ,∵∠BCE=2∠ECD ,∴∠BCD=3∠DCM=3∠M ,∵∠M=∠PEC-∠MPE ,∠MPE=∠OPE ,∴∠BCD=3(∠CEP-∠OPE ).【点睛】考查了非负数的性质、平行线的性质、三角形的外角的性质、一次函数的应用等知识,解题关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用平行线的性质解决问题.27.(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t +272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或9+2或9﹣2或6时,△APQ 为等腰三角形.【解析】分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+, 解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A . C 之间时,AQ =2+7−t =9−t , ∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9, ∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3, ∴273322t -<或327 3.22t -< 解得7<t <9或9<t <11. ③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去), 当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-, 解得t =6.故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.28.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP 与△ODQ 的面积相等;(3)2∠GOA+∠ACE=∠OHC ,理由见解析.【解析】【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t,OP=8-2t,根据△ODP与△ODQ的面积相等列方程求解即可;(3)由∠AOC=90°,y轴平分∠GOD证得OG∥AC,过点H作HF∥OG交x轴于F,得到∠FHC=∠ACE,∠FHO=∠GOD,从而∠GOD+∠ACE=∠FHO+∠FHC,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴114222ODQ DS OQ x t t=⨯=⨯=△,11823123 22ODP DS OP y t t=⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.29.(1)35,2⎛⎫⎪⎝⎭;(2)2;(3)不是;(4)(6,75)【解析】【分析】(1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab+=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1≠-3,∴(-2,1)不是“白马有理数对”,∵5+32=132,5×32-1=132,∴5+32=5×32-1,∴35,2⎛⎫⎪⎝⎭是“白马有理数对”,故答案为:3 5,2⎛⎫ ⎪⎝⎭;(2)若(,3)a是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若(,)m n是“白马有理数对”,则m+n=mn-1,那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,。
江苏省连云港市2018-2019学年八年级上学期数学期末考试试卷及参考答案

10. 如图,
,
,
,则加固小树的木棒DE的长是________
11. 如图,把一张矩形的纸片对折两次,然后剪下一个角,为了能得到一个正方形,剪口与折痕所成的角是________
12. 小明本学期平时测验,期中考试和期末考试的数学成绩分别是135分、135分、122分.如果这3项成绩分别按30%
、30%、40%的比例计算,那么小明本学期的数学平均分是________.
甲店
中性笔4元 支,练习本 元 本
买一送一 买一支中性笔送一本练习本
乙店
中性笔4元 支,练习本 元 本
九折 按实际价款九折付款
3人看后,各自说出了自己的购买方案:小明选择甲店,小丽选择乙店,小亮选择先到甲店购买一部分,再到乙店购买
一部分 如果你也在场,对他们这三种方案有什么看法?哪种方案最省钱?
参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
15.
16.
17. 18.
19. 20.
21.
22. 23. 24.
25.
.
18. 如图 ,是由 个白色 和 个黑色 全等正方形组成的“ ”型图案,请你分别在图 ,图 ,图 上按下列要
求画图:
在图案中,添 个白色或黑色正方形,使它成轴对称图案;
19. 如图,矩形ABCD中,对角线AC、BD相交于点O,过点C作
是等腰三角形吗?请说明理由.
,并交AB的延长线相交于点E,则
20. 如图,方格纸上的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中 的△ABC就是格点三角形.在建立平面直角坐标系后,点B的坐标为(﹣2,﹣1).
江苏省连云港市八年级上学期期末数学试卷 (解析版)

江苏省连云港市八年级上学期期末数学试卷 (解析版) 一、选择题1.4的平方根是( )A .2B .2±C .2D .2±2.如图,一棵大树在离地面3m ,5m 两处折成三段,中间一段AB 恰好与地面平行,大树顶部落在离大树底部6m 处,则大树折断前的高度是( )A .9mB .14mC .11mD .10m 3.变量x 、y 有如下的关系,其中y 是x 的函数的是( ) A .28y x = B .||y x = C .1y x = D .412x y = 4.将直角三角形的三条边的长度都扩大同样的倍数后得到的三角形( )A .仍是直角三角形B .一定是锐角三角形C .可能是钝角三角形D .一定是钝角三角形5.如图,ABC ∆中,90ACB ∠=︒,4AC =,3BC =,点E 是AB 中点,将CAE ∆沿着直线CE 翻折,得到CDE ∆,连接AD ,则线段AD 的长等于( )A .4B .165C .245D .56.如图,∠A =30°,∠C ′=60°,△ABC 与△A′B′C′关于直线l 对称,则∠B 度数为( )A .30B .60︒C .90︒D .120︒ 7.在同一平面直角坐标系中,函数y x =-与34y x =-的图像交于点P ,则点P 的坐标为( )A .(1,1)-B .(1,1)-C .(2,2)-D .(2,2)- 8.某种鲸鱼的体重约为1.36×105kg ,关于这个近似数,下列说法正确的是( )A .它精确到百位B .它精确到0.01C .它精确到千分位D .它精确到千位 9.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .1210.下列各组数是勾股数的是( )A .6,7,8B .1,3,2C .5,4,3D .0.3,0.4,0.5二、填空题11.一次函数y =kx +b 的图像如图所示,则关于x 的不等式kx -m +b >0的解集是____.12.对于分式23x a b a b x++-+,当1x =时,分式的值为零,则a b +=__________. 13.如图,AD 是ABC ∆的角平分线,DE AB ⊥于E ,若18AB =,12AC =,ABC ∆的面积等于30,则DE =_______.14.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.15.点A (2,-3)关于x 轴对称的点的坐标是______.16.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.17.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.18.如图,等腰直角三角形ABC 中, AB=4 cm.点是BC 边上的动点,以AD 为直角边作等腰直角三角形ADE.在点D 从点B 移动至点C 的过程中,点E 移动的路线长为________cm.19.若等腰三角形的两边长是2和5,则此等腰三角形的周长是__.20.如图,平面直角坐标系中,若点A (3,0)、B (4,1)到一次函数y =kx +4(k ≠0)图象的距离相等,则k 的值为_____.三、解答题21.小明用30元买水笔,小红用45元买圆珠笔,已知每支圆珠笔比水笔贵2元,那么小明和小红能买到相同数量的笔吗?22.先化简,再求值:(1﹣11a -)÷2244a a a a -+-,其中2. 23.已知25a =+25b =(1)22a b ab +;(2)223a ab b -+24.证明:如果两个三角形有两边和其中一边上的高分别对应相等,那么这两个三角形全等.25.小明从家出发沿一条笔直的公路骑自行车前往图书馆看书,他与图书馆之间的距离y (km )与出发时间t (h )之间的函数关系如图1中线段AB 所示,在小明出发的同时,小明的妈妈从图书馆借书结束,沿同一条公路骑电动车匀速回家,两人之间的距离s (km )与出发时间t (h )之间的函数关系式如图2中折线段CD ﹣DE ﹣EF 所示.(1)小明骑自行车的速度为 km/h 、妈妈骑电动车的速度为 km/h ;(2)解释图中点E 的实际意义,并求出点E 的坐标;(3)求当t 为多少时,两车之间的距离为18km .四、压轴题26.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.27.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=20°,则∠DEC=度;(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH2+CH2=2AE2.28.在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)29.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.30.一次函数y =kx +b 的图象经过点A (0,9),并与直线y =53x 相交于点B ,与x 轴相交于点C ,其中点B 的横坐标为3.(1)求B 点的坐标和k ,b 的值;(2)点Q 为直线y =kx +b 上一动点,当点Q 运动到何位置时△OBQ 的面积等于272?请求出点Q 的坐标;(3)在y 轴上是否存在点P 使△PAB 是等腰三角形?若存在,请直接写出点P 坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据平方根的定义直接作答.【详解】±解:4的平方根是2故选:D【点睛】本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是本题的解题关键. 2.D解析:D【解析】【分析】作BD⊥OC于点D,首先由题意得:AO=BD=3m,AB=OD=2m,然后根据OC=6米,得到DC=4 m,最后利用勾股定理得BC的长度即可.【详解】解:如图,作BD⊥OC于点D,由题意得:AO=BD=3m,AB=OD=5-3=2m,∵OC=6m,∴DC=6-2=4m,∴由勾股定理得:22+,34∴旗杆的高度为5+5=10m,故选:D.【点睛】本题考查了勾股定理的应用,正确作出辅助线,构造直角三角形是解答本题的关键.3.C解析:C【解析】【分析】根据函数的定义:对于x 的每一个取值,y 都有唯一确定的值与之对应即可确定有几个函数.【详解】A. 28y x =,y 不是x 的函数,故错误;B. ||y x =,y 不是x 的函数,故错误;C. 1y x =,y 是x 的函数,故正确; D. 412x y =,y 不是x 的函数,故错误; 故选C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.4.A解析:A【解析】【分析】由于三角形是直角三角形,所以三边满足勾股定理,当各边扩大或者缩小k 倍时,再利用勾股定理的逆定理判断三角形的形状.【详解】设直角三角形的直角边分别为a 、b ,斜边为c .则满足a 2+b 2=c 2.若各边都扩大k 倍(k >0),则三边分别为ak 、bk 、ck(ak )2+(bk )2=k 2(a 2+b 2)=(ck )2∴三角形仍为直角三角形.故选:A .【点睛】本题主要考查了勾股定理和勾股定理的逆定理.勾股定理:直角三角形的两直角边的平方和等于斜边的平方;勾股定理的逆定理:若三角形两边的平方和等于第三边的平方,则该三角形是直角三角形.5.C解析:C【解析】【分析】延长CE 交AD 于F ,连接BD ,先判定△ABC ∽△CAF ,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF 为△ABD 的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD 的长.【详解】解:如图,延长CE 交AD 于F ,连接BD ,∵∠ACB=90°,AC=4,BC=3,∴AB=5,∵∠ACB=90°,CE 为中线, ∴CE=AE=BE=1 2.52AB =, ∴∠ACF=∠BAC ,又∵∠AFC=∠BCA=90°,∴△ABC ∽△CAF , ∴CF AC AC BA =,即445CF =, ∴CF=3.2,∴EF=CF-CE=0.7,由折叠可得,AC=DC ,AE=DE ,∴CE 垂直平分AD ,又∵E 为AB 的中点,∴EF 为△ABD 的中位线,∴BD=2EF=1.4,∵AE=BE=DE ,∴∠DAE=∠ADE ,∠BDE=∠DBE ,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt △ABD 中,2222245 1.45AB BD -=-=, 故选:C .【点睛】本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题. 6.C解析:C【解析】【分析】由已知条件,根据轴对称的性质可得∠C =∠C ′=30°,利用三角形的内角和等于180°可求答案.【详解】∵△ABC 与△A ′B ′C ′关于直线l 对称,∴∠A =∠A ′=30°,∠C =∠C ′=60°;∴∠B =180°−30°-60°=90°.故选:C .【点睛】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.7.B解析:B【解析】【分析】联立两直线解析式,解方程组即可.【详解】联立34y x y x -⎧⎨-⎩==, 解得11x y ⎧⎨-⎩==, 所以,点P 的坐标为(1,-1).故选B .【点睛】本题考查了两条直线的交点问题,通常利用联立两直线解析式解方程组求交点坐标,需要熟练掌握.8.D解析:D【解析】【分析】根据近似数的精确度求解.【详解】解:1.36×105精确到千位.故选:D .【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.9.B解析:B【解析】【分析】将点(﹣2,1)代入y =kx 即可求出k 的值.【详解】解:∵正比例函数y =kx 的图象经过点(﹣2,1),∴1=﹣2k ,解得k =﹣12, 故选:B .【点睛】 本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键.10.C解析:C【解析】【分析】欲求证是否为勾股数,这里给出三边的长,只要验证222+=a b c 即可.【详解】解:A 、222768+≠,故此选项错误;BC 、222345+=,故此选项正确;D 、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.二、填空题11.【解析】【分析】先根据一次函数y=kx+b 的图象经过点(,m )可知,由图像可知,当时,,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(,m ),则当时,,由图像可知,解析:3x <-【解析】先根据一次函数y=kx+b 的图象经过点(3-,m )可知,由图像可知,当x 3<-时,kx b m +>,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(3-,m ),则当x 3=-时,kx b m +=,由图像可知,当x 3<-时,kx b m +>,∴0kx m b -+>的解集是:3x <-;故答案为:3x <-.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.12.-1且.【解析】【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,∴,且故答案为:-1且.【点睛】此题主要考查了分式值为解析:-1且5233ab ,. 【解析】【分析】 根据分式的值为零的条件为0的条件可得10a b且230a b ,则可求出+a b 的值.【详解】解:∵分式23x a b a b x ++-+,当1x =时,分式的值为零, ∴10a b 且230a b ,∴1a b +=-,且5233ab , 故答案为:-1且5233a b ,.此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.13.2【解析】【分析】延长AC,过D 点作DF⊥AF 于F ,根据角平分线的性质得到DE=DF,由即可求出.【详解】解:如图延长AC,过D 点作DF⊥AC 于F∵是的角平分线,DE⊥AB,∴DE解析:2【解析】【分析】延长AC ,过D 点作DF ⊥AF 于F ,根据角平分线的性质得到DE=DF,由ABC ABD ACD S S S =+即可求出.【详解】解:如图延长AC ,过D 点作DF ⊥AC 于F∵AD 是ABC ∆的角平分线,DE⊥AB,∴DE =DF∵ABC ABD ACD SS S =+=30 ∴113022AB DE DF AC ⋅+⋅= ∵18AB =,12AC = ,DE =DF∴1118123022DE DE ⨯⋅+⨯= 得到 DE=2故答案为:2.此题主要考查了角平分线的性质,熟记概念是解题的关键.14.150【解析】【分析】连接OP ,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.15.(2,3)【解析】【分析】根据 “关于x 轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A (2,-3)关于x 轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛解析:(2,3)【解析】【分析】根据 “关于x 轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A (2,-3)关于x 轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x 轴,y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.16..【解析】【分析】根据一次函数,,时图象经过第二、三、四象限,可得,,即可求解;【详解】经过第二、三、四象限,∴,,∴,,∴,故答案为.【点睛】本题考查一次函数图象与系数的关系解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.17.27【解析】【分析】把代入多项式,得到的式子进行移项整理,得,根据平方的非负性把和求出,再代入求多项式的值.【详解】解:将代入,得:移项得:,,即,时,故答案为:27【点睛解析:27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.18.【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴AC=AB,AE=AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°,∴∠1=解析:42【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴2AB ,2AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=∠3,∵2AC AE AB AD== ∴△ACE ∽△ABD ,∴∠ACE=∠ABC=90°, ∴点D 从点B 移动至点C 的过程中,总有CE ⊥AC ,即点E 运动的轨迹为过点C 与AC 垂直的线段,22,当点D 运动到点C 时,2,∴点E移动的路线长为cm.19.【解析】【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,解析:【解析】【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,底边长为2,则周长=5+5+2=12.故其周长为12.故答案为:12.【点睛】本题考查了等腰三角形,已知两边长求周长,结合等腰三角形的性质,灵活的进行分类讨论是解题的关键.20.k=±1.【解析】【分析】根据一次函数y=kx+4(k≠0)图象一定过点(0,4),点A(3,0)、B(4,1)到一次函数y =kx+4(k≠0)图象的距离相等,可分为两种情况进行解答,即,①当解析:k=±1.【解析】【分析】根据一次函数y=kx+4(k≠0)图象一定过点(0,4),点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,可分为两种情况进行解答,即,①当直线y=kx+4(k≠0)与直线AB平行时,②当直线y=kx+4(k≠0)与直线AB不平行时分别进行解答即可.【详解】一次函数y=kx+4(k≠0)图象一定过(0,4)点,①当直线y=kx+4(k≠0)与直线AB平行时,如图1,设直线AB 的关系式为y =kx +b ,把A (3,0),B (4,1)代入得,3041k b k b +=⎧⎨+=⎩,解得,k =1,b =﹣3, ∴一次函数y =kx +4(k ≠0)中的k =1;②当直线y =kx +4(k ≠0)与直线AB 不平行时,如图2,根据题意,直线y =kx +4(k ≠0)垂直平分线段AB ,此时一定经过点C ,∴点C 的坐标为(4,0),代入得,4k +4=0,解得,k =﹣1,因此,k =1或k =﹣1.故答案为:k =±1.【点睛】本题考查了一次函数的图象和性质,掌握两条平行直线的k 值相等和一次函数的图象和性质是解决问题的关键.三、解答题21.小明和小红不能买到相同数量的笔【解析】【分析】首先设每支水笔x 元,则每支圆珠笔(x+2)元,根据题意可得等量关系:30元买水笔的数量=用45元买圆珠笔的数量,求出每支水笔的价钱,再算出购买的水笔的数量,数量是整数就可以,不是整数就不合题意.【详解】设每支水笔x 元,则每支圆珠笔(2)x +元.假设能买到相同数量的笔,则30452x x =+. 解这个方程,得4x =.经检验,4x =是原方程的解.但是,3047.5÷=, 7.5不是整数,不符合题意,答:小明和小红不能买到相同数量的笔.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出分式方程,注意要检验.22.原式=2a a -. 【解析】分析:先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 详解:原式=211(2)(11(1)a a a a a a ---÷---) =22(1)•1(2)a a a a a ---- =2a a -当原式1=. 点睛:本题主要考查分式的混合运算,解题的关键是熟练掌握分式混合运算顺序和运算法则.23.(1)-4;(2)21【解析】【分析】(1)根据a ,b 的值求出a+b ,ab 的值,再根据a 2+b 2=(a+b )2-2ab ,代入计算即可; (2)根据(1)得出的a+b ,ab 的值,再根据代入计算即可.【详解】(1)∵2a =+2b =∴4a b +=,222525251ab, ∴22=144ab aa b a b b (2)由(1)得4a b +=,1ab =-,∴223a ab b -+2225a ab b ab25a b ab245121=【点睛】此题考查了二次根式的化简求值,用到的知识点是二次根式的性质、完全平方公式、平方差公式,关键是对要求的式子进行化简.24.见解析【解析】【分析】由HL证明Rt△ABH≌Rt△DEK得∠B=∠E,再用边角边证明△ABC≌△DEF.【详解】已知:如图所示,在△ABC和△DEF中,AB=DE,BC=EF,AH⊥BC,DK⊥EF,且AH=DK.求证:△ABC≌△DEF,证明:∵AH⊥BC,DK⊥EF,∴∠AHB=∠DKE=90°,在Rt△ABH和Rt△DEK中,AH DKAB DE=⎧⎨=⎩,∴Rt△ABH≌Rt△DEK(HL),∠B=∠E,在△ABC和△DEF中,AB DEB EBC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS)【点睛】本题综合考查了全等三角形的判定与性质和命题的证明方法,重点掌握全等三角形的判定与性质,难点是将命题用几何语言规范书写成几何证明格式.25.(1)16,20;(2)点E表示妈妈到了甲地,此时小明没到,E(95,1445);(3)12或3 2【解析】【分析】(1)由点A,点B,点D表示的实际意义,可求解;(2)理解点E表示的实际意义,则点E的横坐标为小明从家到图书馆的时间,点E纵坐标为小明这个时间段走的路程,即可求解;(3)根据题意列方程即可得到结论.【详解】解:(1)由题意可得:小明速度=362.25=16(km/h)设妈妈速度为xkm/h由题意得:1×(16+x)=36,∴x=20,答:小明的速度为16km/h,妈妈的速度为20km/h,故答案为:16,20;(2)由图象可得:点E表示妈妈到了家,此时小明没到,∴点E的横坐标为:369 205=,点E的纵坐标为:95×16=1445∴点E(95,1445);(3)根据题意得,(16+20)t=(36﹣18)或(16+20)t=36+18,解得:t=12或t=32,答:当t为12或32时,两车之间的距离为18km.【点睛】本题考查一次函数的应用,解题的关键是读懂图象信息,掌握路程、速度、时间之间的关系,属于中考常考题型.四、压轴题26.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD⊥ x轴于D,BE⊥x轴于E,由点A,B的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD⊥x轴于D,BE⊥x轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=12×(2+4)×6﹣12×2×2﹣12×4×4=8;(2)作CH // x轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM // x轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.27.(1)45度;(2)∠AEC﹣∠AED=45°,理由见解析;(3)见解析【解析】【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(2)由等腰三角形的性质可求∠BAE=180°﹣2α,可得∠CAE=90°﹣2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH=2EF,CH=2CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【详解】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH AF,∵在Rt△AEF中,AE2=AF2+EF2,AF)2+EF)2=2AE2,∴EH2+CH2=2AE2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.28.(1)见解析;(2)CD AD+BD,理由见解析;(3)CD+BD【解析】【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB ≌△AEC (SAS );∴BD =CE ,∵∠BAC =90°,AD =AE ,∴DE =2AD ,∵CD =DE +CE ,∴CD =2AD +BD ; (3)作AH ⊥CD 于H .∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );∴BD =CE ,∵∠DAE =120°,AD =AE ,∴∠ADH =30°,∴AH =12AD , ∴DH 22AD AH -3, ∵AD =AE ,AH ⊥DE ,∴DH =HE ,∴CD =DE +EC =2DH +BD 3+BD ,故答案为:CD 3+BD .【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.29.(1)45°;(2)PE 的值不变,PE=4,理由见详解;(3)D(828-,0).【解析】【分析】(1)根据(42,0)A ,(0,2)B ,得△AOB 为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB 的度数;(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC ⊥AB ,再证明△POC ≌△DPE ,根据全等三角形的性质得到OC=PE ,即可得到答案;(3)证明△POB ≌△DPA ,得到PA=OB=2,DA=PB ,进而得OD 的值,即可求出点D 的坐标.【详解】(1)A,(0,B ,∴OA=OB=∵∠AOB=90°,∴△AOB 为等腰直角三角形,∴∠OAB=45°;(2)PE 的值不变,理由如下:∵△AOB 为等腰直角三角形,C 为AB 的中点,∴∠AOC=∠BOC=45°,OC ⊥AB ,∵PO=PD ,∴∠POD=∠PDO ,∵D 是线段OA 上一点,∴点P 在线段BC 上,∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,∴∠POC=∠DPE ,在△POC 和△DPE 中,90POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△POC ≅△DPE(AAS),∴OC=PE ,∵OC=12AB=12××=4, ∴PE=4;(3)∵OP=PD ,∴∠POD=∠PDO=(180°−45°)÷2=67.5°,∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,∴∠APD=∠BOP ,在△POB 和△DPA 中,OBP PAD BOP APD OP PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△POB ≌△DPA(AAS),∴PA=OB=DA=PB ,∴DA=PB=-,∴OD=OA−DA=8-,∴点D 的坐标为(8,0).【点睛】本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.30.(1)点B (3,5),k =﹣43,b =9;(2)点Q (0,9)或(6,1);(3)存在,点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478) 【解析】【分析】(1)53y x =相交于点B ,则点(3,5)B ,将点A 、B 的坐标代入一次函数表达式,即可求解; (2)OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=,即可求解; (3)分AB AP =、AB BP =、AP BP =三种情况,分别求解即可.【详解】解:(1)53y x =相交于点B ,则点(3,5)B , 将点A 、B 的坐标代入一次函数表达式并解得:43k =-,9b =; (2)设点4(,9)3Q m m -+, 则OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=, 解得:0m =或6,故点Q (0,9)或(6,1);(3)设点(0,)P m ,而点A 、B 的坐标分别为:(0,9)、(3,5),则225AB =,22(9)AP m =-,229(5)BP m =+-,当AB AP =时,225(9)m =-,解得:14m或4; 当AB BP =时,同理可得:9m =(舍去)或1-; 当AP BP =时,同理可得:478m =; 综上点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478). 【点睛】 本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
连云港市八年级上学期期末数学试卷 (解析版)

连云港市八年级上学期期末数学试卷 (解析版)一、选择题 1.对函数31y x =-,下列说法正确的是( )A .它的图象过点(3,1)-B .y 值随着x 值增大而减小C .它的图象经过第二象限D .它的图象与y 轴交于负半轴2.如图,一艘轮船停在平静的湖面上,则这艘轮船在湖中的倒影是( )A .B .C .D .3.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .以上都不对4.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >05.关于等腰三角形,以下说法正确的是( )A .有一个角为40°的等腰三角形一定是锐角三角形B .等腰三角形两边上的中线一定相等C .两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D .等腰三角形两底角的平分线的交点到三边距离相等6.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的( )A .总体B .个体C .样本D .样本容量 7.直线y=ax+b(a <0,b >0)不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 8.如图,在一张长方形纸片上画一条线段AB ,将右侧部分纸片四边形ABCD 沿线段AB 翻折至四边形ABC 'D ',若∠ABC =58°,则∠1=( )A .60°B .64°C .42°D .52°9.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .1210.点P (1,﹣2)关于y 轴对称的点的坐标是( )A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1)二、填空题11.如图,在直角坐标系中,点A 、B 的坐标分别为(2,4)和(3、0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,在运动的过程中,当△ABC 是以AB 为底的等腰三角形时,OC =__.12.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.13.若函数4y kx =-的图象平行于直线2y x =-,则函数的表达式是________.14.比较大小:10_____3.(填“>”、“=”或“<”)15.点(2,1)P 关于x 轴对称的点P'的坐标是__________.16. 如图,在正三角形ABC 中,AD ⊥BC 于点D ,则∠BAD= °.17.一个等腰三角形的两边分别是4和9,则这个等腰三角形的周长是_________.18.如图,在ABC ∆中,AB AC =,4BC =,其面积为12,AC 的垂直平分线EF 分别交AB ,AC 边于点E ,F .若点D 为BC 边的中点,点P 为线段EF 上的一个动点,则PCD ∆周长的最小值为______.19.当x =_____时,分式22x x x-+值为0. 20.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在y 轴,x 轴的正半轴上,OA =6,OC =3.∠DOE =45°,OD ,OE 分别交BC ,AB 于点D ,E ,且CD =2,则点E 坐标为_____.三、解答题21.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x 小时,两车之间的距离为y 千米,图中折线表示y 与x 之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为 千米;(2)求快车和慢车的速度;(3)求线段DE 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.22.如图,在平面直角坐标系中,点B 坐标为()6,0-,点A 是y 轴正半轴上一点,且10AB =,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为()0m ,.(1)点A 的坐标为___________; (2)当ABP △是等腰三角形时,求P 点的坐标;(3)如图2,过点P 作PE AB ⊥交线段AB 于点E ,连接OE ,若点A 关于直线OE 的对称点为A ',当点A '恰好落在直线PE 上时,BE =_____________.(直接写出答案)23.计算或求值(1)计算:(2a+3b )(2a ﹣b );(2)计算:(2x+y ﹣1)2;(3)当a =2,b =﹣8,c =5时,求代数式242b b ac a-+-的值; (4)先化简,再求值:(m+252m --)243m m -⨯-,其中m =12-. 24.阅读下列材料: ∵4<5<9,即2<5<3∴5的整数部分为2,小数部分为5﹣2请根据材料提示,进行解答:(1)7的整数部分是 .(2)7的小数部分为m ,11的整数部分为n ,求m +n ﹣7的值.25.如图,AD ∥BC ,∠A =90°,E 是AB 上的一点,且AD =BE ,∠1=∠2.(1)求证:△ADE ≌△BEC ;(2)若AD =3,AB =9,求△ECD 的面积.四、压轴题26.如图,直线2y x m =-+交x 轴于点A ,直线122y x =+交x 轴于点B ,并且这两条直线相交于y 轴上一点C ,CD 平分ACB ∠交x 轴于点D .(1)求ABC的面积.(2)判断ABC的形状,并说明理由.(3)点E是直线BC上一点,CDE△是直角三角形,求点E的坐标.27.如图,直线11 2y x b=-+分别与x轴、y轴交于A,B两点,与直线26y kx=-交于点()C4,2.(1)b= ;k= ;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P,Q,A,B四个点能构成一个菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.28.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.①请直接写出∠AEB的度数为_____;②试猜想线段AD与线段BE有怎样的数量关系,并证明;(2)拓展探究:图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E 在同-直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数线段CM、AE、BE之间的数量关系,并说明理由.29.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l 之间的距离为2,求AB 的长、”请你根据3位同学的提示,分别求出三种情况下AB 的长度.30.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据一次函数的性质,对每一项进行判断筛选即可.【详解】A 将x=3代入31y x =-得:3×3-1=8,A 选项错;B .一次函数k >0,y 值随着x 值增大而增大,B 选项错;C .一次函数k >0,y 值随着x 值增大而增大,当x=0时,y=-1,故此函数的图像经过一、三、四象限,C 选项错;D .当x=0时,y=-1,一次函数的图象与y 轴交于负半轴,D 项正确.故选D.【点睛】本题考查了一次函数的性质,解决本题的关键是正确理解题意,熟练掌握一次函数的性质. 2.D解析:D【解析】【分析】易得所求的图形与看到的图形关于水平的一条直线成轴对称,找到相应图形即可.【详解】解:如下图,∴正确的图像是D;故选择:D.【点睛】解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形,也可根据所给图形的特征得到相应图形.3.A解析:A【解析】【分析】【详解】∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.4.D解析:D【解析】,错误.画函数的图象,选项A,点(1,0)代入函数,01由图可知,B,C错误,D,正确. 选D.5.D解析:D【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:A:如果40︒的角是底角,则顶角等于100︒,故三角形是钝角三角形,此选项错误;B、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,∴等腰三角形的两条中线不一定相等,此选项错误;C、如图,△ABC和△ABD中,AB=AC=AD,CD∥AB,DG是△ABD 的AB边高,CH是是△ABC 的AB边高,则DG=CH,但△ABC和△ABD不全等;故此选项错误;D、三角形的三个内角的角平分线交于一点,该点叫做三角形的内心.内心到三边的距离相等.故此选项正确;故选:D.【点睛】本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.6.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.7.C解析:C【解析】【分析】先根据一次函数的图象与系数的关系得出直线y=ax+b(a<0,b>0)所经过的象限,故可得出结论.【详解】∵直线y=ax+b中,a<0,b>0,∴直线y=ax+b经过一、二、四象限,∴不经过第三象限.故选:C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象经过一、二、四象限.8.B解析:B【解析】【分析】由平行线的性质可得∠BAD=122°,由折叠的性质可得∠BAD=∠BAD'=122°,即可求解.【详解】∵AD∥BC,∴∠ABC+∠BAD=180°,且∠ABC=58°,∴∠BAD=122°,∵将右侧部分纸片四边形ABCD沿线段AB翻折至四边形ABC'D',∴∠BAD=∠BAD'=122°,∴∠1=122°-58°=64°,故选:B.【点睛】此题主要考查平行的性质和折叠的性质,解题关键是借助等量关系进行转换.9.B解析:B【解析】【分析】将点(﹣2,1)代入y=kx即可求出k的值.【详解】解:∵正比例函数y=kx的图象经过点(﹣2,1),∴1=﹣2k,解得k=﹣12,故选:B.【点睛】本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键. 10.C解析:C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.二、填空题11..【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于的方程,求解即可.【详解】解:设C点坐标为(0,解析:11 8.【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于a的方程,求解即可.【详解】解:设C点坐标为(0,a),当△ABC是以AB为底的等腰三角形时,BC=AC,平方得BC2=AC2,即32+a2=22+(4﹣a)2,化简得8a=11,解得a=11 8.故OC=11 8,故答案为:11 8.【点睛】本题考查了平面直角坐标系中两点间的距离及等腰三角形的判定,灵活利用两点的坐标确定两点间距离是解题的关键.12.x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵与直线:相交于点,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2解析:x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵1y x =+与直线2I :y mx n =+相交于点(,2)P a ,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2);由图可知,x≥1时,1x mx n +≥+.故答案为:x≥1.【点睛】本题考查了一次函数与一元一次不等式,待定系数法求一次函数解析式,联立两直线解析式求交点坐标的方法,求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应的函数值的大小.13.y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x ,∴k=-2,函数的表达式为y=-2解析:y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x ,∴k=-2,函数的表达式为y=-2x-4.故答案为:y=-2x-4.【点睛】本题考查了两条直线平行的问题,一次函数平行系数的特点是解题的关键.14.>.【解析】【分析】先求出3=,再比较即可.【详解】∵32=9<10,∴>3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.解析:>.【解析】【分析】先求出【详解】∵32=9<10,3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.15.(2,-1)【解析】【分析】关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点关于轴对称的点的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称.解析:(2,-1)【解析】【分析】关于x轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】P关于x轴对称的点P'的坐标是(2,-1)点(2,1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称. 理解:关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;16.30【解析】【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD的度数.【详解】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC解析:30【解析】【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD 的度数.【详解】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD=12∠BAC=30°,故答案为30°.17.22【解析】【分析】等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当解析:22【解析】【分析】等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当底边是4,腰长是9时,能构成三角形,则其周长=4+9+9=22.故答案为22.【点睛】考查等腰三角形的性质以及三边关系,熟练掌握等腰三角形的性质是解题的关键. 18.8【解析】【分析】连接AP ,AD ,根据等腰三角形三线合一可知AD 为△ABC 的高线,求出AD 的长度.根据垂直平分线的性质AP=PC,由两点之间线段最短可知AP+PD 最短AD,由此可求周长的最小值 解析:8【解析】【分析】连接AP ,AD ,根据等腰三角形三线合一可知AD 为△ABC 的高线,求出AD 的长度.根据垂直平分线的性质AP=PC,由两点之间线段最短可知AP+PD 最短AD,由此可求PCD ∆周长的最小值【详解】解:如下图,连接AP ,AD.∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,DC=122BC =, 1141222ABC S BC AD AD ∴=⋅=⨯⨯=, 解得AD=6, ∵EF 是线段AC 的垂直平分线,∴AP=PC,∴DP+PC=DP+AP≥AD=6.∴PCD ∆周长=DP+PC+DC,当DP+PC=6时周长最短,最短为6+2=8.故答案为:8.【点睛】本题考查等腰三角形的性质,垂直平分线的性质,两点之间线段最短.能根据垂直平分线的性质和两点之间线段最短求得DP+PC的最小值是解决此题的关键.19.2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x2+x=x解析:2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x2+x=x(x+1)≠0,所以x≠0或x≠﹣1;而分式值为0,即分子2﹣x=0,解得:x=2,符合题意故答案为:2.【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.20.(,6)【解析】【分析】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,由“AAS”可证△AEO≌△GEF,可得AE=GF,EG=AO=6,解析:(65,6)【解析】【分析】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,由“AAS”可证△AEO≌△GEF,可得AE=GF,EG=AO=6,通过证明△ODC∽△FDH,可得HF HDOC CD,即可求解.【详解】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,∵∠EOF=45°,EF⊥EO,∴∠EOF=∠EFO=45°,∴OE=EF,∵∠AOE+∠AEO=90°,∠AEO+∠GEF=90°,∴∠GEF=∠AOE,且∠OAE=∠G=90°,OE=EF,∴△AEO≌△GEF(AAS)∴AE=GF,EG=AO=6,∴BG=EG﹣BE=6﹣(3﹣AE)=3+AE,∵FH⊥BC,∠G=∠CBG=90°,∴四边形BGFH是矩形,∴BH=GF=AE,BG=HF=3+AE,HF∥BG∥OC,∴HD=BD﹣BH=4﹣AE,∵HF∥OC,∴△ODC∽△FDH,∴HF HD OC CD=,∴3432AE AE +-=∴AE=65,∴点E(65,6)故答案为:(65,6)【点睛】此题主要考查利用全等三角形和相似三角形的判定与性质判定矩形在平面直角坐标系中的坐标,解题关键是利用其性质构建方程.三、解答题21.(1)560;(2)快车的速度是80km/h,慢车的速度是60km/h.(3)y=-60x+540(8≤x≤9).【解析】(1)根据函数图象直接得出甲乙两地之间的距离;(2)根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;(3)利用(2)所求得出D ,E 点坐标,进而得出函数解析式.【详解】(1)由题意可得出:甲乙两地之间的距离为560千米;故答案为:560;(2)由题意可得出:慢车和快车经过4个小时后相遇,相遇后停留了1个小时,出发后两车之间的距离开始增大,快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,∴设慢车速度为3xkm/h ,快车速度为4xkm/h ,∴(3x+4x )×4=560,x=20,∴快车的速度是80km/h ,慢车的速度是60km/h .(3)由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km ,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240-3×60=60km , ∴D (8,60),∵慢车往返各需4小时,∴E (9,0),设DE 的解析式为:y=kx+b ,∴90860k b k b +⎧⎨+⎩==, 解得:60540k b -⎧⎨⎩==. ∴线段DE 所表示的y 与x 之间的函数关系式为:y=-60x+540(8≤x≤9).【点睛】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,根据题意得出D ,E 点坐标是解题关键.22.(1)()0,8;(2)()4,0或()6,0或7,03⎛⎫ ⎪⎝⎭;(3)425 【解析】【分析】(1)根据勾股定理可以求出AO 的长,则可得出A 的坐标;(2)分三种情况讨论等腰三角形的情况,得出点P 的坐标;(3)根据PE AB ⊥,点A '在直线PE 上,得到EAG OPG ,利用点A ,A '关于直线OE 对称点,根据对称性,可证'OPG EAO ,可得'8OP OA ,82AP , 设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE【详解】AB=,解:(1)∵点B坐标为6,0,点A是y轴正半轴上一点,且10∴ABO是直角三角形,根据勾股定理有:2222AO AB BO,1068∴点A的坐标为()0,8;(2)∵ABP△是等腰三角形,当BP AB时,如图一所示:OP BP BO,∴1064∴P点的坐标是()4,0;=时,如图二所示:当AP ABOP BO∴6∴P点的坐标是()6,0;=时,如图三所示:当AP BP设OP x =,则有6AP x ∴根据勾股定理有:222OP AO AP += 即:22286x x 解之得:73x = ∴P 点的坐标是7,03; (3)当ABP △是钝角三角形时,点A '不存在; 当ABP △是锐角三角形时,如图四示:连接'OA ,∵PE AB ⊥,点A '在直线PE 上, ∴AEG △和GOP 是直角三角形,EGA OGP ∴EAG OPG ,∵点A ,A '关于直线OE 对称点, 根据对称性,有'8OA OA ,'EAEA ∴'FAO FAO ,'FAE FAE ∴'EAG EAO则有:'OPG EAO ∴'AOP 是等腰三角形,则有'8OP OA , ∴22228882AP AO OP ,设BE x =,则有6AEx ,根据勾股定理,有: 22222BP BE EP AP AE 即:2222688210x x 解之得:425BEx 【点睛】 本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.23.(1)4a 2+4ab ﹣3b 2;(2)4x 2+4xy+y 2﹣4x ﹣2y ﹣1;(34)﹣2m ﹣6,-5【解析】【分析】(1)利用多项式乘多项式展开,然后合并即可;(2)利用完全平方公式计算;(3)先计算出24b ac -,然后计算代数式的值;(4)先把括号内通分,再把分子分母因式分解后约分得到原式26m =--,然后把m 的值代入计算即可.【详解】解:(1)原式224263a ab ab b =-+-22443a ab b =+-; (2)原式2(2)2(2)1x y x y =+-+-2244421x xy y x y =++---;(3)224(8)42524b ac -=--⨯⨯=,= (4)原式(2)(2)52(2)[]23m m m m m +---=--- (3)(3)2(2)23m m m m m +--=--- 2(3)m =-+26m =--,当12m =-时,原式12()652=-⨯--=-.【点睛】本题考查了多项式乘法和、分式的化简求值以及代数式求值.掌握整式乘法和分式运算法则熟练运算是解题关键.24.(1)2;(2)1【解析】【分析】(1<(2<<,进而得出答案.【详解】解:(1<∴23<<,2.故答案为:2;(2)由(1)可得出,2m =,<,∴n =3,∴231m n +-=+=. 【点睛】本题考查的知识点是估算无理数的大小,估算无理数的大小要用逼近法,同时也考查了平方根.25.(1)见解析;(2)452【解析】【分析】(1)根据已知可得到∠A =∠B =90°,DE =CE ,AD =BE 从而利用HL 判定两三角形全等; (2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC =90°,由已知我们可求得BE 、AE 的长,再利用勾股定理求得ED 的长,利用三角形面积公式解答即可.【详解】(1)∵AD ∥BC ,∠A =90°,∠1=∠2,∴∠A =∠B =90°,DE =CE .∵AD =BE ,在Rt △ADE 与Rt △BEC 中 AD BE DE CE =⎧⎨=⎩, ∴Rt △ADE ≌Rt △BEC (HL )(2)由△ADE ≌△BEC 得∠AED =∠BCE ,AD =BE .∴∠AED +∠BEC =∠BCE +∠BEC =90°.∴∠DEC =90°.又∵AD =3,AB =9,∴BE =AD =3,AE =9﹣3=6.∵∠1=∠2,∴ED =EC∴△CDE 的面积=14522⨯=. 【点睛】 此题主要考查全等三角形的判定与性质的运用,熟练掌握,即可解题.四、压轴题26.(1)5;(2)直角三角形,理由见解析;(3)44,33E ⎛⎫- ⎪⎝⎭或82,33E ⎛⎫- ⎪⎝⎭【解析】【分析】(1)先求出直线122y x =+与x 轴的交点B 的坐标和与y 轴的交点C 的坐标,把点C 代入直线2y x m =-+,求出m 的值,再求它与x 轴的交点A 的坐标,ABC 的面积用AB 乘OC 除以2得到;(2)用勾股定理求出BC 的平方,AC 的平方,再根据AB 的平方,用勾股定理的逆定理证明ABC 是直角三角形;(3)先根据角平分线求出D 的坐标,再去分两种情况构造全等三角形,利用全等三角形的性质求出对应的边长,从而得到点E 的坐标.【详解】解:(1)令0x =,则10222y =⨯+=, ∴()0,2C ,令0y =,则1202x +=,解得4x =-, ∴()4,0B -,将()0,2C 代入2y x m =-+,得2m =,∴22y x =-+,令0y =,则220x -+=,解得1x =,∴1,0A ,∴5AB =,2OC =, ∴152ABC S AB OC =⋅=△;(2)根据勾股定理,222224220BC BO OC =+=+=,22222125AC AO OC =+=+=,且22525AB ==,∴222AB BC AC =+,则ABC 是直角三角形;(3)∵CD 平分ACB ∠, ∴12AD AC BD BC ==, ∴1533AD AB ==, ∴23OD AD OA =-=, ∴2,03D ⎛⎫- ⎪⎝⎭①如图,CED ∠是直角,过点E 作EN x ⊥轴于点N ,过点C 作CM EN ⊥于点M , 由(2)知,90ACB ∠=︒,∵CD 平分ACB ∠,∴45ECD ∠=︒,∴CDE △是等腰直角三角形,∴CE DE =,∵90NED MEC ∠+∠=︒,90NED NDE ∠+∠=︒,∴MEC NDE ∠=∠,在DNE △和EMC △中,NDE MEC DNE EMC DE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()DNE EMC AAS ≅,设DN EM x ==,EN CM y ==,根据图象列式:DO DN CM EN EM CO +=⎧⎨+=⎩,即232x y x y ⎧+=⎪⎨⎪+=⎩,解得2343x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴43EN CM ==, ∴44,33E ⎛⎫- ⎪⎝⎭;②如图,CDE ∠是直角,过点E 作EG x ⊥轴于点G ,同理CDE △是等腰直角三角形,且可以证得()CDO DEG AAS ≅,∴2DG CO ==,23EG DO ==, ∴28233GO GD DO =+=+=, ∴82,33E ⎛⎫- ⎪⎝⎭,综上:44,33E ⎛⎫-⎪⎝⎭,82,33E ⎛⎫- ⎪⎝⎭. 【点睛】 本题考查一次函数综合,解题的关键是掌握一次函数解析式的求解,与坐标轴交点的求解,图象围成的三角形面积的求解,还涉及勾股定理、角平分线的性质、全等三角形等几何知识,需要运用数形结合的思想去求解.27.(1)4;2;(0,4);(2)125m =或285m =;(3)存在.Q 点坐标为()45,4-,()45,4,()0,4-或()5,4. 【解析】【分析】(1)根据待定系数法,将点C (4,2)代入解析式可求解;(2)设点E (m ,142m +),F (m ,2m -6),得()154261022EF m m m =-+--=-,由平行四边形的性质可得BO =EF =4,列出方程即可求解;(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P 点坐标,再确定O 点坐标即可求解.【详解】解:(1)(1)∵直线y 2=kx -6交于点C (4,2),∴2=4k -6,∴k =2, ∵直线212y x b =-+过点C (4,2), ∴2=-2+b ,∴b =4, ∴直线解析式为:212y x b =-+,直线解析式为y 2=2x -6, ∵直线212y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8,∴点B (0,4),点A (8,0),故答案为:4;2;(0,4)(2)∵点E 在线段AB 上,点E 的横坐标为m , ∴1,42E m m ⎛⎫-+ ⎪⎝⎭,(),26F m m -, ∴()154261022EF m m m =-+--=-. ∵四边形OBEF 是平行四边形,∴EF BO =, ∴51042m -=, 解得:125m =或285m =时, ∴当125m =或285m =时,四边形OBEF 是平行四边形.(3)存在.此时Q 点坐标为()-,()4,()0,4-或()5,4.理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况:①以AB 为边,如图1所示.因为点()8,0A ,()0,4B ,所以45AB =.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以AP AB =或BP BA =.当AP AB =时,点()845,0P -或()845,0+;当BP BA =时,点()8,0P -. 当()845,0P -时,()8458,04Q --+,即()45,4-; 当()845,0P +时,()8458,04Q +-+,即()45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.②以AB 为对角线,对角线的交点为M ,如图2所示.可得5AP =,点P 坐标为()3,0.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以点Q 坐标为()5,4.综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形,此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.【点睛】本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.28.(1)①60°;②AD=BE.证明见解析;(2)∠AEB =90°;AE=2CM+BE ;理由见解析.【解析】【分析】(1)①由条件△ACB 和△DCE 均为等边三角形,易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.②由△ACD ≌△BCE ,可得AD=BE ;(2)首先根据△ACB 和△DCE 均为等腰直角三角形,可得AC=BC ,CD=CE ,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE ;然后根据全等三角形的判定方法,判断出△ACD ≌△BCE ,即可判断出BE=AD ,∠BEC=∠ADC ,进而判断出∠AEB 的度数为90°;根据DCE=90°,CD=CE ,CM ⊥DE ,可得CM=DM=EM ,所以DE=DM+EM=2CM ,据此判断出AE=BE+2CM .【详解】(1)①∵∠ACB=∠DCE ,∠DCB=∠DCB ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE ,∴AD=BE ,∠CEB=∠ADC=180°−∠CDE=120°,∴∠AEB=∠CEB−∠CED=60°;②AD=BE.证明:∵△ACD ≌△BCE ,∴AD=BE .(2)∠AEB =90°;AE=2CM+BE ;理由如下:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE= 90°,∴AC = BC , CD = CE , ∠ACB =∠DCB =∠DCE -∠DCB , 即∠ACD = ∠BCE ,∴△ACD ≌△BCE ,∴AD = BE ,∠BEC = ∠ADC=135°.∴∠AEB =∠BEC -∠CED =135°- 45°= 90°.在等腰直角△DCE 中,CM 为斜边DE 上的高,∴CM =DM= ME ,∴DE = 2CM .∴AE = DE+AD=2CM+BE .【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题.29.(123【解析】【分析】(1)分别过点B,C向l1作垂线,交l1于M,N两点,证明△ABM≌△CAN,得到AM=CN,AN=BM,即可得出AB;(2)分别过点B,C向l1作垂线,交l1于点P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,证明△AMB≌△CAN,得到CN=AM,再通过△PBM和△QCN算出PM和NQ的值,得到AP,最后在△APB中,利用勾股定理算出AB的长;(3)在l3上找M和N,使得∠BNC=∠AMC=60°,过B作l3的垂线,交l3于点P,过A作l3的垂线,交l3于点Q,证明△BCN≌△CAM,得到CN=AM,在△BPN和△AQM中利用勾股定理算出NP和AM,从而得到PC,结合BP算出BC的长,即为AB.【详解】解:(1)如图,分别过点B,C向l1作垂线,交l1于M,N两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA,在△ABM和△CAN中,===AMB CNAMAB NCAAB AC∠∠⎧⎪∠∠⎨⎪⎩,∴△ABM≌△CAN(AAS),∴AM=CN=2,AN=BM=1,∴AB=22251=+;(2)分别过点B,C向l1作垂线,交l1于P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC,在△AMB和△CNA中,。
江苏省连云港市八年级上第一学期期末数学试卷
江苏省连云港市八年级上第一学期期末数学试卷一、选择题1.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y (升)与它工作时间t(时)之间函数关系的图象是()A.B.C.D.2.下列图书馆的馆徽不是..轴对称图形的是()A.B.C.D.3.下列四个实数:223,0.1010017π,3,,其中无理数的个数是()A.1个B.2个C.3个D.4个4.一次函数y=﹣2x+3的图象不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限5.下列各数中,是无理数的是()A.38B.39C.4-D.22 76.用科学记数法表示0.000031,结果是()A.53.110-⨯B.63.110-⨯C.60.3110-⨯D.73110-⨯7.下列交通标识中,是轴对称图形的是()A.B.C.D.8.已知一次函数y=kx+b,函数值y随自变置x的增大而减小,且kb<0,则函数y=kx+b 的图象大致是()A .B .C .D .9.若点Α()m,n 在一次函数y=3x+b 的图象上,且3m-n>2,则b 的取值范围为 ( ) A .b>2 B .b>-2 C .b<2 D .b<-210.在△ABC 中,∠C =90°,∠B =60°,下列说法中,不一定正确的是( )A .BC 2+AC 2=AB 2B .2BC =ABC .若△DEF 的边长分别为1,2,3,则△DEF 和△ABC 全等D .若AB 中点为M ,连接CM ,则△BCM 为等边三角形二、填空题11.若函数y =2x +3﹣m 是正比例函数,则m 的值为_____.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子A 的坐标为(﹣2,﹣3),棋子B 的坐标为(1,﹣2),那么棋子C 的坐标是_____.13.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________.142(5)-=_____.15.对于分式23x a b a b x++-+,当1x =时,分式的值为零,则a b +=__________. 16.等腰三角形的顶角为76°,则底角等于__________. 17.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.18.若代数式321x x -+有意义,则x 的取值范围是______________. 19.如图,已知正方形ABCD 的边长为4cm ,则图中阴影部分的面积为__________2cm .20.如图,在△ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB 交BC 于点E ,EC =1,则三角形ACE 的面积为__.三、解答题21.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,且ABD DAC ∠=∠,过点C 作AD 的平行线,交BD 的延长线于点E ,BD EC =,连接AE .(1)求证:ABD ACE ∆∆≌;(2)求证:ADE ∆为等边三角形.22.求下列各式中的x :(1)()2116x -=;(2)321x +=.23.已知:如图,点E 在ABC ∆的边AC 上,且AEB ABC ∠=∠.(1)求证:ABE C ∠=∠;(2)若BAE ∠的平分线AF 交BE 于点F ,FD BC 交AC 于点D ,设8AB =,10AC =,求DC 的长.24.直角三角形ABC 中,90ABC ∠=︒,点D 为AC 的中点,点E 为CB 延长线上一点,且BE CD =,连接DE .(1)如图1,求证2C E ∠=∠(2)如图2,若6AB =、5BE =,ABC ∆的角平分线CG 交BD 于点F ,求BCF ∆的面积.25.如图,△ABC 中,∠ABC =30°,∠ACB =50°,DE 、FG 分别为AB 、AC 的垂直平分线,E 、G 分别为垂足.(1)求∠DAF 的度数;(2)若△DAF 的周长为10,求BC 的长.四、压轴题26.如图,已知等腰△ABC 中,AB =AC ,∠A <90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与 BE 交于点 P .当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A =44°时,求∠BPD 的度数;(2)设∠A =x °,∠EPC =y °,求变量 y 与 x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.27.在平面直角坐标系xOy 中,若P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.图1为点P ,Q 的“相关矩形”的示意图.已知点A 的坐标为(1,2).(1)如图2,点B 的坐标为(b ,0).①若b =﹣2,则点A ,B 的“相关矩形”的面积是 ;②若点A ,B 的“相关矩形”的面积是8,则b 的值为 .(2)如图3,点C 在直线y =﹣1上,若点A ,C 的“相关矩形”是正方形,求直线AC 的表达式;(3)如图4,等边△DEF 的边DE 在x 轴上,顶点F 在y 轴的正半轴上,点D 的坐标为(1,0).点M 的坐标为(m ,2),若在△DEF 的边上存在一点N ,使得点M ,N 的“相关矩形”为正方形,请直接写出m 的取值范围.28.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.29.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.30.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意根据剩余油量等于油箱中的原有的油量减去用去的油量,列出y、x的关系式,然后根据一次函数的图象选择答案即可.【详解】解:∵油箱中有油4升,每小时耗油0.5升,∴y=4-0.5x,∵4-0.5x≥0,∴x≤8,∴x的取值范围是0≤x≤8,所以,函数图象为:故选:D.【点睛】本题考查一次函数的应用,一次函数的图象,比较简单,难点在于根据实际意义求出自变量x的取值范围.2.D解析:D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不是轴对称图形,符合题意;故选:D.【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.B解析:B【解析】【分析】根据无理数的定义解答即可.227,0.101001是有理数;3.故选B.【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3π等;②③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.4.C解析:C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C .5.B解析:B【解析】【分析】根据无理数的定义结合算术平方根和立方根逐一判断即可得.【详解】2=,为有理数,故该选项错误;D. 2-,为有理数,故该选项错误; D.227,为有理数,故该选项错误. 故选B.【点睛】 本题考查无理数的定义,立方根,算术平方根. 初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.A解析:A【解析】根据科学记数法的表示形式10(1||10)na a ⨯≤<(n 为整数)即可求解【详解】0.000031-5=3.110⨯,故选:A .【点睛】本题主要考查了绝对值小于1的数的科学记数法,熟练掌握科学记数法的表示方法是解决本题的关键. 7.B解析:B【解析】某个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,以上图形中,B 是轴对称图形,故选B8.A解析:A【解析】试题分析:根据一次函数的性质得到k <0,而kb <0,则b >0,所以一次函数y=kx+b 的图象经过第二、四象限,与y 轴的交点在x 轴是方.解:∵一次函数y=kx+b ,y 随着x 的增大而减小,∴k <0,∴一次函数y=kx+b 的图象经过第二、四象限;∵kb <0,∴b >0,∴图象与y 轴的交点在x 轴上方,∴一次函数y=kx+b 的图象经过第一、二、四象限.故选A .考点:一次函数的图象.9.D解析:D【解析】分析:由点(m,n )在一次函数3y x b =+的图像上,可得出3m+b=n ,再由3m-n >2,即可得出b <-2,此题得解.详解:∵点A (m ,n )在一次函数y=3x+b 的图象上,∴3m+b=n .∵3m-n >2,∴3m-(3m+b)>2,即-b>2,∴b <-2.点睛:考查了一次函数图象上点的坐标特征:点的坐标满足函数的解析式,根据一次函数图象上点的坐标特征,再结合3m-n>2,得出-b>2是解题的关键.10.C解析:C【解析】【分析】根据勾股定理、等边三角形的判定以及相似三角形的判定即可求出答案.【详解】A、由勾股定理可知BC2+AC2=AB2,故A正确;B、∵∠C=90︒,∠B=60︒,∴∠A=30︒,∴AB=2BC,故B正确;C、若△DEF的边长分别为1,2DEF和△ABC不一定全等,故C错误;D、∵CM是△ACB的中线,∴CM=BM=CB,∴△BCM是等边三角形,故D正确.故选:C.【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及相似三角形的判定,本题属于基础题型.二、填空题11.【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】本题考查的是正比例函数的定义,一般解析:【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】(k是常数,k≠0)的函数叫做正比本题考查的是正比例函数的定义,一般地形如y kx例函数.12.(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,解析:(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,1).【点睛】本题考查了坐标确定位置,根据点A、B的坐标确定平面直角坐标系是解题关键.13.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键. 14.5【解析】根据二次根式的性质知:5.解析:5【解析】=5.15.-1且.【解析】【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,∴,且故答案为:-1且.【点睛】此题主要考查了分式值为解析:-1且5233ab ,. 【解析】【分析】 根据分式的值为零的条件为0的条件可得10a b且230a b ,则可求出+a b 的值.【详解】 解:∵分式23x a b a b x++-+,当1x =时,分式的值为零, ∴10a b 且230a b , ∴1a b +=-,且5233ab , 故答案为:-1且5233ab ,. 【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少. 16.52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:,故答案为:52°.【点睛】本题考查了等腰三角形性解析:52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:11=104=5222⨯︒︒⨯︒︒(180-76), 故答案为:52°.【点睛】 本题考查了等腰三角形性质,以及三角形内角和定理,解题的关键是掌握等腰三角形等边对等角计算角度.17.27【解析】【分析】把代入多项式,得到的式子进行移项整理,得,根据平方的非负性把和求出,再代入求多项式的值.【详解】解:将代入,得:移项得:,,即,时,故答案为:27【点睛解析:27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a代入多项式后进行移项整理是解题关键.18.【解析】【分析】代数式有意义,则它的分母2x+1≠0,由此求得x的取值范围.【详解】∵代数式有意义,∴2x+1≠0,解得x≠.故答案为:x≠.【点睛】本题考查了分式有意义的条件.解析:12 x≠-【解析】【分析】代数式321xx-+有意义,则它的分母2x+1≠0,由此求得x的取值范围.【详解】∵代数式321xx-+有意义,∴2x+1≠0,解得x≠12 -.故答案为:x≠12 -.【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.19.8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S阴影=×4×4=8cm2.故答案为:8.解析:8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S阴影=12×4×4=8cm2.故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.20..【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.【详解】解解析:12.【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.【详解】解:∵DE垂直平分AB交BC于点E,∴EA=EB,∴∠EAB=∠B=22.5°,∴∠AEC=∠EAB+∠B=45°,∵∠C=90°,∴△ACE为等腰直角三角形,∴CA=CE=1,∴三角形ACE的面积=12×1×1=12.故答案为:12.【点睛】本题主要考查了线段垂直平分线的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等,等腰三角形的两底角相等,灵活利用这两个性质是解题的关键.三、解答题21.(1)见解析(2)见解析【解析】【分析】(1)先证明∠ACE=∠CAD=∠ABD ,再根据SAS 证明ABD ACE ∆∆≌即可;(2)由ADB AEC ∆∆≌可得AD AE =,BAD CAE ∠=∠再证明60DAE ︒∠=即可.【详解】(1)ABC ∆为等边三角形,,60AB AC BAC ︒∴=∠=//AD ECDAC ACE ∴∠=∠又ABD DAC ∠=∠ABD ACE ∴∠=∠ 在BAD ∆与CAE ∆中,AB AC ABD ACE BD EC =⎧⎪∠=∠⎨⎪=⎩()ADB AEC SAS ∴∆∆≌(2)()ADB AEC SAS ∆∆≌,AD AE BAD CAE ∴=∠=∠CAE DAC BAD DAC ∴∠+∠=∠+∠60DAE BAC ︒∴∠=∠=ADE ∴∆为等边三角形.【点睛】此题主要考查了全等三角形的判定与性质以及等边三角形的判定,熟练掌握定理与性质是解此题的关键.22.(1)5x =或-3;(2)1x =-【解析】【分析】(1)根据平方根的定义求解;(2)先移项,再根据立方根的定义求解.【详解】解:(1)(x-1)2=16,x-1=±4,x=5或x=-3;(2)321x +=,x 3=-1,x=-1.【点睛】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根的定义,本题属于基础题型.23.(1)详见解析;(2)2.【解析】【分析】(1)在三角形ABE 与三角形ABC 中,由一对公共角相等,以及已知角相等,利用内角和定理即可得证;(2)由FD 与BC 平行,得到一对同位角相等,再由第一问的结论等量代换得到一对角相等,根据AF 为角平分线得到一对角相等,再由AF=AF ,利用ASA 得到三角形ABE 与三角形ADF 全等,利用全等三角形对应边相等得到AB=AD ,由AC-AD 求出DC 的长即可.【详解】(1)证明:在ABE ∆中,180ABE BAE AEB ∠=-∠-∠︒,在ABC ∆中,180C BAC ABC ∠=︒-∠-∠,∵AEB ABC ∠=∠,BAE BAC ∠=∠,∴ABE C ∠=∠;(2)解:∵FD BC ,∴ADF C =∠∠,又ABE C ∠=∠,∴ABE ADF ∠=∠,∵AF 平分BAE ∠,∴BAF DAF ∠=∠,在ABE ∆和ADF ∆中,ABE ADF AF AFBAF DAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABE ADF ASA ∆∆≌, ∴AB AD =,∵8AB =,10AC =,∴1082DC AC AD =-=-=.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.24.(1)见解析(2)9613 【解析】【分析】(1)连接BD ,依题意得BD=CD ,所以∠C=∠CBD ,可证明∠CBD=2E ∠,进而可得结论; (2)过点F 作FM BC ⊥,FN AC ⊥,根据已知求出CD=5,AC=10,由勾股定理求出BC=8,求出S △BCD =12S △ABC ,再根据BCD BCF CDF S S S ∆∆∆=+,即111222CD FN BC FM =⋅+⋅可求出FM ,从而可得结论. 【详解】(1)连接BD点D 为AC 中点,且90ABC ∠=︒,12BD AC CD AD ∴===, CD BE =,BE BD ∴=, BDE E ∴∠=∠,又BD CD ∴=,C DBC ∴∠=∠,2C DBC BDE E E ∴∠=∠=∠+∠=∠,(2)过点F 作FM BC ⊥,FN AC ⊥.CG 平分ABC ∠,FM FN ∴=,5BE =,5,10CD AD BE AC ∴====,又6AB =∴在Rt ABC ∆中,222AB BC AC +=,8BC ∴=BD 为ABC ∆中线,11111681222222BCD ABC S S AB BC ∆∆∴==⨯⨯=⨯⨯⨯=, 又BCD BCF CDF S S S ∆∆∆=+,111222CD FN BC FM ∴=⋅+⋅, 11581222FM FM ∴⨯⨯+⨯⨯=, 2413FM ∴=, 1124968221313BCF S BC FM ∆∴=⋅=⨯⨯=, 【点睛】此题考查了直角三角形的性质,角平分线的性质以及三角形中线的性质,熟练掌握这些性质是解题的关键.25.(1)20°;(2)10.【解析】【分析】(1)根据三角形内角和定理求出∠BAC ,根据线段垂直平分线的性质得到DA =DB ,FA =FC ,得到∠DAB =∠ABC =30︒,∠FAC =∠ACB =50︒,结合图形计算,得到答案;(2)根据三角形的周长公式计算即可.【详解】(1)∠BAC =180︒﹣∠ABC ﹣∠ACB =180︒﹣30︒﹣50︒=100︒,∵DE 是AB 的垂直平分线,∴DA =DB ,∴∠DAB =∠ABC =30︒,∵FG 是AC 的垂直平分线,∴FA =FC ,∴∠FAC =∠ACB =50︒,∴∠DAF =∠BAC ﹣(∠DAB +∠FAC )=20︒;(2)∵△DAF 的周长为10,∴AD +DF +FC =10,∴BC =BD +DF +FC =AD +DF +FC =10.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.四、压轴题26.(1)56°;(2)y=454x +;(3)36°或1807°. 【解析】【分析】(1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果;(3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x +解出x 即可. 【详解】 解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°,∵CD ⊥AB ,∴∠BDC=90°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=34°,∴∠BPD =90-34=56°;(2)∵∠A =x °,∴∠ABC=(180°-x°)÷2=(902x -)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°, ∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x +)°, 即y 与 x 的关系式为y=454x +; (3)①若EP=EC ,则∠ECP=∠EPC=y ,而∠ABC=∠ACB=902x -,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x +, ∴902x -+902x --(454x +)=90°, 解得:x=36°;②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y -, 由①得:∠ABC+∠BCD=90°, ∴902x -+[902x --(902y -)]=90,又y=454x +, 解得:x=1807°;③若CP=CE ,则∠EPC=∠PEC=y ,∠PCE=180-2y ,由①得:∠ABC+∠BCD=90°, ∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合, 综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系.27.(1)①6;②5或﹣3;(2)直线AC 的表达式为:y =﹣x+3或y =x+1;(3)m 的取值范围为﹣3≤m ≤﹣或2m ≤3.【解析】【分析】(1)①由矩形的性质即可得出结果;②由矩形的性质即可得出结果;(2)过点A (1,2)作直线y =﹣1的垂线,垂足为点G ,则AG =3求出正方形AGCH 的边长为3,分两种情况求出直线AC 的表达式即可;(3)由题意得出点M 在直线y =2上,由等边三角形的性质和题意得出OD =OE =12DE =1,EF =DF =DE =2,得出OF OD①当点N 在边EF 上时,若点N 与E 重合,点M ,N 的“相关矩形”为正方形,则点M 的坐标为(﹣3,2)或(1,2);若点N 与F 重合,点M ,N 的“相关矩形”为正方形,则点M 的坐标为(﹣2);得出m 的取值范围为﹣3≤m ≤﹣或2﹣≤m ≤1;②当点N 在边DF 上时,若点N 与D 重合,点M ,N 的“相关矩形”为正方形,则点M 的坐标为(3,2)或(﹣1,2);若点N 与F 重合,点M ,N 的“相关矩形”为正方形,则点M 的坐标为(22);得出m 的取值范围为2≤m ≤3或2﹣≤m ≤1;即可得出结论.【详解】解:(1)①∵b =﹣2,∴点B 的坐标为(﹣2,0),如图2﹣1所示:∵点A 的坐标为(1,2),∴由矩形的性质可得:点A ,B 的“相关矩形”的面积=(1+2)×2=6,故答案为:6;②如图2﹣2所示:由矩形的性质可得:点A ,B 的“相关矩形”的面积=|b ﹣1|×2=8,∴|b﹣1|=4,∴b=5或b=﹣3,故答案为:5或﹣3;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,∴正方形AGCH的边长为3,当点C在直线x=1右侧时,如图3﹣1所示:CG=3,则C(4,﹣1),设直线AC的表达式为:y=kx+a,则214k ak a=+⎧⎨-=+⎩,解得;13ka=-⎧⎨=⎩,∴直线AC的表达式为:y=﹣x+3;当点C在直线x=1左侧时,如图3﹣2所示:CG=3,则C(﹣2,﹣1),设直线AC的表达式为:y=k′x+b,则212k bk b=+⎧⎨-=-+''⎩,解得:k1 b1=⎧⎨='⎩,∴直线AC的表达式为:y=x+1,综上所述,直线AC的表达式为:y=﹣x+3或y=x+1;(3)∵点M的坐标为(m,2),∴点M在直线y=2上,∵△DEF是等边三角形,顶点F在y轴的正半轴上,点D的坐标为(1,0),∴OD=OE=12DE=1,EF=DF=DE=2,∴OF OD分两种情况:如图4所示:①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2)或(2,2);∴m的取值范围为﹣3≤m≤﹣2m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(2﹣3,2)或(﹣2+3,2);∴m的取值范围为2﹣3≤m≤3或﹣1≤m≤﹣2+3;综上所述,m的取值范围为﹣3≤m≤﹣2+3或2﹣3≤m≤3.【点睛】此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.28.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090AMC ︒︒︒-+∠=,即可求出解. (3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知,11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE A MC ︒∠+∠+∠=,112()90CMF ABE A MC ︒∴∠+∠+∠=,()1129090EMF AMC ︒︒∴-∠+∠=,()112906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.29.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E 作EF ∥AC 交AB 于F ,根据已知条件得到△ABC 是等边三角形,推出△BEF 是等边三角形,得到BE=EF ,∠BFE=60°,根据全等三角形的性质即可得到结论; (3)连接AF ,证明△ABF ≌△CBF ,得AF=CF ,再证明DH=AH=12CF=3. 【详解】解:(1)∵AB=AC ,∴∠ABC=∠ACB ,∵DE=DC ,∴∠E=∠DCE ,∴∠ABC-∠E=∠ACB-∠DCB ,即∠EDB=∠ACD ;(2)∵△ABC 是等边三角形,∴∠B=60°,∴△BEF是等边三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF与△CAD中,EDF DCADFE CADDE CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)连接AF,如图3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,AB BCABF CBFBF BF=⎧⎪∠=∠⎨⎪=⎩,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=12AF=12CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.30.(1)①见解析;②DE=297;(2)DE的值为517【解析】【分析】(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=153.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如图1中,设DE=x,则CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.。
江苏省连云港市八年级上第一学期期末数学试卷
江苏省连云港市八年级上第一学期期末数学试卷一、选择题1.下列四个图标中,是轴对称图形的是()A.B.C.D.2.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.3.下列图案中,不是轴对称图形的是()A.B.C.D.4.下列各组数不是勾股数的是()A.3,4,5B.6,8,10C.4,6,8D.5,12,13 5.下列交通标识中,是轴对称图形的是()A.B.C.D.6.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.下列实数中,无理数是()A.227B.3πC.4-D.3278.如图,在平面直角坐标系中,A(0,3),B(5,3),C(5,0),点D在线段OA 上,将△ABD沿着直线BD折叠,点A的对应点为E,当点E在线段OC上时,则AD的长是()A .1B .43C .53D .29.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的( )A .总体B .个体C .样本D .样本容量10.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( )A .x >-1B .x <-1C .x <-2D .无法确定二、填空题11.等边三角形绕一点至少旋转_____°与自身完全重合.12.在一个不透明的袋子中装有2个黄球和3个红球,每个除颜色外完全相同,将球摇匀从中任取一球:①恰好取出白球;②恰好取出红球;③恰好取出黄球,根据你的判断,将这些事件按发生的可能性从小到大顺序排列___________(只需填写序号).13.圆周率π=3.1415926…精确到千分位的近似数是_____.14.如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′处,那么CD =_____.15.若等腰三角形的一个角为70゜,则其顶角的度数为_____ .16.计算:52x x ⋅=__________.17.在2,227,254-,3.14,这些数中,无理数有__________个. 18.若x ,y 都是实数,且338y x x =-+-+,则3x y +的立方根是______. 19.如图,已知ABD CBD ∠∠=,若以“SAS”为依据判定ABD ≌CBD ,还需添加的一个直接条件是______.20.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是_____.三、解答题21.在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形ABC 的三个顶点的坐标分别为(3,6)A -,(1,2)B -,(5,4)C -(1)作出三角形ABC 关于y 轴对称的三角形111A B C(2)点1A 的坐标为 . (3)①利用网络画出线段AB 的垂直平分线L ;②P 为直线上L 上一动点,则PA PC +的最小值为 .22.如图,△AB C 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D .(1)若△BCD 的周长为8,求BC 的长;(2)若∠A=40°,求∠DBC 的度数.23.计算:(1)2(43)x y -(2)(1)(1)x y x y +++- (3)2293169a a a a -⎛⎫÷- ⎪++⎝⎭(4)22222233a b a b a a a b a b a b b+-⎛⎫⋅-÷ ⎪-+-⎝⎭ 24.(1)如图①,小明同学作出ABC ∆两条角平分线AD ,BE 得到交点I ,就指出若连接CI ,则CI 平分ACB ∠,你觉得有道理吗?为什么?(2)如图②,Rt ABC ∆中,5AC =,12BC =,13AB =,ABC ∆的角平分线CD 上有一点I ,设点I 到边AB 的距离为d .(d 为正实数)小季、小何同学经过探究,有以下发现:小季发现:d 的最大值为6013. 小何发现:当2d =时,连接AI ,则AI 平分BAC ∠.请分别判断小季、小何的发现是否正确?并说明理由.25.如图,在△ABC 中,∠ACB=90°,∠B=30°,CD ,CE 分别是AB 边上的中线和高.(1)求证:AE=ED ;(2)若AC=2,求△CDE 的周长.四、压轴题26.已知ABC 是等腰直角三角形,∠C=90°,点M 是AC 的中点,延长BM 至点D ,使DM =BM ,连接AD .(1)如图①,求证:DAM ≌BCM ;(2)已知点N 是BC 的中点,连接AN .①如图②,求证:ACN ≌BCM ;②如图③,延长NA 至点E ,使AE =NA ,连接,求证:BD ⊥DE .27.如图,在ABC ∆中,90,,8ACB AC BC AB cm ∠=︒==,过点C 做射线CD ,且//CD AB ,点P 从点C 出发,沿射线CD 方向均匀运动,速度为3/cm s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为1/cm s ,当点Q 停止运动时,点P 也停止运动.连接,PQ CQ ,设运动时间为()()08t s t <<.解答下列问题:(1)用含有t 的代数式表示CP 和BQ 的长度;(2)当2t =时,请说明//PQ BC ;(3)设BCQ ∆的面积为()2S cm ,求S 与t 之间的关系式.28.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).29.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.30.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A 、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不合题意.故选:B.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B解析:B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【详解】A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【点睛】考核知识点:轴对称图形识别.3.D解析:D【解析】【分析】根据轴对称图形的概念求解.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意.故选:D.【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,折叠后两边会重合.4.C解析:C【解析】【分析】根据勾股数的定义:有a、b、c三个正整数,满足a2+b2=c2,称为勾股数.由此判定即可.【详解】解:A、32+42=52,能构成勾股数,故选项错误;B、62+82=102,能构成勾股数,故选项错误C、42+62≠82,不能构成勾股数,故选项正确;D、52+122=132,能构成勾股数,故选项错误.故选:C.【点睛】本题考查勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.5.B解析:B【解析】某个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,以上图形中,B是轴对称图形,故选B6.B解析:B【解析】【分析】【详解】∵-20,2x+10,∴点P (-2,2x+1)在第二象限,故选B.7.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.227是有理数,不符合题意;B.3π是无理数,符合题意;C.4-=-2,4-是有理数,不符合题意;327327是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π2,0.8080080008…(每两个8之间依次多1个0)等形式.8.C解析:C【解析】【分析】先根据勾股定理求出EC的长,进而可得出OE的长,在Rt△DOE中,由DE=AD及勾股定理可求出AD的长.【详解】解:根据各点坐标可得AB=OC=BE=5,AO=BC=3,设AD=x,则DE=x,DO=3-x∴=4,∴OE=1,在Rt△DOE中,DO2+OE2=DE2,解得x=53,∴AD=53,故选C.【点睛】本题考查了勾股定理的应用,找准直角三角形,设出未知数列出方程即可解答.9.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.10.B解析:B【解析】【分析】如图,直线l1:y1=k1x+b与直线l2:y2=k2x在同一平面直角坐标系中的图像如图所示,则求关于x的不等式k1x+b>k2x的解集就是求:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围.【详解】解:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围是x<-1.故关于x的不等式k1x+b>k2x的解集为:x<-1.故选B.二、填空题11.120【解析】分析:等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可.详解:因为等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,所以,旋转角解析:120【解析】分析:等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可.详解:因为等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,所以,旋转角为360°÷3=120°,故至少旋转120度才能与自身重合.故答案为:120.点睛:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.12.①③②【解析】【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【详解】解:根据题意,袋子中共5个球, 2个黄球和3个红球,故将球摇匀,从中解析:①③②【解析】【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【详解】解:根据题意,袋子中共5个球, 2个黄球和3个红球,故将球摇匀,从中任取1球,则①恰好取出白球的可能性为0,②恰好取出红球的可能性为35,③恰好取出黄球的可能性为25,故这些事件按发生的可能性从小到大的顺序排列是①③②.故答案为:①③②.【点睛】本题主要考查了可能性大小计算,即概率的计算方法,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.13.142【解析】【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5大于4,故进1,得3.142.【详解】解:圆周率π=3.1415926…精确到千分解析:142【解析】【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5大于4,故进1,得3.142.【详解】解:圆周率π=3.1415926…精确到千分位的近似数是3.142.故答案为3.142.【点睛】本题考查了近似数和精确度,精确到哪一位,就是对它后边的一位进行四舍五入.14.3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解析:3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB10cm,由翻折变换的性质得,BC′=BC=6cm,C′D=CD,∴AC′=AB﹣BC′=10﹣6=4cm,设CD=x,则C′D=x,AD=8﹣x,在Rt△AC′D中,由勾股定理得,AC′2+C′D2=AD2,即42+x2=(8﹣x)2,解得x=3,即CD=3cm.故答案为:3cm.【点睛】本题考查了翻折变换的性质,勾股定理,此类题目熟记性质并利用勾股定理列出方程是解题的关键.15.70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:解析:70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为: 70°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 16.【解析】【分析】根据同底数幂相乘底数不变指数相加的法则即可得解.【详解】,故答案为:.【点睛】本题主要考查了同底数幂的乘法运算,熟练掌握相关运算公式是解决本题的关键.解析:7x【解析】【分析】根据同底数幂相乘底数不变指数相加的法则即可得解.【详解】52527x x x x +⋅==,故答案为:7x .【点睛】本题主要考查了同底数幂的乘法运算,熟练掌握相关运算公式是解决本题的关键. 17.1【解析】【分析】根据无理数的定义,即可得到答案.【详解】解:根据题意,是无理数;,,3.14是有理数;∴无理数有1个;故答案为:1.【点睛】本题考查了无理数的定义,解题的关键是熟解析:1【解析】【分析】根据无理数的定义,即可得到答案.【详解】是无理数;227, 3.14是有理数; ∴无理数有1个;故答案为:1.【点睛】本题考查了无理数的定义,解题的关键是熟练掌握无理数的定义. 18.3【解析】【分析】根据被开方数大于等于0列式求出x的值,然后求出y的值,代入代数式求解,再根据立方根的定义解答.【详解】解:根据题意得,x-3≥0且3-x≥0,解得x≥3且x≤3,所以解析:3【解析】【分析】根据被开方数大于等于0列式求出x的值,然后求出y的值,代入代数式求解,再根据立方根的定义解答.【详解】解:根据题意得,x-3≥0且3-x≥0,解得x≥3且x≤3,所以x=3,y=8,x+3y=3+3×8=27,∴x+3y的立方根为3.故答案为:3.【点睛】本题考查二次根式的被开方数是非负数,立方根的定义,根据x的取值范围求出x的值是解题的关键.19.AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD解析:AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD,BD=BD,∴添加AB=CB时,可以根据SAS判定△ABD≌△CBD,故答案为AB=CB.【点睛】本题考查了全等三角形的判定.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.20.15【解析】【分析】试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分解析:15【解析】【分析】试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是:12×DE×BC=12×10×3=15,故答案为15.考点:角平分线的性质.三、解答题21.(1)见解析(2)点1A的坐标为(3,6);(3)①见解析20.【解析】【分析】(1)首先确定A 、B 、C 三点关于y 轴的对称点位置A 1、B 1、C 1,再连接即可得到△ABC 关于y 轴对称的△A 1B 1C 1; (2)根据平面直角坐标系写出点1A 的坐标;(3)①根据垂直平分线的定义画图即可;②根据轴对称的性质以及两点之间线段最短得PA PC +的最小值为BC 的长,再由勾股定理求解即可.【详解】(1)如图所示:(2)点1A 的坐标为(3,6);(3)①如图所示:②PA PC +的最小值为BC 的长,即2224+=20【点睛】此题主要考查了作图--轴对称变换,以及三角形的面积,关键是掌握几何图形都可看作是由点组成,画一个图形的轴对称图形时,就是确定一些特殊的对称点.22.(1)3cm ;(2)30°.【解析】【分析】(1)根据线段垂直平分线定理得出AD=BD ,根据BC+CD+BD=8cm 求出AC+BC=8cm ,把AC 的长代入求出即可;(2)已知∠A=40°,AB=AC 可得∠ABC=∠ACB ,再由线段垂直平分线的性质可求出∠ABC=∠A ,易求∠DBC .【详解】(1)∵D 在AB 垂直平分线上,∴AD=BD ,∵△BCD 的周长为8cm ,∴BC+CD+BD=8cm ,∴AD+DC+BC=8cm ,∴AC+BC=8cm ,∵AB=AC=5cm ,∴BC=8cm ﹣5cm=3cm ;(2)∵∠A=40°,AB=AC ,∴∠ABC=∠ACB=70°,又∵DE 垂直平分AB ,∴DB=AD∴∠ABD=∠A=40°,∴∠DBC=∠ABC ﹣∠ABD=70°﹣40°=30°.考点:(1)线段垂直平分线的性质;(2)等腰三角形的性质.23.(1)2216249x xy y -+;(2)2221x xy y ++-;(3)3a a +;(4)22223()()a ab b a b a b +++- 【解析】【分析】(1)根据完全平方公式直接写出结果即可;(2)先将x y +看做一个整体运用平方差公式计算,再利用完全平方公式展开即可; (3)将分式利用平方差公式和完全平方公式分解因式,再约分化简即可;(4)运用分式的混合运算法则化简即可.【详解】(1)2(43)x y -=2216249x xy y -+;(2)2222(1)(1)()121x y x y x y x xy y +++-=+-=++-;(3)22293(3)(3)169(3)33a a a a a a a a a a a -+-⎛⎫÷-=⋅= ⎪+++-+⎝⎭; (4)22222233a b a b a a a b a b a b b+-⎛⎫⋅-÷ ⎪-+-⎝⎭ 22222()2()()3()a b a b a b a b a b a b a +-=⋅-⋅-+- 2222()13()()1a b a b a b a b a b +=⋅-⋅-+- 2222()3()()a b ab a b a b a b+=--+- 2224233()()a ab b ab a b a b ++-=+- 22223()()a ab b a b a b ++=+-.【点睛】本题主要考查了整式得乘除法及分式的乘除法,熟练运用整式得乘法公式,幂运算,及分式的通分约分等计算技巧是解决本题的关键.24.(1)有道理,理由详见解析;(2)小季和小何都正确,理由详见解析【解析】【分析】(1)过I 点分别作IM ,IN ,IK 垂直于AB ,BC ,AC 于点M ,N ,K ,根据角平分线的性质即可得解;(2)根据等积法的相关方法进行求解即可.【详解】(1)如下图,过I 点分别作IM ,IN ,IK 垂直于AB ,BC ,AC 于点M ,N ,K ,连接IC∵AI 平分∠BAC ,IM ⊥AB ,IK ⊥AC∴IM =IK ,同理IM =IN∴IK =IN又∵IK ⊥AC ,IN ⊥BC∴CI 平分∠BCA ;(2)如下图,过C 点作CE ⊥AB 于点E ,则d 的最大值为CE 长∵5AC =,12BC =∴115123022ABC S AC BC ∆=⋅=⨯⨯= 又∵11133022ABC S AB CE CE ∆=⋅=⨯⨯= ∴6013CE = ∴d 的最大值为6013 ∴小季正确;假设此时AI 平分BAC ∠,如下图,连接AI ,BI ,过I 点作IG ,IH ,IF 分别垂直于AC ,BC ,AB 于点G ,H ,F∵AI 平分BAC ∠,CD 平分∠ACB∴BI 平分∠CBA∵IG ⊥AC ,IH ⊥BC ,ID ⊥AB∴IG=IH=IF=d∵ACB AIC BIC ABI S S S S ∆∆∆∆=++ ∴11112222AC BC AC IG BC IH AB IF ⋅=⋅+⋅+⋅ ∴1111512512132222d d d ⨯⨯=⨯⨯+⨯⨯+⨯⨯ ∴2d =∴假设成立,当2d =时,连接AI ,则AI 平分BAC ∠∴小何正确.【点睛】本题主要考查了等积法及角平分线的性质,熟练掌握等积法的运用及角平分线性质的证明是解决本题的关键.25.(1)证明见解析;(2)33+【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,得CD=AD ,根据直角三角形的两个锐角互余,得∠A=60°,从而判定△ACD 是等边三角形,再根据等腰三角形的三线合一的性质即可证明;(2)结合(1)中的结论,求得CD=2,DE=1,只需根据勾股定理求得CE 的长即可.【详解】(1)证明:∵∠ACB=90°,CD 是AB 边上的中线,∴CD=AD=DB .∵∠B=30°,∴∠A=60°.∴△ACD 是等边三角形.∵CE 是斜边AB 上的高,∴AE=ED .(2)解:由(1)得AC=CD=AD=2ED ,又AC=2,∴CD=2,ED=1.∴CE ==.∴△CDE 的周长=213CD ED CE ++=+=.四、压轴题26.(1)见解析;(2)①见解析;②见解析【解析】【分析】(1)由点M 是AC 中点知AM=CM ,结合∠AMD=∠CMB 和DM=BM 即可得证; (2)①由点M ,N 分别是AC ,BC 的中点及AC=BC 可得CM=CN ,结合∠C=∠C 和BC=AC 即可得证;②取AD 中点F ,连接EF ,先证△EAF ≌△ANC 得∠NAC=∠AEF ,∠C=∠AFE=90°,据此知∠AFE=∠DFE=90°,再证△AFE ≌△DFE 得∠EAD=∠EDA=∠ANC ,从而由∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM 即可得证.【详解】解:(1)∵点M 是AC 中点,∴AM=CM ,在△DAM 和△BCM 中,∵AM CM AMD CMB DM BM =⎧⎪∠=∠⎨⎪=⎩,∴△DAM ≌△BCM (SAS );(2)①∵点M 是AC 中点,点N 是BC 中点,∴CM=12AC ,CN=12BC , ∵△ABC 是等腰直角三角形,∴AC=BC ,∴CM=CN ,在△BCM 和△ACN 中,∵CM CN C C BC AC =⎧⎪∠=∠⎨⎪=⎩,∴△BCM ≌△ACN (SAS );②证明:取AD 中点F ,连接EF ,则AD=2AF ,∵△BCM ≌△ACN ,∴AN=BM ,∠CBM=∠CAN ,∵△DAM ≌△BCM ,∴∠CBM=∠ADM ,AD=BC=2CN ,∴AF=CN ,∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC ,由(1)知,△DAM ≌△BCM ,∴∠DBC=∠ADB ,∴AD ∥BC ,∴∠EAF=∠ANC ,在△EAF 和△ANC 中,AE AN EAF ANC AF NC =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△ANC (SAS ),∴∠NAC=∠AEF ,∠C=∠AFE=90°,∴∠AFE=∠DFE=90°,∵F 为AD 中点,∴AF=DF ,在△AFE 和△DFE 中,AF DF AFE DFE EF EF =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFE (SAS ),∴∠EAD=∠EDA=∠ANC ,∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,∴BD ⊥DE .【点睛】本题是三角形的综合问题,解题的关键是掌握中点的性质、等腰直角三角形的性质、全等三角形的判定与性质等知识点.27.(1)CP=3t ,BQ=8-t ;(2)见解析;(3)S=16-2t .【解析】【分析】(1)直接根据距离=速度⨯时间即可;(2)通过证明PCQ BQC≅,得到∠PQC=∠BCQ,即可求证;(3)过点C作CM⊥AB,垂足为M,根据等腰直角三角形的性质得到CM=AM=4,即可求解.【详解】解:(1)CP=3t,BQ=8-t;(2)当t=2时,CP=3t=6,BQ=8-t=6∴CP=BQ∵CD∥AB∴∠PCQ=∠BQC又∵CQ=QC∴PCQ BQC≅∴∠PQC=∠BCQ∴PQ∥BC(3)过点C作CM⊥AB,垂足为M∵AC=BC,CM⊥AB∴AM=118422AB=⨯=(cm)∵AC=BC,∠ACB=90︒∴∠A=∠B=45︒∵CM⊥AB∴∠AMC=90︒∴∠ACM=45︒∴∠A=∠ACM∴CM=AM=4(cm)∴118t4162 22BCQS BQ CM t ==⨯-⨯=-因此,S与t之间的关系式为S=16-2t.【点睛】此题主要考查列代数式、全等三角形的判定与性质、平行线的判定、等腰三角形的性质,熟练掌握逻辑推理是解题关键.28.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由见解析.【解析】【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t,OP=8-2t,根据△ODP与△ODQ的面积相等列方程求解即可;(3)由∠AOC=90°,y轴平分∠GOD证得OG∥AC,过点H作HF∥OG交x轴于F,得到∠FHC=∠ACE,∠FHO=∠GOD,从而∠GOD+∠ACE=∠FHO+∠FHC,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴114222ODQ DS OQ x t t=⨯=⨯=△,11823123 22ODP DS OP y t t=⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO ,∴∠OAC=∠AOD.∵x 轴平分∠GOD ,∴∠GOA=∠AOD.∴∠GOA=∠OAC. ∴OG ∥AC ,如图,过点H 作HF ∥OG 交x 轴于F ,∴HF ∥AC ,∴∠FHC=∠ACE. ∵OG ∥FH ,∴∠GOD=∠FHO ,∴∠GOD+∠ACE=∠FHO+∠FHC ,即∠GOD+∠ACE=∠OHC ,∴2∠GOA+∠ACE=∠OHC .【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.29.(1)45°;(2)PE 的值不变,PE=4,理由见详解;(3)D(828 ,0).【解析】【分析】(1)根据(42,0)A ,(0,2)B ,得△AOB 为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB 的度数;(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC ⊥AB ,再证明△POC ≌△DPE ,根据全等三角形的性质得到OC=PE ,即可得到答案;(3)证明△POB ≌△DPA ,得到PA=OB=2,DA=PB ,进而得OD 的值,即可求出点D 的坐标.【详解】(1)(42,0)A ,(0,42)B ,∴OA=OB=2∵∠AOB=90°,∴△AOB 为等腰直角三角形,∴∠OAB=45°;(2)PE 的值不变,理由如下:∵△AOB 为等腰直角三角形,C 为AB 的中点,∴∠AOC=∠BOC=45°,OC ⊥AB ,∵PO=PD ,∴∠POD=∠PDO ,∵D 是线段OA 上一点,∴点P 在线段BC 上,∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,∴∠POC=∠DPE ,在△POC 和△DPE 中,90POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△POC ≅△DPE(AAS),∴OC=PE ,∵OC=12AB=12××=4, ∴PE=4;(3)∵OP=PD , ∴∠POD=∠PDO=(180°−45°)÷2=67.5°,∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,∴∠APD=∠BOP ,在△POB 和△DPA 中,OBP PAD BOP APD OP PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△POB ≌△DPA(AAS),∴PA=OB=DA=PB ,∴DA=PB=-,∴OD=OA−DA=8-,∴点D 的坐标为(8,0).【点睛】本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.30.(1)全等,理由见解析;(2)t=3.5秒或5秒【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C→B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN 为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.。
江苏省连云港市2019届数学八上期末试卷
江苏省连云港市2019届数学八上期末试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.下列等式成立的是( )A .0(1)1-=-B .0(1)1-=C .101-=-D .101-=2.下列式子中不是分式的是( )A. B. C. D. 3.如果分式有意义,那么x 的取值范围是( ) A.x≠0 B.x=﹣1 C.x≠﹣1 D.x≠14.下列计算正确的是( )A .m 2+m=3m 3B .(m 2)3 =m 5C .(2m)2 =2m 2D .m ·m 2=m 35.下列运算正确的是( )A .325a a a +=B .326a a a ∙=C .()326a a =D .263a a a ÷= 6.如图,图形面积可以由以下哪个公式表示( )A .22()()a b a b a b -=+-B .22()()4a b a b ab +--=C .5-4D .222()2a b a ab b -=-+ 7.下列博物馆的标识中是轴对称图形的是( )A. B.C. D.8.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线OD交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC度数为( )∘.A.108°B.135°C.144°D.160°9.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD//BE,∠1=40°,则∠2的度数是()A.70°B.55°C.40°D.35°10.如图,AD∥BC,AD=CB,要使△ADF≌△CBE,需要添加的下列选项中的一个条件是( )A.AE=CF B.DF=BE C.∠A=∠C D.AE=EF11.如图,△ABC≌△DEF,DF和AC,FE和CB是对应边.若∠A=100°,∠F=46°,则∠DEF等于()A.100°B.54°C.46°D.34°12.下列命题是真命题的是()A.将点A(﹣2,3)向上平移3个单位后得到的点的坐标为(1,3)B.三角形的三条角平分线的交点到三角形的三个顶点的距离相等C.三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等D.平行四边形的对角线相等13.若一个正多边形的每一个外角都等于40°,则它是( ).A.正九边形B.正十边形C.正十一边形D.正十二边形14.一个三角形的三边长分别为4、5、x,则x的取值范围是( )A.1≤x≤9B.1≤x<9 C.1<x≤9D.1<x<915.如果某多边形的每个内角的大小都是其相邻外角的3倍,那么这个多边形是()A.六边形 B.八边形 C.正六边形 D.正八边形二、填空题16.当x __________没有意义. 17.若a m =16,a n =2,则a m ﹣2n 的值为_____.18.如图,在四边形ABCD 中,90BAD BCD ∠=∠=,AB AD =,如果AC =,则四边形ABCD 的面积为________2cm .19.若正多边形的一个外角是45°,则该正多边形的边数是_________.20.在平面直角坐标系中,已知A B 、两点的坐标分别为(1,1),(3,2)A B -,若点M 为x 轴上一点,且MA MB +最小,则点M 的坐标为__________.三、解答题21.计算:(1)()1020201132π-⎛⎫-+-+ ⎪⎝⎭; (2)()32328292a a a a a a ⋅⋅+--÷.22.(1)()10153π-⎛⎫+- ⎪⎝⎭; (2)计算:()()()252x x x x -+--;23.已知:如图,在△ABC 中,∠BAC 的平分线AP 与BC 的垂直平分线PQ 相交于点P ,过点P 分别作PM ⊥AC 于点M ,PN ⊥AB 交AB 延长线于点N ,连接PB ,PC .求证:BN=CM .24.在梯形ABCD 中,//,=90,=45AD BC A C ∠∠,点E 在直线AD 上,联结BE ,过点E 作BE 的垂线,交直线CD 与点F ,(1)如图1,已知BE EF =,:求证:AB AD =;。
连云港市八年级(上)期末数学试卷解析版
连云港市八年级(上)期末数学试卷解析版一、选择题1.下列长度的三条线段能组成直角三角形的是( )A .3,4,4B .3,4,5C .3,4,6D .3,4,82.如图,在△ABC 中,AB="AC," AB +BC=8.将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,连接BF ,则△BCF 的周长是( )A .8B .16C .4D .103.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是() A . B .C .D .4.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( ) A .0.001cm B .0.0001cm C .0.00001cm D .0.000001cm5.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .46.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点CB .过点P 作PC ⊥AB 于点C 且AC=BCC .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C7.若3n +3n +3n =19,则n =( ) A .﹣3 B .﹣2 C .﹣1 D .08.下列分式中,x 取任意实数总有意义的是( )A .21x x +B .221(2)x x -+C .211x x -+D .2x x + 9.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在x 轴,y 轴的正半轴上,点B (6,3),现将△OAB 沿OB 翻折至△OA ′B 位置,OA ′交BC 于点P .则点P 的坐标为( )A .(94,3)B .(32,3)C .(125,3)D .(5,32) 10.如图,在R △ABC 中,∠ACB =90°,AC =6,BC =8,E 为AC 上一点,且AE =85,AD 平分∠BAC 交BC 于D .若P 是AD 上的动点,则PC +PE 的最小值等于( )A .185B .245C .4D .265二、填空题11.17.85精确到十分位是_____.12.某种型号汽车每行驶100km 耗油10L ,其油箱容量为40L .为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的18,按此建议,一辆加满油的该型号汽车最多行驶的路程是_____km .13.若函数4y kx =-的图象平行于直线2y x =-,则函数的表达式是________.14.将一次函数34y x =-的图象向上平移3个单位长度,相应的函数表达式为_____.15.如图,在Rt △ABO 中,∠OBA=90°,AB=OB ,点C 在边AB 上,且C (6,4),点D 为OB 的中点,点P 为边OA 上的动点,当∠APC=∠DPO 时,点P 的坐标为 ____.16.如图,已知直线y =ax ﹣b ,则关于x 的方程ax ﹣1=b 的解x =_____.17.36的算术平方根是 .18.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y19.如图,直线l 上有三个正方形,,a b c ,若,a c 的面积分别为5和11,则b 的面积为__________.20.若正比例函数y=kx 的图象经过点(2,4),则k=_____.三、解答题21.已知2y -与x 成正比例,当2x =时,6y =. (1)求y 与x 的函数关系式;(2)当6y >时,求x 的取值范围.22.某商场计划销售甲、乙两种产品共200件,每销售1件甲产品可获得利润0.4万元, 每销售1件乙产品可获得利润0.5万元,设该商场销售了甲产品x (件),销售甲、乙两种产品获得的总利润为y (万元).(1)求y 与x 之间的函数表达式;(2)若每件甲产品成本为0.6万元,每件乙产品成本为0.8万元,受商场资金影响,该商场能提供的进货资金至多为150万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润.23.小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程()km s 与所用时间()h t 之间的函数关系.试根据函数图像解答下列问题:(1)小明在途中停留了____h ,小明在停留之前的速度为____km/h ;(2)求线段BC 的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,6t =h 时,两人同时到达乙地,求t 为何值时,两人在途中相遇.24.(1)求x 的值:225x =(2)计算:23(2)816--+25.如图,M 、N 两个村庄落在落在两条相交公路AO 、BO 内部,这两条公路的交点是O ,现在要建立一所中学C ,要求它到两个村庄的距离相等,到两条公路的距离也相等.试利用尺规找出中学的位置(保留作图痕迹,不写作法).四、压轴题26.如图,在平面直角坐标系中,一次函数y x =的图象为直线1.(1)观察与探究已知点A 与A ',点B 与B '分别关于直线l 对称,其位置和坐标如图所示.请在图中标出()2,3C -关于线l 的对称点C '的位置,并写出C '的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为______.(3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.27.如图,在平面直角坐标系中,直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,过点B 的另一条直线交x 轴正半轴于点C ,且OC =3.图1 图2(1)求直线BC 的解析式;(2)如图1,若M 为线段BC 上一点,且满足S △AMB =S △AOB ,请求出点M 的坐标;(3)如图2,设点F 为线段AB 中点,点G 为y 轴上一动点,连接FG ,以FG 为边向FG 右侧作正方形FGQP ,在G 点的运动过程中,当顶点Q 落在直线BC 上时,求点G 的坐标;28.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________. (2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)29.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.30.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误;B 、∵2223+4=5,∴三条线段能组成直角三角形,正确;C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误;D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误;故选:B .【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.2.A解析:A【解析】【分析】由将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,可得BF=AF ,又由在△ABC 中,AB=AC ,AB+BC=8,易得△BCF 的周长等于AB+BC ,则可求得答案.【详解】解:由将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,可得BF=AF ,又由在△ABC 中,AB=AC ,AB+BC=8,所以△BCF 的周长等于BC+CF+BF=BC+CF+AF=AB+BC=8.故答案选A .【点睛】此题考查了折叠的性质.此题难度不大,解题的关键是掌握折叠前后图形的对应关系,注意等量代换,注意数形结合思想的应用.3.A解析:A【解析】【分析】根据正比例函数的图象及性质即可求出k 的取值范围,然后根据一次函数的图象及性质即可判断.【详解】解:∵正比例函数y kx =的图象经过第一、三象限,∴0k >∵一次函数y x k =+中,1>0, 0k >∴一次函数y x k =+经过一、二、三象限故选A .【点睛】此题考查的是正比例函数的图象及性质和一次函数的图象及性质,掌握一次函数的图象及性质与各项系数的关系是解决此题的关键.4.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5⨯=0.00008,810-∴近似数5⨯是精确到十万分位,即0.00001.810-故选:C.【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.5.C解析:C【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.6.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.7.A解析:A【解析】【分析】直接利用负整数指数幂的性质结合同底数幂的乘法运算法则将原式变形得出答案.【详解】 解:13339n n n ++=, 1233n +-∴=,则12n +=-,解得:3n =-.故选:A .【点睛】此题主要考查了负整数指数幂的性质以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.8.C解析:C【解析】【分析】根据分式有意义的条件是分母不等于零即可判断.【详解】A .x =0时,x 2=0,A 选项不符合题意;B .x =﹣2时,分母为0,B 选项不符合题意;C .x 取任意实数总有意义,C 选项符号题意;D .x =﹣2时,分母为0.D 选项不符合题意.故选:C .【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.9.A解析:A【解析】【分析】由折叠的性质和矩形的性质证出OP =BP ,设OP =BP =x ,则PC =6﹣x ,再用勾股定理建立方程9+(6﹣x )2=x 2,求出x 即可.【详解】∵将△OAB 沿OB 翻折至△OA ′B 位置,OA ′交BC 于点P ,∴∠A 'OB =∠AOB ,∵四边形OABC 是矩形,∴BC ∥OA ,∴∠OBC=∠AOB,∴∠OBC=∠A'OB,∴OP=BP,∵点B的坐标为(6,3),∴AB=OC=3,OA=BC=6,设OP=BP=x,则PC=6﹣x,在Rt△OCP中,根据勾股定理得,OC2+PC2=OP2,∴32+(6﹣x)2=x2,解得:x=154,∴PC=6﹣154=94,∴P(94,3),故选:A.【点睛】此题主要考查折叠和矩形的性质以及利用勾股定理构建方程,熟练掌握,即可解题. 10.D解析:D【解析】【分析】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.求出CE′即可.【详解】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.∵∠ACB=90°,AC=6,BC=8,∴AB22AC BC+2268+,∴CH=AC BCAB⋅=245,∴AH22AC CH-=222465⎛⎫- ⎪⎝⎭185,∴AE=AE′=85,∴E′H=AH-AE′=2,∴P′C+P′E=CP′+P′E′=CE=265,故选:D.【点睛】此题主要考查利用对称性以及勾股定理的运用,解题关键是做好辅助线,转换等量关系.二、填空题11.9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效解析:9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.12.【解析】【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的,∴﹣x+40≥40×,解解析:【解析】设行驶xkm,由油箱内剩余油量不低于油箱容量的18,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的18,∴﹣10100x+40≥40×18,解得:x≤350,答:该辆汽车最多行驶的路程是350km,故答案为:350.【点睛】本题主要考查一元一次不等式的实际应用,找出不等量关系,列出一元一次不等式,是解题的关键.13.y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2解析:y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2x-4.故答案为:y=-2x-4.【点睛】本题考查了两条直线平行的问题,一次函数平行系数的特点是解题的关键.14.【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数的图象向上平移3个单位长度可得:.故答案为:本题考查了函数图像平移,解决本解析:31y x =-【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数34y x =-的图象向上平移3个单位长度可得:34331y x x =-+=-. 故答案为:31y x =-【点睛】本题考查了函数图像平移,解决本题的关键是熟练掌握函数图像的平移规律,要与点的坐标平移区别开.15.(,)【解析】【分析】根据题意,△ABO 为等腰直角三角形,由点C 坐标为(6,4),可知点B 为(6,0),点A 为(6,6),则直线OA 为,作点D 关于OA 的对称点E ,点E 恰好落在y 轴上,连接CE ,解析:(185,185) 【解析】【分析】 根据题意,△ABO 为等腰直角三角形,由点C 坐标为(6,4),可知点B 为(6,0),点A 为(6,6),则直线OA 为y x =,作点D 关于OA 的对称点E ,点E 恰好落在y 轴上,连接CE ,交OA 于点P ,则点E 坐标为(0,3),然后求出直线CE 的解析式,联合y x =,即可求出点P 的坐标.【详解】解:在Rt △ABO 中,∠OBA=90°,AB=OB ,∴△ABO 是等腰直角三角形,∵点C 在边AB 上,且C (6,4),∴点B 为(6,0),∴OB=6=AB ,∴点A 坐标为:(6,6),∴直线OA 的解析式为:y x =;作点D 关于OA 的对称点E ,点E 恰好落在y 轴上,连接CE ,交OA 于点P ,∴∠APC=∠OPE=∠DPO,OD=OE,∵点D是OB的中点,∴点D的坐标为(3,0),∴点E的坐标为:(0,3);设直线CE的解析式为:y kx b=+,把点C、E代入,得:643k bb+=⎧⎨=⎩,解得:163kb⎧=⎪⎨⎪=⎩,∴直线CE的解析式为:136y x=+;∴136y xy x⎧=+⎪⎨⎪=⎩,解得:185185xy⎧=⎪⎪⎨⎪=⎪⎩,∴点P的坐标为:(185,185);故答案为:(185,185).【点睛】本题考查了一次函数的图像和性质,等腰直角三角形的性质,以及线段动点问题,正确的找到P点的位置是解题的关键.16.4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函解析:4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想.17.【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6.考点:算术平方根.解析:【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6.考点:算术平方根.18.<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数中k=<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛解析:<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数312y x=-+中k=32-<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.19.16【解析】【分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BC解析:16【解析】【分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BCA=∠AED=90°,∴∠ABC=∠DAE,∴ΔBCA≌ΔAED(ASA),∴BC=AE,AC=ED,故AB²=AC²+BC²=ED²+BC²=11+5=16,即正方形b的面积为16.点睛:此题主要考查对全等三角形和勾股定理的综合运用,解题的重点在于证明ΔBCA≌ΔAED,而利用全等三角形的性质和勾股定理得到b=a+c则是解题的关键.20.2【解析】解析:2【解析】⇒=k k4=22三、解答题y>时,x>221.(1) y=2x+2 (2) 6【解析】【分析】(1) 根据正比例函数的定义设y-2=kx(k≠0)然后把x,y的值代入求出k,即可求出解析式;(2)根据 (1)中的解析式,判断即可.【详解】(1)∵y-2与x成正比例函数∴设 y-2=kx(k≠0)将x=2,y=6 代入得,2k=6-2 k=2∴ y-2=2x∴y=2x+2(2)根据函数解析式 y=2x+2得到y随x的增加而增大∵ y=6时 x=2y>时,x>2.∴6【点睛】此题主要考查了待定系数法求一次函数解析式及判断函数取值范围,熟练掌握相关概念是解题的关键.22.(1) y=-0.1x+100 (2) 该商场销售甲50件,乙150件时,能获得最大利润.【解析】【分析】(1) 根据题意即可列出一次函数,化简即可;(2) 设甲的件数为x,那么乙的件数为:200-x,根据题意列出不等式0.6x+0.8(200-x)≤150,解出,根据y=-0.1x+100的性质,即可求出.【详解】解:(1)由题意可得:y=0.4x+0.5×(200-x)得到:y=-0.1x+100所以y与x之间的函数表达式为y=-0.1x+100(2)设甲的件数为x,那么乙的件数为:200-x,依题意可得:0.6x+0.8(200-x)≤150解得:x≥50由y=-0.1x+100得到y随x的增大而减小所以当利润最大时,x值越小利润越大所以甲产品x=50 乙产品200-x=150答:该商场销售甲50件,乙150件时,能获得最大利润.【点睛】此题主要考查了一次函数及一元一次不等式,熟练掌握实际生活转化为数学模式是解题的关键.23.(1)2,10;(2)s=15t-40(45)t ≤≤;(3)t=3h 或t=6h.【解析】【分析】(1)由图象中的信息可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;小明2小时内行驶的路程是20 km ,据此可以求出他的速度;(2)由图象可知:B(4,20),C(5,35),设线段BC 的函数表达式为s=kt+b,代入后得到方程组,解方程组即可;(3)先求出从甲地到乙地的总路程,现求小华的速度,然后分三种情况讨论两人在途中相遇问题.当02t <≤时, 10t=10(t-1);当24t <<时, 20=10(t-1);当46t ≤≤时, 15t-40=10(t-1);逐一求解即可.【详解】解:(1)由图象可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;由图象可知:小明2小时内行驶的路程是20 km ,所以他的速度是20210÷=(km/ h );故答案是:2;10.(2)设线段BC 的函数表达式为s=kt+b,由图象可知:B(4,20),C(5,35),∴420535k b k b +=⎧⎨+=⎩, ∴1540k b =⎧⎨=-⎩, ∴线段BC 的函数表达式为s=15t-40(45)t ≤≤;(3)在s=15t-40中,当t=6时,s=15×6-40=50,∴从甲地到乙地全程为50 km ,∴小华的速度=50(61)10÷-=(km/ h ),下面分三种情况讨论两人在途中相遇问题:当02t <≤时,两人在途中相遇,则10t=10(t-1),方程无解,不合题意,舍去;当24t <<时,两人在途中相遇,则20=10(t-1),解得t=3;当46t ≤≤时,两人在途中相遇,则15t-40=10(t-1),解得t=6;∴综上所述,当t=3h 或t=6h 时,两人在途中相遇.【点睛】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,解题关键是理解一些关键点的含义,并结合实际问题数量关系进行求解.x=±;(2)424.(1)5【解析】【分析】(1)直接开平方,即可得到答案;(2)先根据二次根式的性质进行化简,然后合并同类项即可.【详解】x=,解:(1)225x=±;∴5=-+=;(2)23(2)816--+2244【点睛】本题考查了二次根式的性质,立方根,以及直接开平方法解方程,解题的关键是熟练掌握二次根式的性质进行解题.25.作图见解析.【解析】【分析】先连接MN,根据线段垂直平分线的性质作出线段MN的垂直平分线DE,再作出∠AOB的平分线OF,DE与OF相交于C点,则点C即为所求.【详解】点C为线段MN的垂直平分线与∠AOB的平分线的交点,则点C到点M、N的距离相等,到AO、BO的距离也相等,作图如下:.【点睛】此题考查作图-应用与设计作图,熟练地应用角平分线的作法以及线段垂直平分线作法是解决问题的关键.四、压轴题26.(1) (3,-2);(2) (n,m);(3)图见解析,点Q到E、F点的距离之和最小值为10【解析】【分析】(1)根据题意和图形可以写出C '的坐标;(2)根据图形可以直接写出点P 关于直线l 的对称点的坐标;(3)作点E 关于直线l 的对称点E ',连接E 'F ,根据最短路径问题解答.【详解】(1)如图,C '的坐标为(3,-2),故答案为(3,-2);(2)平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为(n ,m ), 故答案为(n ,m );(3)点E 关于直线l 的对称点为E '(-3,2),连接E 'F 角直线l 于一点即为点Q ,此时点Q 到E 、F 点的距离之和最小,即为线段E 'F ,∵E 'F ()[]221(3)2(4)210=---+--=⎡⎤⎣⎦, ∴点Q 到E 、F 点的距离之和最小值为10【点睛】此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.27.(1)443y x =-+;(2)612(,)55M ;(3)23(0,)7G 或(0,-1)G 【解析】【分析】(1)求出点B ,C 坐标,再利用待定系数法即可解决问题;(2)结合图形,由S △AMB =S △AOB 分析出直线OM 平行于直线AB ,再利用两直线相交建立方程组求得交点M 的坐标;(3)分两种情形:①当n >2时,如图2-1中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .求出Q (n-2,n-1).②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),代入直线BC 的解析式解方程即可解决问题.【详解】解:(1)∵直线y=2x+4与x 轴交于点A ,与y 轴交于点B ,∴A (-2,0),B (0,4),,又∵OC=3,∴C (3,0),设直线BC 的解析式为y=kx+b ,将B 、C 的坐标代入得: 304k b b +=⎧⎨=⎩, 解得:434k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为443y x =-+; (2)连接OM ,∵S △AMB =S △AOB ,∴直线OM 平行于直线AB ,故设直线OM 解析式为:2y x =,将直线OM 的解析式与直线BC 的解析式联立得方程组2443y x y x =⎧⎪⎨=-+⎪⎩, 解得:65125x y ⎧=⎪⎪⎨⎪=⎪⎩故点612(,)55M ; (3)∵FA=FB ,A (-2,0),B (0,4),∴F (-1,2),设G (0,n ),①当n >2时,如图2-1中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .∵四边形FGQP 是正方形,易证△FMG ≌△GNQ ,∴MG=NQ=1,FM=GN=n-2,∴Q (n-2,n-1),∵点Q 在直线443y x =-+上, ∴41(2)43n n -=--+, ∴23=7n , ∴23(0,)7G . ②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),∵点Q 在直线443y x =-+上, ∴4+1(2)43n n =--+, ∴n=-1,∴(0,-1)G . 综上所述,满足条件的点G 坐标为23(0,)7G 或(0,-1)G 【点睛】 本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.28.(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥, ∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.29.(1)全等,理由见解析;(2)t=3.5秒或5秒【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C→B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN 为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.30.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =+4.【解析】【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案. 【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°, 在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x ,∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省连云港市连云区八年级(上)期末数学试卷一、选择题(每小题3分,满分24分)1.下列“QQ表情”中属于轴对称图形的是()A.B.C.D.2.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.1,D.,,43.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是()A.金额B.数量C.单价D.金额和数量4.在平面直角坐标系中,点M(﹣3,2)关于y轴对称的点的坐标为()A.(3,2)B.(3,﹣2)C.(﹣3,﹣2)D.(﹣3,2)5.下列无理数中,在﹣1与2之间的是()A.﹣B.﹣C.D.6.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠BCA=∠DCA7.下列一次函数中,y随增大而增大的是()A.y=﹣3B.y=﹣2C.y=﹣2+3D.y=3﹣8.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2018的坐标是()A.(5,3)B.(3,5)C.(0,2)D.(2,0)二、填空题(每小题3分,满分24分)9.16的平方根是.10.圆周率π=3.1415926…精确到千分位的近似数是.11.如图,起重机吊运物体,∠ABC=90°.若BC=12m,AC=13m,则AB=m.12.一次函数y=﹣3+2的图象不经过第象限.13.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=28°,则∠ADE=°.14.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E表示的实数是.15.如图,已知函数y=3+b和y=a﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3+b>a﹣3的解集是.16.如图,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是.三、解答题(共10小题,满分102分)17.(10分)(1)求式中的值:(+4)3+2=25(2)计算:20180﹣+18.(8分)如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.19.(8分)已知一次函数y=+2与y=﹣1的图象相交,交点的横坐标为2.(1)求的值;(2)直接写出二元一次方程组的解.20.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC关于轴的对称图形△A1B1C1;(2)画出△A1B1C1沿轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是.21.(10分)如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.22.(10分)已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB 边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.23.(10分)我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水吨,应交水费y元.(1)若0<≤6,请写出y与的函数关系式.(2)若>6,请写出y与的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?24.(10分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.25.(12分)小聪和小明沿同一条笔直的马路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在图书馆查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式;(3)若设两人在路上相距不超过0.4千米时称为可以“互相望见”,则小聪和小明可以“互相望见”的时间共有多少分钟?26.(14分)建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE.模型应用:(1)如图2,在直角坐标系中,直线l1:y=+4与y轴交于点A,与轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q 为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.江苏省连云港市连云区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,满分24分)1.下列“QQ表情”中属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.1,D.,,4【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52≠62,不可以构成直角三角形,故A选项错误;B、22+32≠42,不可以构成直角三角形,故B选项错误;C、12+()2=()2,可以构成直角三角形,故C选项正确;D、()2+()2≠42,可以构成直角三角形,故D选项错误.故选:C.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是()A.金额B.数量C.单价D.金额和数量【分析】根据常量与变量的定义即可判断.【解答】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:D.【点评】本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.4.在平面直角坐标系中,点M(﹣3,2)关于y轴对称的点的坐标为()A.(3,2)B.(3,﹣2)C.(﹣3,﹣2)D.(﹣3,2)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点(﹣3,2)关于y轴对称的点的坐标是(3,2),故选:A.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.5.下列无理数中,在﹣1与2之间的是()A.﹣B.﹣C.D.【分析】根据无理数的定义进行估算解答即可.【解答】解:A.﹣<﹣1,故错误;B.﹣<﹣1,故错误;C.﹣1<,故正确;D.>2,故错误;故选:C.【点评】此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.6.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠BCA=∠DCA【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故C选项不符合题意;D、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故D选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.下列一次函数中,y随增大而增大的是()A.y=﹣3B.y=﹣2C.y=﹣2+3D.y=3﹣【分析】根据一次函数的性质对各选项进行逐一分析即可.【解答】解:A、∵一次函数y=﹣3中,=﹣3<0,∴此函数中y随增大而减小,故本选项错误;B、∵正比例函数y=﹣2中,=1>0,∴此函数中y随增大而增大,故本选项正确;C、∵正比例函数y=﹣2+3中,=﹣2<0,∴此函数中y随增大而减小,故本选项错误;D、正比例函数y=3﹣中,=﹣1<0,∴此函数中y随增大而减小,故本选项错误.故选:B.【点评】本题考查的是一次函数的性质,即一次函数y=+b(≠0)中,当>0时,y随的增大而增大,函数从左到右上升;<0,y随的增大而减小,函数从左到右下降.8.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2018的坐标是()A.(5,3)B.(3,5)C.(0,2)D.(2,0)【分析】根据轴对称的性质分别写出点P1的坐标为、点P2的坐标、点P3的坐标、点P4的坐标,从中找出规律,根据规律解答.【解答】解:由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,),点P5的坐标为(5,3),2018÷4=504…2,∴P2018的坐标为(3,5),故选:B.【点评】本题考查的是点的坐标、坐标与图形变化﹣对称,正确找出点的坐标的变化规律是解题的关键.二、填空题(每小题3分,满分24分)9.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数,使得2=a,则就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.圆周率π=3.1415926…精确到千分位的近似数是 3.142.【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5大于4,故进1,得3.142.【解答】解:圆周率π=3.1415926…精确到千分位的近似数是3.142.故答案为3.142.【点评】本题考查了近似数和精确度,精确到哪一位,就是对它后边的一位进行四舍五入.11.如图,起重机吊运物体,∠ABC=90°.若BC=12m,AC=13m,则AB=5m.【分析】根据题意直接利用勾股定理得出AB的长.【解答】解:由题意可得:AB==5(m).故答案为:5.【点评】此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键.12.一次函数y=﹣3+2的图象不经过第三象限.【分析】根据一次函数的性质容易得出结论.【解答】解:因为解析式y=﹣3+2中,﹣3<0,2>0,图象过一、二、四象限,故图象不经过第三象限.故答案为:三【点评】在直线y=+b中,当>0时,y随的增大而增大;当<0时,y随的增大而减小.13.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=28°,则∠ADE=34°.【分析】先根据三角形内角和定理计算出∠B=62°,再根据折叠的性质得∠DEC=∠B=62°,然后根据三角形外角性质求∠ADE的度数.【解答】解:∵∠ACB=90°,∠A=28°,∴∠B=90°﹣28°=62°,∵沿CD折叠△CBD,使点B恰好落在AC边上的点E处,∴∠DEC=∠B=62°,∵∠DEC=∠A+∠ADE,∴∠ADE=62°﹣28°=34°.故答案为34°.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.14.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E表示的实数是﹣1.【分析】根据垂直的定义得到∠ABC=90°,根据勾股定理得到AC==,求得AD=AC﹣CD=﹣1,根据圆的性质得到AE=AD,即可得到结论.【解答】解:∵BC⊥AB,∴∠ABC=90°,∵AB=2,BC=1,∴AC==,∵CD=BC,∴AD=AC﹣CD=﹣1,∵AE=AD,∴AE=﹣1,∴点E表示的实数是﹣1.故答案为:﹣1.【点评】本题考查了勾股定理,实数与数轴,圆的性质,正确掌握勾股定理是解题的关键.15.如图,已知函数y=3+b和y=a﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3+b>a﹣3的解集是>﹣2.【分析】根据函数y=3+b和y=a﹣3的图象交于点P(﹣2,﹣5),然后根据图象即可得到不等式3+b>a﹣3的解集.【解答】解:∵函数y=3+b和y=a﹣3的图象交于点P(﹣2,﹣5),∴不等式3+b>a﹣3的解集是>﹣2,故答案为:>﹣2.【点评】本题考查一次函数与一元一次不等式、一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.如图,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是(2,0).【分析】找点C关于轴的对称点C',连接AC',则AC'与轴的交点即为点D的位置,先求出直线AC'的解析式,继而可得出点D的坐标.【解答】解:作点C关于轴的对称点C',连接AC',则AC'与轴的交点即为点D的位置,∵点C'坐标为(0,﹣2),点A坐标为(6,4),∴直线C'A的解析式为:y=﹣2,故点D的坐标为(2,0).故答案为:(2,0).【点评】本题主要考查了最短线路问题,解题的关键是根据“两点之间,线段最短”,并且利用了正方形的轴对称性.三、解答题(共10小题,满分102分)17.(10分)(1)求式中的值:(+4)3+2=25(2)计算:20180﹣+【分析】(1)移项后计算等式的右边,再利用立方根的定义计算可得;(2)先计算零指数幂、算术平方根和立方根,再计算加减可得.【解答】解:(1)∵(+4)3+2=25,∴(+4)3=23,则+4=,∴=﹣4;(2)原式=1﹣2﹣5=﹣6.【点评】本题主要考查实数的运算,解题的关键是掌握零指数幂、算术平方根和立方根的定义与运算法则.18.(8分)如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.【分析】欲证明AB=DE,只要证明△ABC≌△DEF即可.【解答】证明:∵AF=CD,∴AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识,熟练掌握全等三角形的判定方法是解决问题的关键.19.(8分)已知一次函数y=+2与y=﹣1的图象相交,交点的横坐标为2.(1)求的值;(2)直接写出二元一次方程组的解.【分析】(1)先将=2代入y=﹣1,求出y的值,得到交点坐标,再将交点坐标代入y=+2,利用待定系数法可求得的值;(2)方程组的解就是一次函数y=+2与y=﹣1的交点,根据交点坐标即可写出方程组的解.【解答】解:(1)将=2代入y=﹣1,得y=1,则交点坐标为(2,1).将(2,1)代入y=+2,得2+2=1,解得=;(2)二元一次方程组的解为.【点评】此题主要考查了一次函数与二元一次方程组的关系及待定系数法求字母系数,难度适中.20.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC关于轴的对称图形△A1B1C1;(2)画出△A1B1C1沿轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是(a+4,﹣b).【分析】(1)直接利用关于轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用平移变换的性质得出点M2的坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)由(1)(2)轴对称以及平移的性质得出对应A2C2上的点M2的坐标是:(a+4,﹣b).故答案为:(a+4,﹣b).【点评】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.21.(10分)如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.【分析】(1)连接AC,先根据勾股定理求出AC的长,再求出AD的长,结合勾股定理的逆定理得到∠D是直角;=S△ABC+S△ADC即可得出结论.(2)由S四边形ABCD【解答】解:(1)∠D是直角,理由如下:连接AC,∵∠B=90°,AB=24m,BC=7m,∴AC2=AB2+BC2=242+72=625,∴AC=25(m).又∵CD=15m,AD=20m,152+202=252,即AD2+DC2=AC2,∴△ACD是直角三角形,或∠D是直角;=S△ABC+S△ADC(2)S四边形ABCD=•AB•BC+•AD•DC=234(m2).【点评】本题考查的是勾股定理的应用,熟知勾股定理的应用是解答此题的关键.22.(10分)已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB 边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.【分析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,AE=DB,从而求出AD2+DB2=DE2,即2CD2=AD2+DB2.【解答】证明:(1)∵△ABC和△ECD都是等腰直角三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△AEC≌△BDC(SAS);(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2,即2CD2=AD2+DB2.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,以及等角的余角相等的性质,熟记各性质是解题的关键.23.(10分)我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水吨,应交水费y元.(1)若0<≤6,请写出y与的函数关系式.(2)若>6,请写出y与的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?【分析】(1)当0<≤6时,根据“水费=用水量×2”即可得出y与的函数关系式;(2)当>6时,根据“水费=6×5+(用水量﹣6)×3”即可得出y与的函数关系式;(3)经分析,当0<≤6时,y≤12,由此可知这个月该户用水量超过6吨,将y=27代入y=3﹣6中,求出值,此题得解.【解答】解:(1)根据题意可知:当0<≤6时,y=2;(2)根据题意可知:当>6时,y=2×6+3×(﹣6)=3﹣6;(3)∵当0<≤6时,y=2,y的最大值为2×6=12(元),12<27,∴该户当月用水超过6吨.令y=3﹣6中y=27,则27=3﹣6,解得:=11.答:这个月该户用了11吨水.【点评】本题考查了一次函数的应用,解题的关键是:(1)根据数量关系列出函数关系式;(2)根据数量关系列出函数关系式;(3)代入y=27求出值.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出函数关系式是关键.24.(10分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.【分析】(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,根据勾股定理列方程即可得到结论;(2)当点P在∠CAB的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t ﹣4,BE=5﹣4=1,根据勾股定理列方程即可得到结论;【解答】解:(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,∴当t=时,PA=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=,∴当t=时,P在△ABC的角平分线上.【点评】本题考查了勾股定理,关键是根据等腰三角形的判定,三角形的面积解答.25.(12分)小聪和小明沿同一条笔直的马路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在图书馆查阅资料的时间为20分钟,小聪返回学校的速度为0.2千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式;(3)若设两人在路上相距不超过0.4千米时称为可以“互相望见”,则小聪和小明可以“互相望见”的时间共有多少分钟?【分析】(1)由函数图象的数据可以求出小聪在图书馆查阅资料的时间为20分钟,由速度=路程÷时间就可以得出小聪返回学校的速度;(2)设小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式为y=,由待定系数法求出其解即可;(3)分类讨论,当小聪、小明同时出发后,在小聪到达图书馆之前、当小聪、小明在相遇之前及当小聪、小明在相遇之后,分别求出即可.【解答】解:(1)由题意,得小聪在图书馆查阅资料的时间为20分钟.小聪返回学校的速度为4÷20=0.2千米/分钟.故答案为:20,0.2;(2)设小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式为s=t,由题意,得4=60,解得:=.∴所求函数表达式为s=t.(3)小聪、小明同时出发后,在小聪到达图书馆之前,两人相距0.4千米时,0.4÷(0.2﹣)=3;当小聪从图书馆返回时:设直线BC的解析式为s=1t+b,由题意,得,解得:∴直线BC的函数式为:.当小聪、小明在相遇之前,刚好可以“互相望见”时,即两人相距0.4千米时,﹣t=0.4,解得t=;当小聪、小明在相遇之后,刚好可以“互相望见”时,即两人相距0.4千米时,t﹣=0.4,解得t=.∴所以两人可以“互相望见”的时间为:﹣=3(分钟)综上可知,两人可以“互相望见”的总时间为3+3=6(分钟).【点评】本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的关系的运用,解答时求出函数的解析式是关键.26.(14分)建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE.模型应用:(1)如图2,在直角坐标系中,直线l1:y=+4与y轴交于点A,与轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q 为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.【分析】操作:根据余角的性质,可得∠ACD=∠CBE,根据全等三角形的判定,可得答案;应用(1)根据自变量与函数值的对应关系,可得A、B点坐标,根据全等三角形的判定与性质,可得CD,BD的长,根据待定系数法,可得AC的解析式;(2)根据全等三角形的性质,可得关于a的方程,根据解方程,可得答案.【解答】解:操作:如图1:,∵∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ACD和△CBE中,∴△CAD≌△BCE(AAS);(1)∵直线y=+4与y轴交于点A,与轴交于点B,∴A(0,4)、B(﹣3,0).如图2:,过点B做BC⊥AB交直线l2于点C,过点C作CD⊥轴在△BDC和△AOB中,,△BDC≌△AOB(AAS),∴CD=BO=3,BD=AO=4.OD=OB+BD=3+4=7,∴C点坐标为(﹣7,3).设l2的解析式为y=+b,将A,C点坐标代入,得,解得l2的函数表达式为y=+4;(2)由题意可知,点Q是直线y=2﹣6上一点.如图3:,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F.在△AQE和△QPF中,,∴△AQE≌△QPF(AAS),AE=QF,即6﹣(2a﹣6)=8﹣a,解得a=4如图4:,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F,AE=2a﹣12,FQ=8﹣a.在△AQE和△QPF中,,△AQE≌△QPF(AAS),AE=QF,即2a﹣12=8﹣a,解得a=;综上所述:A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为或4.【点评】本题考查了一次函数综合题,利用余角的性质得出∠ACD=∠CBE是解题关键,又利用了全等三角形的判定;利用了全等三角形的性质得出CD,BD的长是解题关键,又利用了待定系数法求函数解析式;利用全等三角形的性质得出关于a的方程是解题关键,要分类讨论,以防遗漏.。