2020年高考数学专题不等式精讲

合集下载

高考数学复习专题 基本不等式 (文 精讲)

高考数学复习专题 基本不等式  (文 精讲)

专题7.3 基本不等式【核心素养分析】1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】知识点一 基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四 利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 【典例剖析】 高频考点一 利用基本不等式求最值【例1】【2020·江苏卷】已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ .【举一反三】(2020·江苏省南京模拟)函数y =x 2+2x -1(x >1)的最小值为________【方法技巧】利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有三种思路: (1)对条件使用基本不等式直接求解.(直接法)(2)针对待求最值的式子,通过拆项(添项)、分离常数、变系数、凑因子等方法配凑出和或积为常数的两项,然后用基本不等式求解.(配凑法)(3)已知条件中有值为1的式子,把待求最值的式子和值为1的式子相乘,再用基本不等式求解.(常数代换法)【变式探究】(2019·天津卷)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy 的最小值为 .【变式探究】(2020·辽宁省葫芦岛模拟)已知a >0,b >0,且2a +b =ab -1,则a +2b 的最小值为( ) A .5+2 6B .8 2C .5D .9高频考点二 利用基本不等式解决实际问题【例2】【2019·北京卷】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.,,,,,,,,【方法技巧】利用基本不等式解决实际问题的三个注意点 (1)设变量时,一般要把求最大值或最小值的变量定义为函数. (2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.【变式探究】(2020·山西省大同模拟)经测算,某型号汽车在匀速行驶过程中每小时耗油量y (L)与速度x (km /h )(50≤x ≤120)的关系可近似表示为y =⎩⎨⎧175(x 2-130x +4 900),x ∈[50,80),12-x60,x ∈[80,120].(1)该型号汽车的速度为多少时,可使得每小时耗油量最少?(2)已知A ,B 两地相距120 km ,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少?专题7.3 基本不等式【核心素养分析】1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】知识点一 基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四 利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 【典例剖析】高频考点一 利用基本不等式求最值【例1】【2020·江苏卷】已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ . 【答案】45【解析】∵22451x y y +=∴0y ≠且42215y x y -=∴422222222114144+2555555y y y x y y y y y-+=+=≥⋅=,当且仅当221455y y =,即2231,102x y ==时取等号. ∴22xy +的最小值为45. 【举一反三】(2020·江苏省南京模拟)函数y =x 2+2x -1(x >1)的最小值为________【答案】23+2【解析】∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立.【方法技巧】利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有三种思路: (1)对条件使用基本不等式直接求解.(直接法)(2)针对待求最值的式子,通过拆项(添项)、分离常数、变系数、凑因子等方法配凑出和或积为常数的两项,然后用基本不等式求解.(配凑法)(3)已知条件中有值为1的式子,把待求最值的式子和值为1的式子相乘,再用基本不等式求解.(常数代换法)【变式探究】(2019·天津卷)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy 的最小值为 .【答案】92【解析】(x +1)(2y +1)xy =2xy +x +2y +1xy =2xy +5xy =2+5xy ,∵x >0,y >0且x +2y =4, ∴4=x +2y ≥22xy ,∴xy ≤2,∴1xy ≥12,∴2+5xy ≥2+52=92.【变式探究】(2020·辽宁省葫芦岛模拟)已知a >0,b >0,且2a +b =ab -1,则a +2b 的最小值为( ) A .5+2 6 B .8 2 C .5 D .9【答案】A【答案】∵a >0,b >0,且2a +b =ab -1, ∴a =b +1b -2>0,∴b >2,∴a +2b =b +1b -2+2b =2(b -2)+3b -2+5≥5+22(b -2)·3b -2=5+2 6.当且仅当2(b -2)=3b -2,即b =2+62时取等号.∴a +2b 的最小值为5+26,故选A 。

2020年高考数学(文)母题题源解密23 不等式选讲(全国Ⅱ专版解析版)

2020年高考数学(文)母题题源解密23 不等式选讲(全国Ⅱ专版解析版)

专题23 不等式选讲【母题来源一】【2020年高考全国Ⅱ卷文数】已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ≥,求a 的取值范围. 【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果; (2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a aa a =-+-+≥---+=-+-=-,当且仅当221a x a -≤≤时取等号,()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型. 【母题来源二】【2019年高考全国Ⅱ卷文数】已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围. 【答案】(1)(,1)-∞;(2)[1,)+∞【解析】(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----. 所以,a 的取值范围是[1,)+∞.【名师点睛】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型. 【母题来源三】【2018年高考全国Ⅱ卷文数】设函数()5|||2|f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围.【答案】(1){|23}x x -≤≤;(2)(,6][2,)-∞-+∞.【解析】(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥的解集为{|23}x x -≤≤. (2)()1f x ≤等价于|||2|4x a x ++-≥.而|||2||2|x a x a ++-≥+,且当2x =时等号成立. 故()1f x ≤等价于|2|4a +≥. 由|2|4a +≥可得6a ≤-或2a ≥, 所以a 的取值范围是(,6][2,)-∞-+∞.【命题意图】1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1)a b a b +≤+. (2) a b a c c b -≤-+-.(3)会利用绝对值的几何意义求解以下类型的不等式:; ; ax b c ax b c x a x b c +≤+≥-+-≥.2.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.3.主要考查逻辑推理能力、运算求解能力,考查分类讨论、数形结合思想方法,考查逻辑推理、数学运算等核心素养. 【命题规律】从近三年高考情况来看,此类知识点以解答题的形式出现,主要考查绝对值不等式的解法、不等式的证明、求最值问题等. 【方法总结】(一)解绝对值不等式的常用方法有:(1)公式法:对于形如|f (x )|>g (x )或|f (x )|<g (x ),利用公式|x|<a ⇔−a<x<a (a>0)和|x|>a ⇔x>a 或x<−a (a>0)直接求解不等式;(2)平方法:对于形如|f (x )|≥|g (x )|,利用不等式两边平方的技巧,去掉绝对值,需保证不等式两边同正或同负,即|f (x )|≥|g (x )|⇔f (x )2≥g 2(x );(3)零点分段法:对于形如|f (x )|±|g (x )|≥a ,|f (x )|±|g (x )|≤a ,利用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解;(4)几何法:对于形如|x±a|±|x±b|≤c ,|x±a|±|x±b|≥c ,利用绝对值三角不等式的性质求解,即 ①定理1:如果a ,b 是实数,则|a+b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.②定理2:如果a ,b ,c 是实数,那么|a−c|≤|a−b|+|b−c|,当且仅当(a−b )(b−c )≥0时,等号成立. ③推论1:||a|−|b||≤|a+b|. ④推论2:||a|−|b||≤|a−b|.(5)图象法:对于形如|f (x )|+|g (x )|≥a 可构造y=|f (x )|+|g (x )|−a 或y=|f (x )|+|g (x )|与y=a ,在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解或通过移项构造一个函数. (二)含绝对值不等式的恒成立问题的常见类型及其解法:(1)分享参数法运用“max min ()(),()()f x a f x a f x a f x a ≤⇔≤≥⇔≥”可解决恒成立中的参数范围问题.求最值的思路:利用基本不等式和不等式的相关性质解决;将函数解析式用分段函数形式表示,作出函数图象,求得最值;利用性质“||||||||||||a b a b a b -≤±≤+”求最值.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能解决时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维和抽象思维各自的优势,可直接解决问题. (三)不等式的证明(1)比较法证明不等式最常用的是差值比较法,其基本步骤是:作差—变形—判断差的符号—下结论.其中“变形”是证明的关键,一般通过因式分解或配方将差式变形为几个因式的积或配成几个代数式平方和的形式,当差式是二次三项式时,有时也可用判别式来判断差值的符号.个别题目也可用柯西不等式来证明.(2)基本不等式:如果a ,b>0,那么2a b+≥,当且仅当a=b 时,等号成立.用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.(3)算术平均—几何平均定理(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均数不小于它们的几何平均数,即12nn a a a n+++≥当且仅当a 1=a 2=…=a n 时,等号成立.1.(2020·山西省高三)已知函数()|1||2|f x x x a =++-. (1)若1a =,解不等式()4f x <;(2)对任意的实数m ,若总存在实数x ,使得224()m m f x -+=,求实数a 的取值范围.【答案】(1)35(,)22-(2)[2,1]-【分析】(1)分类讨论求解绝对值不等式,即可求得结果;(2)求得()f x 的值域以及224y m m =-+的值域,根据二次函数的值域是()f x 值域的子集,求参数的范围即可.【解析】(1)当1a =时,()4|1||2|4f x x x <⇒++-<,化为123x x <-⎧⎨>-⎩或1234x -≤≤⎧⎨<⎩或2214x x >⎧⎨-<⎩ 解得312x -<<-或12x -≤≤或522x <<, 3522x ∴-<<.即不等式()4f x <的解集为35(,)22-.(2)根据题意,得224m m -+的取值范围是()f x 值域的子集.2224(1)33m m m -+=-+≥又由于()1221f x x x a a =++-≥+,()f x ∴的值域为[|21|,)a ++∞故|21|3a +≤,21a ∴-≤≤. 即实数a 的取值范围为[2,1]-.【点睛】本题考查分类讨论求解绝对值不等式,以及由绝对值三角不等式求解绝对值函数的最小值,属综合性基础题.2.(2020·四川省泸县第二中学高三二模)已知函数()211f x x x =-++. (1)求不等式()2f x x ≤+的解集;(2)若函数()y f x =的最小值记为m ,设0a >,0b >,且有a b m +=.求1212a b +++的最小值. 【答案】(1)[]0,1(2【分析】(1)作出函数图象,数形结合即可得到答案;(2)32a b +=⇒9122a b +++=,()()112121212912a b a b a b ⎛⎫+=++++⎡⎤ ⎪⎣⎦++++⎝⎭,在乘开,利用基本不等式即可. 【解析】(1)因为()3,1,12112,1,213,.2x x f x x x x x x x ⎧⎪-<-⎪⎪=-++=-+-≤≤⎨⎪⎪>⎪⎩从图可知满足不等式()2f x x ≤+的解集为[]0,1.(2)由图可知函数()y f x =的最小值为32,即32m =. 所以32a b +=,从而9122a b +++=,从而()()112121212912a b a b a b ⎛⎫+=++++⎡⎤ ⎪⎣⎦++++⎝⎭()2122263391299a b a b ⎡⎡⎤+⎛⎫++=++≥+=⎢⎢⎥ ⎪++⎢⎢⎥⎝⎭⎣⎦⎣当且仅当()21212a b a b ++=++,即1114,22a b -==时,等号成立,∴1212a b +++ 【点睛】本题考查解绝对值不等式以基本不等式求最值的问题,是一道中档题.3.(2020·深圳市宝安中学(集团)高三月考)已知定义在R 上的函数()|1||2|f x x x =++-的最小值为a .(1)求a 的值.(2)若p ,q ,r 为正实数,且p q r a ++=,求证:2223p q r ++≥.【答案】(1)3;(2)证明见解析【分析】(1)根据绝对值的三角不等式求解即可. (2)根据三元的柯西不等式证明即可.【解析】(1)根据绝对值的三角不等式有()()12123x x x x ++-≥+--=. 当且仅当12x -≤≤ 时取等号.故3a =.(2)证明:由(1)有3p q r ++=.利用三元的柯西不等式有()()()22222222221119p q r p q r p q r ++=++++≥++=.故2223p q r ++≥【点睛】本题主要考查了绝对值的三角不等式与三元的柯西不等式运用,属于基础题. 4.(2020·江西省高三)已知函数()221f x x x =-+-. (1)求不等式()6f x <的解集;(2)若函数()f x 的最小值为m ,且实数a ,b 满足222a b m +=,求34a b +的最大值. 【答案】(1)()1,3-.(2)【分析】(1)首先将()f x 写成分段函数的形式,然后解出即可; (2)首先求出()min 1322f x f ⎛⎫==⎪⎝⎭,然后利用柯西不等式求解即可. 【解析】(1)()133,212211,2233,2x x f x x x x x x x ⎧-+≤⎪⎪⎪=-+-=+<<⎨⎪-≥⎪⎪⎩,()6f x <等价于12336x x ⎧≤⎪⎨⎪-+<⎩或12216x x ⎧<<⎪⎨⎪+<⎩或2336x x ≥⎧⎨-<⎩, 解得112x -<≤或122x <<或23x ≤<. 故不等式()6f x <的解集为()1,3-. (2)由(1)知()f x 在1,2⎛⎫-∞ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,所以()min 1322f x f ⎛⎫==⎪⎝⎭, 则223a b +=,故34a b +≤=(当且仅当a =b =), 即34a b +的最大值为【点睛】本题考查的是含绝对值不等式的解法和利用柯西不等式求最值,考查了分类讨论的思想,属于基础题.5.(2020·山西省高三月考)已知函数()|1|2|2|)(R f x x x x =-+-∈,记()f x 得最小值为m . (1)解不等式()5f x ≤;(2)若2a b m +=,求22a b +的最小值. 【答案】(1)100,3⎡⎤⎢⎥⎣⎦;(2)15. 【分析】(1)利用零点分段法,分1x <,12x ≤≤,2x >三种情况去绝对值,解不等式;(2)利用含绝对值三角不等式求得1m =,即21a b +=,方法一,利用柯西不等式2222(2)(12)()a b a b +≤++,求得22a b +的最小值,方法二,根据12a b =-,代入22a b + ,转化为关于b 的二次函数求最值.【解析】(1)53,1()3,1235,2x x f x x x x x -<⎧⎪=-≤≤⎨⎪->⎩,原不等式可等价于5351x x -≤⎧⎨<⎩,或3512x x -≤⎧⎨≤≤⎩,或3552x x -≤⎧⎨>⎩ 解得:1003x ≤≤, 所以原不等式的解集为100,3⎡⎤⎢⎥⎣⎦(2)由(1)可知()122122f x x x x x x =-+-=-+-+-,()()122121x x x x ≥---+-=+-≥当且仅当2x =时等号成立,所以1m = 即21a b +=方法一 由柯西不等式得2222(2)(12)()a b a b +≤++2215a b ∴+≥, 当且仅当225a b ==时取等号方法二 由题意得12a b =-222222211(12)5415()555a b b b b b b +=-+=-+=-+≥当且仅当12,55a b ==时等号成立.【点睛】本题考查含绝对值不等式的解法,以及含绝对值三角不等式的应用,柯西不等式求最值,意在考查转化与化归的思想,计算能力属于基础题型. 6.(2020·吉林省高三)已知函数()12f x x x =-+(1)在平面直角坐标系中作出函数()f x 的图象,并解不等式()2f x ≥; (2)若不等式()15f x x k +-≥-对任意的x ∈R 恒成立,求证:65k k+≥.【答案】(1)图象见解析,13x x ⎧≤-⎨⎩或}1x ≥;(2)证明见解析.【分析】(1)去掉绝对值号,根据一次函数的图象与性质,即可得到函数()f x 的图象,结合图象,即可求解不等式的解集;(2)不等式()15f x x k +-≥-对任意的x ∈R 恒成立,只需()min 51k f x x -≤⎡+-⎤⎣⎦,求得3k ≥,然后利用作差法,即可证得65k k+≥. 【解析】(1)由题意,函数()31,1121,0131,0x x f x x x x x x x -≥⎧⎪=-+=+<<⎨⎪-+≤⎩,在直角坐标系中作出函数()f x 的图象,如图所示:当13x =-时,可得()2f x =,当1x =时,可得()2f x =,所以根据图象可得解不等式()2f x ≥的解集为13x x ⎧≤-⎨⎩或}1x ≥.(2)由()12222222f x x x x x x +-=-+≥--=,当且仅当()()2220x x -≤,即01x ≤≤时取等号,所以()1f x x +-的最小值为2, 由不等式()15f x x k +-≥-对任意的x ∈R 恒成立, 所以只需()min 512k f x x -≤⎡+-⎤=⎣⎦,可得3k ≥,又由()()22365650k k k k k k k k---++-==≥,所以65k k +≥.【点睛】本题主要考查了绝对值不等式的解法和绝对值不等式恒成立问题,着重考查转化思想和数形结合思想的应用,属于中档试题.7.(2020·山西省高三)已知函数()12f x x x a =++-. (1)若1a =,解不等式()4f x <;(2)对任意的实数m ,若总存在实数x ,使得()224m m f x -+=,求实数a 的取值范围.【答案】(1)35,22⎛⎫-⎪⎝⎭(2)[]2,1- 【分析】(1)根据绝对值定义将不等式化为三个不等式组,最后求并集得结果;(2)先根据绝对值三角不等式得()f x 值域,再根据二次函数性质得值域,最后根据两个值域关系列不等式,解得结果.【解析】(1)当1a =时,()4124f x x x <⇒++-<,化为123x x <-⎧⎨>-⎩或1234x -≤≤⎧⎨<⎩或2214x x >⎧⎨-<⎩, 解得312x -<<-或12x -≤≤或522x <<, ∴3522x -<<.即不等式()4f x <的解集为35,22⎛⎫- ⎪⎝⎭. (2)根据题意,得224m m -+的取值范围是()f x 值域的子集.()2224133m m m -+=-+≥,又由于()1221f x x x a a =++-≥+,∴()f x 的值域为)21,a ⎡++∞⎣ 故213a +≤,∴21a -≤≤.即实数a 的取值范围为[]2,1-【点睛】本题考查分类讨论求解含绝对值不等式、绝对值三角不等式、方程恒有解问题,考查综合分析求解能力,属中档题.8.(2020·山西省太原五中高三月考)已知函数()1211f x x x =-+++(1)求不等式()8f x <的解集;(2)若x R ∀∈,函数()2log f x a ≥恒成立,求实数a 的取值范围.【答案】(1)8,23⎛⎫- ⎪⎝⎭;(2)(]0,8. 【分析】由题意可得()32141131x x f x x x x x +≥⎧⎪=+-<<⎨⎪-≤-⎩,然后分段解不等式可得答案,(2) x R ∀∈,函数()2log f x a ≥恒成立,则()2min log f x a ≥,分段求出函数()f x 的最小值,然后解出答案.【解析】由函数()321121141131x x f x x x x x x x +≥⎧⎪=-+++=+-<<⎨⎪-≤-⎩(1)当1x ≥时,()8f x <,即328x +<,得2x <,所以12x ≤<.当11x -<<时,()8f x <,即48x +<,得4x <,所以11x -<<.当1x ≤-时,()8f x <,即38x -<,得83x >-,所以813x -<≤-所以不等式()8f x <的解集为8,23⎛⎫- ⎪⎝⎭.(2) 若x R ∀∈,函数()2log f x a ≥恒成立,则()2min log f x a ≥ 由()32141131x x f x x x x x +≥⎧⎪=+-<<⎨⎪-≤-⎩,当1x ≥时,()325f x x =+≥,当11x -<<时,()43f x x =+>,当1x ≤-时,()33f x x =-≥所以()min 3f x =,则()2min 3log f x a =≥,可得08a <≤所以x R ∀∈,函数()2log f x a ≥恒成立,则实数a 的取值范围为(]0,8【点睛】本题考查解含绝对值的不等式,不等式恒成立求参数的范围,含绝对值的不等式关键是利用定义打开绝对值,属于中档题.9.(2020·全国高三)设函数()|2|f x x x =+-+,集合M 为不等式()0f x <的解集. (1)求集合M ;(2)当m ,n M ∈时,证明:3mn n ++.【答案】(1){|x x <x >(2)证明见解析;【分析】(1)对x 分三类讨论去掉绝对值,解得结果再相并可得结果;(2)两边平方再作差比较可证不等式成立.【解析】(1)当x <((20x x -++++<,解得x <当3x <-((20x x ++++<, 解得x <当3x -时,原不等式化为((20x x +-++<,解得x >所以{|M x x =<x >.(2)欲证|3||mn m n +>+成立,只需证22(3)||)mn m n +>+成立.因为222222(3)|)339mn m n m n m n +-+=--+.()()2233m n =--.又由m ,n M ∈,得23m >,23n >.所以22(3)|)0mn m n +-+>,即22(3)||)mn m n +>+成立.所以|3|||mn m n +>+成立.【点睛】本题考查了分类讨论法解绝对值不等式,考查了比较法证明不等式,平方后再作差是解题关键,属于中档题.10.(2020·山西省高三)已知不等式23x x -<与不等式()20,x mx n m n R -+<∈的解集相同. (1)求m n -;(2)若(),,0,1a b c ∈,且ab bc ac m n ++=-,求222a b c ++的最小值.【答案】(1)1;(2)1.【分析】(1)解不等式|23|x x -<得出20(,)x mx n m n R -+<∈的解集,从而求得m ,n ;(2)根据题意,利用基本不等式求得222a b c ++的最小值.【解析】(1)当0x ≤时,不等式解集为空集;当0x >时,2323x x x x x -<⇔-<-<,即13x <<,所以1,3是方程20x mx n -+=的两根,所以10,930.m n m n -+=⎧⎨-+=⎩解得4,3.m n =⎧⎨=⎩所以1m n -=.(2)由(1)可知1ab bc ac ++=, 因为222a b ab +≥,222b c bc +≥,222a c ac +≥, 所以222222222222a b b c a c a b c +++++=++ 1ab bc ac ≥++=(当且仅当a b c === 所以222a b c ++的最小值为1.【点睛】本题考查了绝对值不等式的解法,基本不等式的应用,属于中档题.11.(2020·重庆高三)已知函数f (x )=|2x ﹣1|﹣3|x +1|,设f (x )的最大值为M .(1)求M ;(2)若正数a ,b 满足3311a b +=Mab ,证明:a 4b +ab 443≥. 【答案】(1)M =3(2)证明见解析;【分析】(1)由f (x )=|2x ﹣1|﹣3|x +1|=|2x ﹣1|﹣|2x +2|﹣|x +1|,结合绝对值不等式的性质和绝对值的几何意义,可得所求最大值;(2)由(1)可得3311a b +=3ab ,a 4b +ab 4=ab (a 3+b 3)13=(3311a b +)(a 3+b 3),再由基本不等式即可得证.【解析】(1)函数f (x )=|2x ﹣1|﹣3|x +1|=|2x ﹣1|﹣|2x +2|﹣|x +1|≤|2x ﹣1﹣2x ﹣2|﹣|﹣1+1|=3,当x =﹣1时,f (x )取得最大值3,即M =3;(2)证明:正数a ,b 满足3311a b+=3ab , 故a 4b +ab 4=ab (a 3+b 3)13=(3311a b +)(a 3+b 3)13=(1+13333a b b a++)13≥()43=,当且仅当a =b = 故a 4b +ab 443≥.【点睛】此题考查了绝对值不等式,利用基本不等式证明不等式,属于中档题.12.(2020·福建省高三)已知函数()1f x x a x =-+-.(1)当0a =时,求不等式()1f x ≤的解集A .(2)设()32f x x ≤-的解集为B ,若A B ⊆,求这数a 的值. 【答案】(1){|01}A x x =≤≤(2)12 【分析】(1)将0a =代入,则|||1|1x x +-,再利用绝对值不等式的性质即可得解;(2)问题等价于1122x a --在[0x ∈,1]上恒成立,由此建立关于a 的不等式组,解出即可. 【解析】(1)当0a =时,()|||1|f x x x =+-,即解不等式|||1|1x x +-,由绝对值不等式知,|||1||(1)|1x x x x +---=,当且仅当(1)0x x -时取等号,因此()1f x 的解集{|01}A x x =;(2)由A B ⊆,即[0x ∈,1],不等式3()||2f x x -恒成立, 即3||12x a xx -+--,整理得1||2x a -, 故1122x a --在[0x ∈,1]上恒成立, 则1212a x a x ⎧-⎪⎪⎨⎪+⎪⎩在[0x ∈,1]上恒成立,得1212a a ⎧⎪⎪⎨⎪⎪⎩, 故12a =. 【点睛】本题考查含绝对值、参数的不等式有解问题与基本不等式的应用,考查运算求解能力、推理论证能力,考查化归与转化思想等,属于中档题.13.(2020·福建省高三)已知函数()12f x x x =-+-.(1)求不等式()3f x <的解集I ; (2)当a ,b ,c I ∈时,求证:11191111114333a b b c c a ++≤+++---.【答案】(1){}03I x x =<<;(2)见解析.【分析】(1)采用分类讨论的方法,求出各段的范围,然后取并集,可得结果.(2)根据不等式2++≥≤a b a b ,化简式子,可证明该结果. 【解析】(1)当1x ≤时,原不等式化简为323-<x ,即01x <≤;当12x <≤时,原不等式化简为13<,恒成立,即12x <≤;当2x >时,原不等式化简为233x -<,即23x <<. 综上,原不等式的解集{}03I x x =<<.(2)当a ,b ,c I ∈时,a ,b ,c ,3a -,3b -,3c -均为正数, 令111111111333=+++++---T a b b c c a则≤T ()()()33394444+-+-+-≤++=a b b c c a T . 当且仅当32===a b c 时,取等号 【点睛】本题考查绝对值不等式的解法以及基本不等式的应用,熟练使用分类讨论的方法(或零点分段法),同时善于观察,识记基本不等式的使用条件:一正,二定,三相等,属中档题.14.(2020·山西省高三)已知函数()2f x x =. (1)求不等式()1f x >的解集;(2)若正数,,a b c 满足24923a b c f ⎛⎫++=+ ⎪⎝⎭,求149a b c ++的最小值. 【答案】(1)22,3⎛⎫- ⎪⎝⎭;(2)1963. 【分析】(1)化简后根据绝对值中的零点将()f x 转换为分段函数,再求解即可.(2)代入可得()1491149493a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭,再根据柯西不等式求最小值即可. 【解析】(1)化简得321x x -->①当0x ≤时,()()323f x x x x =---=+,由()1f x >即31x +>,解得2x >-,又0x ≤,所以20x -<≤;②当03x <<时,()33f x x =-,由()1f x >,即231x ->,解得23x <,又02x <<,所以203x <<; ③当3x ≥时,()3f x x =--,不满足()1f x >,此时不等式无解;综上,不等式()1f x >的解集为22,3⎛⎫- ⎪⎝⎭. (2)249233a b c f ⎛⎫++=+= ⎪⎝⎭, 所以()1491149493a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭∵,,0a b c >,∴由柯西不等式:上式((22222213⎡⎤⎛⎛⎡⎤⎢⎥=++⋅++ ⎢⎥⎣⎦⎢⎥⎝⎝⎣⎦((213⎡≥⨯⨯⎢⎣()2119614933=++=. 当且仅当314a b c ===时,等号成立. 所以149a b c ++的最小值为1963. 【点睛】本题主要考查了绝对值不等式的求解、柯西不等式求最小值的问题,属于中档题.15.(2020·山西省太原五中高三月考)已知函数()()0, 0f x x a x b a b =-++>>.(1)当1a b ==时,解不等式()2f x x <+;(2)若()f x 的值域为[)3,+∞,证明:()224281a b b a b +++≥+. 【答案】(1){}02x x <<;(2)详见解析.【分析】(1)在1x <-,11x -≤<,1x ≥三种情况下,分别解不等式,最后取并集即可;(2)()f x x a x b a b =-++≥+,结合()f x 的值域为[)3,+∞,可知3a b +=.因此有()()1221a b a b ++≥=⇒++≥⎪⎩()()2218411a b a b ⎧++≥⎪⎨≥⎪+⎩,从而证明出题设不等式. 【解析】(1)当1a b ==时,不等式为112x x x -++<+,当1x <-时,不等式化为2223x x x -<+⇒>-,此时不等式无解; 当11x -≤<时,不等式化为220x x <+⇒>,故01x <<;当1x ≥时,不等式化为222x x x <+⇒<,故12x ≤<.综上可知,不等式的解集为{}02x x <<. (2)()f x x a x b a b =-++≥+,当且仅当x a -与x b +异号时,()f x 取得最小值a b +,∵()f x 的值域为[)3,+∞,且0a >,0b >,故3a b +=.()122a b ++≥=(当且仅当12a b =+=时取等号), ∴()2218a b ++≥.又∵()1a b ++≥12a b =+=时取等号),∴()41a b +≤,∴()411a b +≥, ∴()224(1)91a b a b +++≥+, ∴()224281a b b a b +++≥+. 【点睛】本题主要考查了绝对值不等式的解法,考查了基本不等式的应用,属于中档题. 16.(2020·山西省高三)已知函数()()220f x x a x a a =-++>.(1)求不等式()3f x a ≥的解集;(2)若()f x 的最小值为()20b b ->【答案】(1){0x x ≤或4}3a x ≥;(2)见解析 【分析】(1)首先根据题意得到()3,3,3,x a x a f x x a a x a x a x a -+<-⎧⎪=-+-≤≤⎨⎪->⎩,再对a 分类讨论解不等式即可.(2)首先根据函数()f x 的单调性得到22a b +=,再利用柯西不等式证明即可.【解析】(1)()3,3,3,x a x a f x x a a x a x a x a -+<-⎧⎪=-+-≤≤⎨⎪->⎩,①当x a <-时,由33x a a -+≥,解得x a <-;②当a x a -≤≤时,由33x a a -+≥得0a x -≤≤;③当x a >时,由33x a a -≥得43a x ≥. 综上可得不等式()3f x a ≥的解集为{0x x ≤或4}3a x ≥. (2)由()3,3,3,x a x a f x x a a x a x a x a -+<-⎧⎪=-+-≤≤⎨⎪->⎩,可知:当x a ≤时,()f x 为减函数,当x a >时,()f x 为增函数.所以当x a =时,()f x 取到最小值2a ,所以22a b =-,即22a b +=.== 当12a =,1b=时取等号.≤【点睛】本题第一问考查绝对值不等式的解法,第二问考查不等式的证明,熟练掌握柯西不等式为解题的关键,属于中档题.17.(2020·陕西省西安中学高三)已知,,a b c R +∈,x R ∀∈,不等式|1||2|x x a b c ---≤++恒成立.(1)求证:22213a b c ++≥(2)求证【答案】(1)证明见解析(2)证明见解析【分析】(1)先根据绝对值不等式求得|1||2|x x ---的最大值,从而得到1a b c ++≥,再利用基本不等式进行证明;(2)利用基本不等式222a b ab +≥变形得222()2a b a b ++≥,两边开平方得到新的不等式,利用同理可得另外两个不等式,再进行不等式相加,即可得答案.【解析】(1)∵|1||2||12|1x x x x ---≤--+=,∴1a b c ++≥.∵222a b ab +≥,222b c bc +≥,222c a ac +≥,∴222222222a b c ab bc ac ≥++++,∴2222222333222()1a b c a b c ab bc ac a b c ++≥+++++=++≥, ∴22213a b c ++≥. (2)∵222a b ab +≥,()2222222()a ba ab b a b +≥++=+,即222()2a b a b ++≥||()22a b a b ≥+=+.)2b c ≥+)c a ≥+.)a b c ≥++≥【点睛】本题考查绝对值不等式、应用基本不等式证明不等式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和推理论证能力.18.(2020·江苏省高三)已知x ,y ,z 均为正数,且11131112x y z ++≤+++,求证:4910x y z ++≥. 【答案】详见解析【分析】由x ,y ,z 均为正数,运用柯西不等式和不等式的性质,即可得证;【解析】因为x ,y ,z 均为正数,所以1x +,1y +,1z +均为正数,由柯西不等式得()()()214191111(123)36111x y z x y z ⎛⎫++≥++=⎪+++++++⎡⎭⎤⎣⎦+⎝, 当且仅当222(1)4(1)9(1)x y z +=+=+时,等式成立.因为11131112x y z ++≤+++, 所以2(1)4(1)9(1)36243x y z +++++≥⨯=, 所以4910x y z ++≥.【点睛】本题考查不等式的证明,注意运用柯西不等式和不等式的性质,考查推理和运算能力,属于中档题.19.(2019·四川省高三月考)已知函数f (x )=|2x ﹣1|﹣|x +1|. (1)求不等式f (x )≤﹣1的解集M ;(2)结合(1),若m 是集合M 中最大的元素,且a +b =m (a >0,b >0),求+ 【答案】(1)1,13⎡⎤⎢⎥⎣⎦;(2)5【分析】(1)分段去不等式中的绝对值再求解即可. (2)根据(1)可得1m =,再根据柯西不等式求解最大值即可. 【解析】(1)不等式f (x )≤﹣1即|2x ﹣1|﹣|x +1|≤﹣1,可得11211x x x ≤-⎧⎨-++≤-⎩或1121211x x x ⎧-⎪⎨⎪---≤-⎩<<或122111x x x ⎧≥⎪⎨⎪---≤-⎩, 解得:无解或13≤x 12<或12≤x ≤1, 综上可得13≤x ≤1,即所求解集为[13,1];(2)由(1)可得a +b =1(a ,b >0),由柯西不等式可得(2≤(32+42)(a +b ),即为(2≤25,可得≤5,当且仅当a 925=,b 1625=时取得等号,则5.【点睛】本题主要考查了绝对值不等式的求解以及柯西不等式的运用,属于中等题型. 20.(2020·广东省高三月考) 已知函数()()20,0f x x a x b a b =-++>>. (1)当1a b ==时,解不等式()2f x x ≥-;(2)若函数()f x 的值域为[)2,+∞,求2242a b b a+的最小值. 【答案】(1){3x x ≤-或}1x ≥-;(2)2.【分析】(1)可知所求不等式为122x x x -++≥-,然后分2x -≤、21x -<<、1x ≥三种情况解该不等式,即可得出原不等式的解集;(2)利用绝对值三角不等式可得()min 22f x a b =+=,然后将所求代数式变形为2222442222a b a b b a b a b a ⎛⎫⎛⎫+=+++- ⎪ ⎪⎝⎭⎝⎭,利用基本不等式可求得2242a b b a +的最小值. 【解析】(1)根据题意得原不等式为122x x x -++≥-.当2x -≤时,则有122x x x ---≥-,解得3x ≤-,此时3x ≤-; 当21x -<<时,则有122x x x -++≥-,解得1x ≥-,此时11x -≤<; 当1x ≥时,则有122x x x -++≥-,解得13x ≥,此时1x ≥. 综上所述,不等式()2f x x ≥-的解集为{3x x ≤-或}1x ≥-; (2)()222f x x a x b x a x b a b =-++≥---=+, 当且仅当()()20x a x b -+≤时等号成立,0a >,0b >,函数()y f x =的值域为[)2,+∞,即22a b +=.()2222224442222222a b a b a b a b b a b a b a b a ⎛⎫⎛⎫⎛⎫∴+=+++-=+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()22222a b ≥=+-=,当且仅当21a b ==时取等号,因此,2242a b b a+的最小值为2.【点睛】本题考查绝对值不等式的求解,同时也考查了利用基本不等式求最值,涉及绝对值三角不等式的应用,考查计算能力,属于中等题.21.(2020·宁夏回族自治区银川一中高三)已知()12f x x x =-+-. (1)求使得()2f x >的x 的取值集合M ;(2)求证:对任意实数a ,()0b a ≠,当R x C M ∈时,()a b a b a f x ++-≥恒成立. 【答案】(1)12x x ⎧<⎨⎩或52x ⎫>⎬⎭;(2)见解析 【分析】(1)利用|1||2|x x -+-的几何意义,表示数轴上的x 对应点到1和2对应点的距离之和,分析即得解.(2)把||||||()a b a b a f x ++-≥,转化为()||||||a b a b f x a ++-≤,利用绝对值的性质求得||||||a b a b a ++-得最小值即得解.【解析】(1)由()2f x >,即|1||2|2x x -+->.而|1||2|x x -+-表示数轴上的x 对应点到1和2对应点的距离之和,而数轴上满足|1||2|2x x -+-=的点的坐标为12和52, 故不等式|1||2|2x x -+->的解集为15{|}22x x <>或.(2)证明:要证||||||()a b a b a f x ++-≥,只需证()||||||a b a b f x a ++-≤,∵||||||2||a b a b a b a b a ++-≥++-=,当且仅当()()0a b a b +-≥时取等号,∴||||2||a b a b a ++-≥由(1),当R x C M ∈时,()2f x ≤∴||||()||a b a b f x a ++-≤∴原命题成立..【点睛】本题考查了绝对值不等式得解集及不等式证明,考查了学生综合分析,转化与划归,逻辑推理得能力,属于中档题.22.(2020·河南省高三三模)已知是a ,b ,c 正实数,且21a b c ++=.()1求111abc++的最小值;()2求证:22216a b c ++≥.【答案】()16+;()2证明见解析.【分析】()1根据a ,b ,c 是正实数,且21a b c ++=,可得()1111112a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭,然后利用基本不等式求出111a b c++的最小值即可;()2由柯西不等式可得()()()22222221122a b c a b c ++++≥++,再结合21a b c ++=,即可证明22216a b c ++≥成立. 【解析】()121a b c ++=,∴()11111122b a c a b ca b c a b c a b a⎛⎫++=++++=+++ ⎪⎝⎭ 246a c bc b c+++≥+当且仅当a b ==时,等号成立.又由21a b c ++=,∴a b ==,c =时,等号成立,即111a b c++的最小值为6+. ()2由柯西不等式可得()()()222222211221a b c a b c ++++≥++=即2221 6a b c ++≥当且仅当112a b c==时,等号成立.又由21a b c ++=,∴13c =,16a b ==时,等号成立.∴22216a b c ++≥成立.【点睛】本题考查利用综合法证明不等式,基本不等式和柯西不等式的运用,考查转化思想,属于中档题. 23.(2020·江西省高三三模)已知()|||1|.f x k x x =+- (Ⅰ)若2k =,解不等式()5f x ≤.(Ⅱ)若关于x 的不等式()|1||22|f x x x ≤++-的充分条件是1,22x ⎡∈⎤⎢⎥⎣⎦,求k 的取值范围.【答案】(Ⅰ)4,23⎡⎤-⎢⎥⎣⎦(Ⅱ)(],2-∞. 【分析】(Ⅰ)分区间讨论,去掉绝对值号即可求解;(Ⅱ)由题意可转化为11x x k x ++-≤在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,根据绝对值不等式可求出11112x x x x x x++-++-≥=,即可求解. 【解析】(Ⅰ)若2k =,不等式()5f x ≤可化为215x x +-≤. 当0x <时,()215x x ---≤,即43x ≥-,∴403x -≤<; 当01x ≤<时,()215x x --≤,即4x ≤,∴01x ≤<; 当1x ≥时,()215x x +-≤,即2x ≤,∴12x ≤≤.故不等式的解集为4,23⎡⎤-⎢⎥⎣⎦.(Ⅱ)关于x 的不等式()122f x x x ≤+++在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,即1221k x x x x ≤+++--在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,∴11x x k x ++-≤在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,∵11112x x x x x x++-++-≥=,等号在1x +,1x -同号时等号成立,所以,所求实数k 的范围是(],2-∞.【点睛】本题主要考查了含绝对值不等式的解法,不等式恒成立求参数取值范围,分类讨论思想,转化思想,属于中档题.24.(2020·河北省高三)已知a ,b ,c 为正实数,且a+b+c=1.(Ⅰ)证明:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭; (Ⅱ)证明:32a b c b c a c a b ++≥+++. 【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【分析】(Ⅰ)每个式子通分后把1用a b c ++代换后分子应用基本不等式可证结论;(Ⅱ)变形111a b c a b c a b c a b c b c a c a b b c a c a b ++++++⎛⎫⎛⎫⎛⎫++=-+-+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭,三个分式中分子a b c ++提取出来并变为()()()12b c a c a b ⎡⎤+++++⎣⎦,即原不等式左边()()()111132b c a c a b b c a c a b ⎛⎫⎡⎤=+++++++- ⎪⎣⎦+++⎝⎭,再用柯西不等式可证得结论.【解析】(Ⅰ)1111111118a b c b c a c a b a b c a b c a b c ---+++⎛⎫⎛⎫⎛⎫---=⋅⋅=⋅⋅≥=⎪⎪⎪⎝⎭⎝⎭⎝⎭,当且仅当“a=b=c ”时取等号; (Ⅱ)111a b c a b c a b c a b c b c a c a b b c a c a b ++++++⎛⎫⎛⎫⎛⎫++=-+-+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭()()()111132b c a c a b b c a c a b ⎛⎫⎡⎤=+++++++- ⎪⎣⎦+++⎝⎭22113333222≥+-=⨯-=, 当且仅当“a =b =c ”时取等号.【点睛】本题考查用基本不等式和柯西不等式证明不等式成立,解题关键是要凑出基本不等式和柯西不等式的形式,然后才可得出结论,掌握基本不等式和柯西不等式是解题.25.(2020·南昌市新建一中高三)已知函数()21f x x x =---,函数()421g x x x m =---+-. (1)当()0f x >时,求实数x 的取值范围;(2)当()g x 与()f x 的图象有公共点时,求实数m 的取值范围. 【答案】(1)1,2⎛⎫-∞ ⎪⎝⎭;(2)[)1,+∞.【分析】(1)去绝对值,转化为分段函数,解不等式即可;(2)函数()y g x =与()y f x =的图象有公共点,则方程()()f x g x =有解,利用参变量分离法得出224m x x =-+-有解,利用绝对值三角不等式可求得m 的取值范围.【解析】(1)当()0f x >时,即21x x ->+. 当2x ≥时,则21x x ->+,此时x ∈∅; 当2x <时,则21x x ->+,解得12x <,此时12x <. 综上所述,实数x 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭; (2)因为函数()421g x x x m =---+-与函数()y f x =的图象有公共点, 则42121x x m x x ---+-=---有解.即224m x x =-+-有解,由绝对值三角不等式得()24242x x x x -+-≥---=,所以22m ≥,m 1≥. 所以当()y g x =与()y f x =的图象有公共点时,实数m 的取值范围为[)1,+∞.【点睛】本题考查解绝对值不等式,以及函数图象有交点的问题,考查绝对值三角不等式以及分类讨论思想的应用,属于中档题.26.(2020·四川省高三三模)已知函数()||f x x a =-. (1)当1a =时,求不等式11()x f x +>的解集; (2)设不等式|21|()x f x x -+的解集为M ,若1,12M ⎡⎤⊆⎢⎥⎣⎦,求实数a 的取值范围. 【答案】(1)(0,1)(1,)⋃+∞;(2){1}.【分析】(1)将1a =代入,通过讨论x 的范围,去掉绝对值,解各个区间上的x 的范围,取并集即可; (2)问题转化为||1x a x -≤-+,求出x 的范围,得到关于a 的不等式组,解出即可. 【解析】(1)1a =时,111|1|(1)|1|x x x x x +>⇔+>-≠-111x x x >⎧⇔⎨+>-⎩或111x x x <⎧⎨+>-⎩,解之得:1x >或01x <<∴不等式的解集为(0,1)(1,)⋃+∞ (2)不等式的解集为M ,且1,12M ⎡⎤⊆⎢⎥⎣⎦,依题意不等式21x x a x -+-≤在1,12x ⎡⎤∈⎢⎥⎣⎦上恒成立,∴210x -≥,∴|21|()21||x f x x x x a x -+≤⇔-+-≤||111x a x x x a x ⇔-≤-+⇔-≤-≤-+112a a x ≤⎧⎪∴⎨+≤⎪⎩,当1a >时,M 为∅,显然不满足1,12M ⎡⎤⊆⎢⎥⎣⎦; 当1a ≤时,1,2a M +⎛⎤=-∞ ⎥⎝⎦1,12M ⎡⎤⊆⎢⎥⎣⎦,112a +∴≥即1a ≥,1a综上,a 的取值范围为{1}.【点睛】本题主要考查了解绝对值不等式问题,考查分类讨论思想,属于中档题. 27.(2020·福建省高三)已知函数()212f x x x =--+,()221g x x m x =-++. (1)求不等式()2f x <的解集;(2)若存在1x ,2x ∈R ,使得()()120f x g x +=,求m 的取值范围. 【答案】(1){}15x x -<<;(2)73,44⎡⎤-⎢⎥⎣⎦【分析】(1)根据分类讨论的方法,讨论2x -≤,122x -<<,12x ≥三种情况,分别求解,即可得出结果;(2)根据题意,先得到A B ⋂≠∅,其中集合(){},A y y f x x ==∈R ,(){},B y y g x x ==-∈R ,根据绝对值三角不等式,分别求出A ,B ,再由集合间的关系,即可求出结果. 【解析】(1)因为()2f x <,2,2122,x x x ≤-⎧⇔⎨-+++<⎩或12,22122,x x x ⎧-<<⎪⎨⎪-+--<⎩或1,22122x x x ⎧≥⎪⎨⎪---<⎩2,1,x x ≤-⎧⇔⎨>⎩或12,21,x x ⎧-<<⎪⎨⎪>-⎩或1,25x x ⎧≥⎪⎨⎪<⎩ x ⇔∈∅或112x -<<或15152x x ≤<⇔-<<, 所以()2f x <的解集为{}15x x -<<.(2)因为存在1x ,2x ∈R ,使得()()12f x g x =-成立,所以A B ⋂≠∅,其中集合(){},A y y f x x ==∈R ,(){},B y y g x x ==-∈R . 因为()1212222f x x x x x =--+=--+ 11222x x x =-+--+ ()150222x x ⎛⎫≥---+=- ⎪⎝⎭,当且仅当12x =时,“=”成立, 所以52A y y ⎧⎫=≥-⎨⎬⎩⎭.因为()()2221g x x m x -=--++()222121x m x m ≤---+=-+, 当且仅当()()22210x m x -+≤时,“=”成立, 所以{}21B y y m =≤-+ 所以5212m -+≥-,即5212m +≤,即552122m -≤+≤, 解得7344m -≤≤,所以m 的取值范围为73,44⎡⎤-⎢⎥⎣⎦. 【点睛】本题主要考查绝对值不等式的解法,以及绝对值三角不等式求函数的最值问题,属于常考题型. 28.(2020·青海省高三)设函数()21|1|f x x x =---. (1)求不等式()3f x <的解集;(2)若方程2()f x x ax =+有两个不等实数根,求a 的取值范围.【答案】(1)(,3)-∞;(2)()()03-∞⋃+∞,,. 【分析】(1)函数()f x 写成分段函数的形式,分类讨论不等式的解集取并集即可;(2)方程2()f x x ax=+有两个不等实数根等价于2211x x x a x-+---=有两个不等实数根,利用基本不等式求出当x <0时23x x--+的范围,然后数形结合求出a 的取值范围. 【解析】(1)321()21|1|1x x f x x x x x -≤⎧=---=⎨>⎩,,,∵()3f x <,∴3231x x -<⎧⎨≤⎩或31x x <⎧⎨>⎩,∴1x ≤或13x <<,即3x <,∴不等式的解集为(,3)-∞;(2)方程2()f x x ax =+,即221|1|x x x ax ---=+,显然0x =不是方程的根,故2211x x x a x-+---=,令[)()()211211()23001x x x x x g x x x x x ⎧-∈+∞-+---⎪==⎨--+∈-∞⋃⎪⎩,,,,,, 当x <0时,22333x x x x ⎛⎫--+=-++≥ ⎪-⎝⎭,当且仅当x = 作出()g x 的图象,如图所示:∵方程2()f x x ax =+有两个不等实数根,∴由图象可知()()03a ∈-∞⋃+∞,,. 【点睛】本题考查绝对值不等式的解法、根据方程的根的个数求参数的取值范围、分段函数的图象与性质,属于中档题.29.(2020·贵州省高三)设函数()16f x x x a =++--.(1)当2a =时,求不等式()0f x ≤的解集;(2)若()23f x a ≥-,求a 的取值范围.【答案】(1)5722x x ⎧⎫-≤≤⎨⎬⎩⎭;(2)4,3⎛⎤-∞- ⎥⎝⎦. 【分析】(1)分类讨论x 的值,解不等式()0f x ≤即可;(2)利用绝对值三角不等式得出()min f x ,再解不等式()min 23f x a ≥-,即可得出a 的取值范围.【解析】(1)当2a =时,()|1||2|6f x x x =++--当1x <-时,()(1)(2)625f x x x x =-+---=--当12x -≤≤时,()1(2)63f x x x =+---=-当2x >时,()12627f x x x x =++--=-则()25,13,1227,2x x f x x x x --<-⎧⎪=--≤≤⎨⎪->⎩()0f x ≤等价于1250x x <-⎧⎨--≤⎩或1230x -≤≤⎧⎨-≤⎩或2270x x >⎧⎨-≤⎩ 解得5722x -≤≤,则不等式()0f x ≤的解集为5722x x ⎧⎫-≤≤⎨⎬⎩⎭. (2)要使()23f x a ≥-,只需()min 23f x a ≥-即可.又()1616f x x x a a =++--≥+-,且当()()10x x a +-≤时等号成立.∴()min 1623f x a a =+-≥-,则123a a +≥+当230a +≤,即32a ≤-时,123a a +≥+恒成立 当230a +>,即32a >-时,()22123a a +≥+,得231080a a ++≤ 故423a -≤≤-,从而3423a -<≤- 综上,4,3a ⎛⎤∈-∞- ⎥⎝⎦. 【点睛】本题主要考查了分类讨论解绝对值不等式以及求绝对值不等式中参数的范围,属于中档题. 30.(2020·重庆高三)已知函数()22f x x x =+-的最小值为m .(1)求m 的值;(2)若实数a ,b 满足22a b m +=,求221112a b +++的最小值. 【答案】(1)2m =;(2)45【分析】(1)由绝对值三角不等式可得()()222f x x x x x ≥+--=+≥,即可得解;(2)由柯西不等式可得()222221112(11)12a b ab ⎛⎫++++≥+ ⎪++⎝⎭,结合222a b +=即可得解. 【解析】(1)由题意()()2222f x x x x x x x x =++-≥+--=+≥,当且仅当0x =时等号成立,故2m =;(2)由题意222a b +=, 由柯西不等式得()222221112(11124)a b a b ⎛⎫++++≥+⎪++⎭=⎝, 当且仅当232a =,212b =时,等号成立, ∴222211441235a b a b +≥=++++, 故221112a b +++的最小值为45. 【点睛】本题考查了绝对值三角不等式与柯西不等式的应用,属于中档题.31.(2020·广州市天河外国语学校高三月考)已知函数()123f x x x =--+.(1)求不等式()1f x <的解集;。

2020年高考数学专题复习指数型数列不等式放缩

2020年高考数学专题复习指数型数列不等式放缩

1 3n 1
11 16
3 4
1
3n 1
1 9 3n2
1
8 3n2
1 3n2
1
1 8 3n2
n2
1 3n 1
(3n
3n1 1 1)(3n 1
1)
(3n
3n1 1)(3n 1
1)
3 2 3n 2 (3n 1)(3n1 1)
3 2
(
1 3n
1
3n
1
1
) 1
1 31 1
1 32 1
1 3n 1
1 2
3 2
(
1 32 1
1 33
1
1 33
1
1 34 1
1 3n
1
1 3n1
) 1
1 3 11 2 16 16
引例
求证: 1 31
1
1 32
1
1 3n
1
11 16
1
3n1 1 1
3n 1 3n1 1
3n 3n1
1 3
3n 1
1 31
1
1 32
1
1 3n
1
1
1
1
1
n 1
3n 1
1 2
2 32
2 3n
1
2
1
1
n-1
9 3
2
1 1
3
11 5
23 6
引例
求证: 1 31 1
1 32 1
1 3n 1
3 4
1 3n 1
2 3n
于是, 1 31
1
1 32
1
1 3n
1
2 31

全国通用2020_2022三年高考数学真题分项汇编专题20不等式选讲(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编专题20不等式选讲(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编:20 不等式选讲1.【2022年全国甲卷】已知a,b,c均为正数,且a2+b2+4c2=3,证明:(1)a+b+2c≤3;(2)若b=2c,则1a +1c≥3.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据a2+b2+4c2=a2+b2+(2c)2,利用柯西不等式即可得证;(2)由(1)结合已知可得0<a+4c≤3,即可得到1a+4c ≥13,再根据权方和不等式即可得证.(1)证明:由柯西不等式有[a2+b2+(2c)2](12+12+12)≥(a+b+2c)2,所以a+b+2c≤3,当且仅当a=b=2c=1时,取等号,所以a+b+2c≤3;(2)证明:因为b=2c,a>0,b>0,c>0,由(1)得a+b+2c=a+4c≤3,即0<a+4c≤3,所以1a+4c ≥13,由权方和不等式知1a +1c=12a+224c≥(1+2)2a+4c=9a+4c≥3,当且仅当1a =24c,即a=1,c=12时取等号,所以1a +1c≥3.2.【2022年全国乙卷】已知a,b,c都是正数,且a32+b32+c32=1,证明:(1)abc≤19;(2)ab+c +ba+c+ca+b≤2√abc;【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)利用三元均值不等式即可证明;(2)利用基本不等式及不等式的性质证明即可.(1)证明:因为a >0,b >0,c >0,则a 32>0,b 32>0,c 32>0, 所以a 32+b 32+c 323≥√a 32⋅b 32⋅c 323,即(abc )12≤13,所以abc ≤19,当且仅当a 32=b 32=c 32,即a =b =c =√193时取等号.(2)证明:因为a >0,b >0,c >0,所以b +c ≥2√bc ,a +c ≥2√ac ,a +b ≥2√ab , 所以a b+c≤2√bc=a 322√abc,b a+c≤2√ac=b 322√abc,ca+b≤2√ab =322√abc a b +c +b a +c +ca +b ≤a 322√abc +b 322√abc c 322√abc=a 32+b 32+c 322√abc=12√abc当且仅当a =b =c 时取等号.3.【2021年甲卷文科】已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像; (2)若()()f x a g x +≥,求a 的取值范围. 【答案】(1)图像见解析;(2)112a ≥ 【解析】 【分析】(1)分段去绝对值即可画出图像;(2)根据函数图像数形结和可得需将()y f x =向左平移可满足同角,求得()y f x a =+过1,42A ⎛⎫⎪⎝⎭时a 的值可求.【详解】(1)可得2,2()22,2x x f x x x x -<⎧=-=⎨-≥⎩,画出图像如下:34,231()232142,2214,2x g x x x x x x ⎧-<-⎪⎪⎪=+--=+-≤<⎨⎪⎪≥⎪⎩,画出函数图像如下:(2)()|2|f x a x a +=+-,如图,在同一个坐标系里画出()(),f x g x 图像,()y f x a =+是()y f x =平移了a 个单位得到,则要使()()f x a g x +≥,需将()y f x =向左平移,即0a >,当()y f x a =+过1,42A ⎛⎫⎪⎝⎭时,1|2|42a +-=,解得112a =或52-(舍去),则数形结合可得需至少将()y f x =向左平移112个单位,112a ∴≥.【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解. 4.【2021年乙卷文科】已知函数()3f x x a x =-++. (1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围. 【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭. 【解析】 【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简()f x a >-,由此求得a 的取值范围. 【详解】(1)[方法一]:绝对值的几何意义法当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和, 则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6,当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥,所以()6f x ≥的解集为(][),42,-∞-+∞.[方法二]【最优解】:零点分段求解法 当1a =时,()|1||3|f x x x =-++. 当3x ≤-时,(1)(3)6-+--≥x x ,解得4x ≤-; 当31x -<<时,(1)(3)6-++≥x x ,无解; 当1≥x 时,(1)(3)6-++≥x x ,解得2x ≥. 综上,|1||3|6-++≥x x 的解集为(,4][2,)-∞-+∞. (2)[方法一]:绝对值不等式的性质法求最小值 依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-.所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭.[方法二]【最优解】:绝对值的几何意义法求最小值由||x a -是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a =-++≥+,故|3|a a +>-,下同解法一. [方法三]:分类讨论+分段函数法 当3a ≤-时,23,,()3,3,23,3,x a x a f x a a x x a x -+-<⎧⎪=--≤≤-⎨⎪-+>-⎩则min [()]3=--f x a ,此时3-->-a a ,无解. 当3a >-时,23,3,()3,3,23,,x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪-+>⎩则min [()]3=+f x a ,此时,由3a a +>-得,32a >-.综上,a 的取值范围为32a >-.[方法四]:函数图象法解不等式由方法一求得()min 3f x a =+后,构造两个函数|3|=+y a 和y a =-,即3,3,3,3a a y a a --<-⎧=⎨+≥-⎩和y a =-, 如图,两个函数的图像有且仅有一个交点33,22⎛⎫- ⎪⎝⎭M ,由图易知|3|a a +>-,则32a >-.【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法. 方法一采用几何意义方法,适用于绝对值部分的系数为1的情况, 方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得()3min f x a =+,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得()f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求()f x 最小值,要注意函数()f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数()f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.5.【2020年新课标1卷理科】已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集. 【答案】(1)详解解析;(2)7,6⎛⎫-∞- ⎪⎝⎭.【解析】 【分析】(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象; (2)作出函数()1f x +的图象,根据图象即可解出. 【详解】(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞- ⎪⎝⎭.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.6.【2020年新课标2卷理科】已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.【解析】 【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 【详解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解; 当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x a x a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号), ()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型. 7.【2020年新课标3卷理科】设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }. 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)方法一:由()22222220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)方法一:不妨设{}max ,,a b c a =,因为0,1a b c abc ++==,所以0,a >0,b <0,c <()()a b c=-+-≥34,a ≥a【详解】(1)[方法一]【最优解】:通性通法()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. [方法二]:消元法由0a b c ++=得()b a c =-+,则()ab bc ca b a c ca ++=++()2a c ac =-++()22a ac c =-++223024c a c ⎛⎫=-+-≤ ⎪⎝⎭,当且仅当0a b c ===时取等号,又1abc =,所以0ab bc ca ++<. [方法三]:放缩法方式1:由题意知0,a ≠0,a b c ++=(),a c b =-+()222224a c b c b cb bc =+=++≥,又()ab bc ca a b c bc ++=++2a bc =-+224a a ≤-+2304a =-<,故结论得证.方式2:因为0a b c ++=,所以()22220222a b c a b c ab bc ca =++=+++++ ()()()22222212222a b b c c a ab bc ca ⎡⎤=++++++++⎣⎦()()122222232ab bc ca ab bc ca ab bc ca ≥+++++=++. 即0ab bc ca ++≤,当且仅当0a b c ===时取等号, 又1abc =,所以0ab bc ca ++<. [方法四]:因为0,1a b c abc ++==,所以a ,b ,c 必有两个负数和一个正数,不妨设0,a b c ≤<<则(),a b c =-+()20ab bc ca bc a c b bc a ∴++=++=-<.[方法五]:利用函数的性质方式1:()6b a c =-+,令()22f c ab bc ca c ac a =++=---,二次函数对应的图像开口向下,又1abc =,所以0a ≠, 判别式222Δ430a a a =-=-<,无根, 所以()0f c <,即0ab bc ca ++<.方式2:设()()()()()31f x x a x b x c x ab bc ca x =---=+++-,则()f x 有a ,b ,c 三个零点,若0ab bc ca ++≥,则()f x 为R 上的增函数,不可能有三个零点, 所以0ab bc ca ++<.(2)[方法一]【最优解】:通性通法不妨设{}max ,,a b c a =,因为0,1a b c abc ++==,所以0,a >0,b <0,c <()()a b c =-+-≥则34,a a ≥≥.故原不等式成立. [方法二]:不妨设{}max ,,a b c a =,因为0,1a b c abc ++==,所以0a >,且,1,b c a bc a +=-⎧⎪⎨=⎪⎩则关于x 的方程210x ax a++=有两根,其判别式24Δ0a a =-≥,即a故原不等式成立. [方法三]:不妨设{}max ,,a b c a =,则0,a >(),b a c =-+1,abc =()1,a c ac -+=2210ac a c ++=,关于c 的方程有解,判别式()22Δ40a a =-≥,则34,a a ≥≥.故原不等式成立. [方法四]:反证法假设{}max ,,a b c0a b ≤<<1ab c =>a b c --=1132a b ---≥=={}max ,,a b c ≥证. 【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出.(2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.。

2020年数学新高考一轮复习(理) 基本不等式

2020年数学新高考一轮复习(理)  基本不等式
解析:1+a+b=ab≤a+2 b2, ∴(a+b)2-4(a+b)-4≥0. ∴a+b≤2-2 2或a+b≥2+2 2. ∵a>0,b>0, ∴a+b≥2+2 2. ∴a+b的最小值为2+2 2. 答案:2+2 2
返回
2.(2018·杭州质检)已知正数x,y满足x2+2xy-3=0, 则2x+y的最小值是________. 解析:由题意得y=3-2xx2, ∴2x+y=2x+3-2xx2=3x22+x 3=32x+1x≥3, 当且仅当x=y=1时,等号成立. 答案:3
第五 节 基本不等式
课前·双基落实
想一想、辨一辨、试一试、全面打牢基础
课堂·考点突破
自主研、合作探、多面观、全扫命题题点
课后·三维演练
基础练、题型练、能力练、全练力保全能
返回
课 前 双基落实
想一想、辨一辨、试一试、全面打牢基础
返回
必过 教材 关
返回
1.基本不等式 ab≤a+2 b (1)基本不等式成立的条件: a>0,b>0 . (2)等号成立的条件:当且仅当 a=b . 2.几个重要的不等式 (1)a2+b2≥ 2ab (a,b∈R );(2)ba+ab≥ 2 (a,b同号); (3)ab≤a+2 b2(a,b∈R );(4)a+2 b2≤a2+2 b2(a,b∈R ).
1 600+4 160=5 760,当且仅当2
x=
5 x
,即x=
5 2
时,等号成
立,此时a=40,ax=100.
所以要使公园所占面积最小,休闲区A1B1C1D1的长和宽应分别设
计为100 m,40 m.
考点三 利用基本不等式求参数的取值范围 返回

[典例引领]
重点保分型考点——师生共研

专题1.4 基本不等式及其应用-2020届高考数学一轮复习学霸提分秘籍(解析版)

专题1.4 基本不等式及其应用-2020届高考数学一轮复习学霸提分秘籍(解析版)

第一篇 集合与不等式 专题1.04 基本不等式及其应用【考试要求】1.掌握基本不等式ab ≤a +b2(a ,b ≥0);2.结合具体实例,能用基本不等式解决简单的最大值或最小值问题. 【知识梳理】1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数.2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).【微点提醒】1.b a +ab≥2(a ,b 同号),当且仅当a =b 时取等号. 2.21a +1b≤ab ≤a +b2≤a 2+b 22(a >0,b >0). 3.连续使用基本不等式求最值要求每次等号成立的条件一致. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.( ) (2)函数y =x +1x的最小值是2.( )(3)函数f (x )=sin x +4sin x 的最小值为4.( )(4)x >0且y >0是x y +yx ≥2的充要条件.( )【答案】 (1)× (2)× (3)× (4)×【解析】 (1)不等式a 2+b 2≥2ab 成立的条件是a ,b ∈R ; 不等式a +b 2≥ab 成立的条件是a ≥0,b ≥0.(2)函数y =x +1x 的值域是(-∞,-2]∪[2,+∞),没有最小值.(3)函数f (x )=sin x +4sin x 没有最小值.(4)x >0且y >0是x y +yx ≥2的充分不必要条件.【教材衍化】2.(必修5P99例1(2)改编)若x >0,y >0,且x +y =18,则xy 的最大值为( ) A.9 B.18 C.36 D.81【答案】 A【解析】 因为x +y =18,所以xy ≤x +y2=9,当且仅当x =y =9时,等号成立.3.(必修5P100练习T1改编)若x <0,则x +1x ( )A.有最小值,且最小值为2B.有最大值,且最大值为2C.有最小值,且最小值为-2D.有最大值,且最大值为-2【答案】 D【解析】 因为x <0,所以-x >0,-x +1-x≥21=2,当且仅当x =-1时,等号成立,所以x +1x ≤-2.【真题体验】4.(2019·浙江镇海中学月考)已知f (x )=x 2-2x +1x ,则f (x )在⎣⎡⎦⎤12,3上的最小值为( ) A.12B.43C.-1D.0【答案】 D【解析】 f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x ,即x =1时取等号.又1∈⎣⎡⎦⎤12,3,所以f (x )在⎣⎡⎦⎤12,3上的最小值为0. 5.(2018·济宁一中月考)一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,则这个矩形的长为________m ,宽为________m 时菜园面积最大. 【答案】 15152【解析】 设矩形的长为x m ,宽为y m.则x +2y =30,所以S =xy =12x ·(2y )≤12⎝⎛⎭⎫x +2y 22=2252,当且仅当x =2y ,即x =15,y =152时取等号.6.(2018·天津卷)已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.【答案】 14【解析】 由题设知a -3b =-6,又2a >0,8b >0,所以2a +18b ≥22a ·18b =2·2a -3b 2=14,当且仅当2a =18b ,即a =-3,b =1时取等号.故2a +18b 的最小值为14.【考点聚焦】考点一 利用基本不等式求最值 角度1 利用配凑法求最值【例1-1】 (1)(2019·乐山一中月考)设0<x <32,则函数y =4x (3-2x )的最大值为________.(2)已知x <54,则f (x )=4x -2+14x -5的最大值为______.【答案】 (1)92(2)1【解析】 (1)y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎡⎦⎤2x +(3-2x )22=92, 当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝⎛⎭⎫0,32,∴函数y =4x (3-2x )⎝⎛⎭⎫0<x <32的最大值为92. (2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝⎛⎭⎫5-4x +15-4x +3≤-2(5-4x )·15-4x +3=-2+3=1.当且仅当5-4x =15-4x,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1. 角度2 利用常数代换法求最值【例1-2】 (2019·潍坊调研)函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0上,且m ,n 为正数,则1m +1n 的最小值为________.【答案】 4【解析】 ∵曲线y =a 1-x 恒过定点A ,x =1时,y =1, ∴A (1,1).将A 点代入直线方程mx +ny -1=0(m >0,n >0), 可得m +n =1,∴1m +1n =⎝⎛⎭⎫1m +1n ·(m +n )=2+n m +m n≥2+2n m ·mn=4, 当且仅当n m =m n 且m +n =1(m >0,n >0),即m =n =12时,取得等号.角度3 基本不等式积(ab )与和(a +b )的转化【例1-3】 (经典母题)正数a ,b 满足ab =a +b +3,则ab 的取值范围是________. 【答案】 [9,+∞)【解析】 ∵a ,b 是正数,∴ab =a +b +3≥2ab +3,解得ab ≥3,即ab ≥9. 【迁移探究】 本例已知条件不变,求a +b 的最小值. 【答案】 见解析【解析】 ∵a >0,b >0,∴ab ≤⎝⎛⎭⎫a +b 22,即a +b +3≤⎝⎛⎭⎫a +b 22,整理得(a +b )2-4(a +b )-12≥0, 解得a +b ≥6或a +b ≤-2(舍).故a +b 的最小值为6.【规律方法】在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,主要有两种思路:(1)对条件使用基本不等式,建立所求目标函数的不等式求解.常用的方法有:折项法、变系数法、凑因子法、换元法、整体代换法等.(2)条件变形,进行“1”的代换求目标函数最值.【训练1】 (1)(2019·济南联考)若a >0,b >0且2a +b =4,则1ab 的最小值为( )A.2B.12C.4D.14(2)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值为________. 【答案】 (1)B (2)5【解析】(1)因为a>0,b>0,故2a +b≥22ab(当且仅当2a =b 时取等号). 又因为2a +b =4,∴22ab ≤4⇒0<ab≤2,∴1ab ≥12,故1ab 的最小值为12(当且仅当a =1,b =2时等号成立). (2)由x +3y =5xy 可得15y +35x =1,所以3x +4y =(3x +4y )⎝⎛⎭⎫15y +35x =135+3x 5y +12y 5x ≥135+125=5(当且仅当3x5y=12y 5x ,即x =1,y =12时,等号成立),所以3x +4y 的最小值是5. 考点二 基本不等式在实际问题中的应用【例2】 运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 【答案】 见解析【解析】 (1)设所用时间为t =130x (h),y =130x ×2×⎝⎛⎭⎫2+x 2360+14×130x ,x ∈[50,100]. 所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100](或y =2 340x +1318x ,x ∈[50,100]).(2)y =130×18x +2×130360x ≥2610,当且仅当130×18x =2×130360x ,即x =1810时等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元. 【规律方法】1.设变量时一般要把求最大值或最小值的变量定义为函数.2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.【训练2】 网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2019年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和, 则该公司最大月利润是________万元. 【答案】37.5【解析】由题意知t =23-x -1(1<x <3),设该公司的月利润为y 万元,则y =⎝⎛⎭⎫48+t 2x x -32x -3-t =16x -t 2-3=16x -13-x +12-3 =45.5-⎣⎡⎦⎤16(3-x )+13-x ≤45.5-216=37.5,当且仅当x =114时取等号,即最大月利润为37.5万元.考点三 基本不等式与其他知识的综合应用【例3】 (1)(2019·河南八校测评)已知等差数列{a n }中,a 3=7,a 9=19,S n 为数列{a n }的前n 项和,则S n +10a n +1的最小值为________.(2)(一题多解)(2018·江苏卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________. 【答案】 (1)3 (2)9【解析】 (1)∵a 3=7,a 9=19,∴d =a 9-a 39-3=19-76=2,∴a n =a 3+(n -3)d =7+2(n -3)=2n +1,∴S n =n (3+2n +1)2=n (n +2),因此S n +10a n +1=n (n +2)+102n +2=12⎣⎡⎦⎤(n +1)+9n +1≥12×2(n +1)·9n +1=3,当且仅当n =2时取等号.故S n +10a n +1的最小值为3.(2)法一 依题意画出图形,如图所示.易知S △ABD +S △BCD =S △ABC ,即12c sin 60°+12a sin 60°=12ac sin 120°, ∴a +c =ac ,∴1a +1c=1,∴4a +c =(4a +c )⎝⎛⎭⎫1a +1c =5+c a +4ac ≥9, 当且仅当c a =4a c ,即a =32,c =3时取“=”.法二 以B 为原点,BD 所在直线为x 轴建立如图所示的平面直角坐标系,则D (1,0),∵AB =c ,BC =a ,∴A ⎝⎛⎭⎫c 2,32c ,C ⎝⎛⎭⎫a 2,-32a .∵A ,D ,C 三点共线,∴AD →∥DC →. ∴⎝⎛⎭⎫1-c 2⎝⎛⎭⎫-32a +32c ⎝⎛⎭⎫a 2-1=0, ∴ac =a +c ,∴1a +1c=1,∴4a +c =(4a +c )⎝⎛⎭⎫1a +1c =5+c a +4ac ≥9, 当且仅当c a =4a c , 即a =32,c =3时取“=”.【规律方法】 基本不等式的应用非常广泛,它可以和数学的其他知识交汇考查,解决这类问题的策略是: 1.先根据所交汇的知识进行变形,通过换元、配凑、巧换“1”等手段把最值问题转化为用基本不等式求解,这是难点.2.要有利用基本不等式求最值的意识,善于把条件转化为能利用基本不等式的形式.3.检验等号是否成立,完成后续问题.【训练3】 (1)(2019·厦门模拟)已知f (x )=32x -(k +1)3x +2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( ) A.(-∞,-1) B.(-∞,22-1) C.(-1,22-1)D.(-22-1,22-1)(2)在各项都为正数的等比数列{a n }中,若a 2 018=22,则1a 2 017+2a 2 019的最小值为________. 【答案】 (1)B (2)4【解析】 (1)由f (x )>0得32x -(k +1)3x +2>0,解得k +1<3x +23x .又3x +23x ≥22(当且仅当3x =23x ,即x =log 3 2时,等号成立).所以k +1<22,即k <22-1.(2)∵{a n }为等比数列,∴a 2 017·a 2 019=a 22 018=12.∴1a 2 017+2a 2 019≥22a 2 017·a 2 019=24=4.当且仅当1a 2 017=2a 2 019,即a 2 019=2a 2 017时,取得等号.∴1a 2 017+2a 2 019的最小值为4.【反思与感悟】1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.2.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab ≤⎝⎛⎭⎫a +b 22≤a 2+b 22,ab ≤a +b 2≤a 2+b 22(a >0,b >0)等,同时还要注意不等式成立的条件和等号成立的条件. 【易错防范】1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +mx (m >0)的单调性.【分层训练】【基础巩固题组】(建议用时:35分钟) 一、选择题1.(2019·孝感调研)“a >b >0”是“ab <a 2+b 22”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】 A【解析】 由a >b >0,可知a 2+b 2>2ab ,充分性成立,由ab <a 2+b 22,可知a ≠b ,a ,b ∈R ,故必要性不成立.2.下列结论正确的是( ) A.当x >0且x ≠1,lg x +1lg x ≥2B.1x 2+1<1(x ∈R ) C.当x >0时,x +1x≥2 D.当0<x ≤2时,x -1x 无最大值【答案】 C【解析】 对于A ,当0<x <1时,lg x <0,不等式不成立; 对于B ,当x =0时,有1x 2+1=1,不等式不成立;对于C ,当x >0时,x +1x≥2x ·1x=2,当且仅当x =1时等号成立; 对于D ,当0<x ≤2时,y =x -1x 单调递增,所以当x =2时,取得最大值,最大值为32.3.(2019·绵阳诊断)已知x >1,y >1,且lg x ,2,lg y 成等差数列,则x +y 有( ) A.最小值20 B.最小值200 C.最大值20D.最大值200【答案】 B【解析】 由题意得2×2=lg x +lg y =lg (xy ),所以xy =10 000,则x +y ≥2xy =200,当且仅当x =y =100时,等号成立,所以x +y 有最小值200.4.设a >0,若关于x 的不等式x +a x -1≥5在(1,+∞)上恒成立,则a 的最小值为( )A.16B.9C.4D.2【答案】 C【解析】 在(1,+∞)上,x +a x -1=(x -1)+a x -1+1 ≥2(x -1)×a(x -1)+1=2a +1(当且仅当x =1+a 时取等号).由题意知2a +1≥5.所以a ≥4.5.(2019·太原模拟)若P 为圆x 2+y 2=1上的一个动点,且A (-1,0),B (1,0),则|PA |+|PB |的最大值为( ) A.2 B.2 2 C.4 D.4 2【答案】 B【解析】 由题意知∠APB =90°,∴|PA |2+|PB |2=4, ∴⎝⎛⎭⎫|PA |+|PB |22≤|PA |2+|PB |22=2(当且仅当|PA |=|PB |时取等号),∴|PA |+|PB |≤22,∴|PA |+|PB |的最大值为2 2.6.某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A.60件 B.80件C.100件D.120件【答案】 B【解析】 设每批生产产品x 件,则每件产品的生产准备费用是800x 元,仓储费用是x8元,总的费用是⎝⎛⎭⎫800x +x 8元,由基本不等式得800x +x 8≥2800x +x 8=20,当且仅当800x =x8,即x =80时取等号. 7.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A. 2B.2C.2 2D.4【答案】 C【解析】 依题意知a >0,b >0,则1a +2b≥22ab =22ab,当且仅当1a =2b,即b =2a 时,“=”成立.因为1a +2b =ab ,所以ab ≥22ab ,即ab ≥22(当且仅当a =214,b =254时等号成立),所以ab 的最小值为2 2.8.(2019·衡水中学质检)正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是( ) A.[3,+∞) B.(-∞,3] C.(-∞,6]D.[6,+∞)【答案】 D【解析】 因为a >0,b >0,1a +9b =1,所以a +b =(a +b )⎝⎛⎭⎫1a +9b =10+b a +9ab ≥16, 当且仅当b a =9ab,即a =4,b =12时取等号.依题意,16≥-x 2+4x +18-m ,即x 2-4x -2≥-m 对任意实数x 恒成立. 又x 2-4x -2=(x -2)2-6,所以x 2-4x -2的最小值为-6,所以-6≥-m ,即m ≥6. 二、填空题9.函数y =x 2+2x -1(x >1)的最小值为________.【答案】 23+2【解析】 y =x 2+2x -1=(x 2-2x +1)+2x -2+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立.10.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则每台机器为该公司创造的年平均利润的最大值是________万元. 【答案】 8【解析】 每台机器运转x 年的年平均利润为y x =18-⎝⎛⎭⎫x +25x ,而x >0,故yx≤18-225=8,当且仅当x =5时等号成立,此时每台机器为该公司创造的年平均利润最大,最大值为8万元.11.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【答案】 6【解析】 因为x >0,y >0,所以9-(x +3y )=xy =13x ·(3y )≤13·⎝⎛⎭⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时等号成立.设x +3y =t >0,则t 2+12t -108≥0,所以(t -6)(t +18)≥0,又因为t >0,所以t ≥6.故当x =3,y =1时,(x +3y )min =6.12.已知直线mx +ny -2=0经过函数g (x )=log a x +1(a >0且a ≠1)的定点,其中mn >0,则1m +1n的最小值为________.【答案】 2【解析】 因为函数g (x )=log a x +1(a >0且a ≠1)的定点(1,1)在直线mx +ny -2=0上,所以m +n -2=0,即m 2+n 2=1. 所以1m +1n =⎝⎛⎭⎫1m +1n ⎝⎛⎭⎫m 2+n 2=1+n 2m +m 2n≥1+2n 2m ·m 2n =2, 当且仅当n 2m =m 2n,即m 2=n 2时取等号, 所以1m +1n的最小值为2. 【能力提升题组】(建议用时:15分钟)13.(2018·江西师大附中月考)若向量m =(a -1,2),n =(4,b ),且m ⊥n ,a >0,b >0,则log 13a +log 3 1b有( ) A.最大值log 3 12B.最小值log 32C.最大值log 13 12D.最小值0【答案】 B【解析】 由m ⊥n ,得m ·n =0,即4(a -1)+2b =0,∴2a +b =2,∴2≥22ab ,∴ab ≤12(当且仅当2a =b 时,等号成立). 又log 13 a +log 3 1b =log 13 a +log 13 b =log 13 (ab )≥log 1312=log 3 2,故log 13a +log 3 1b有最小值为log 3 2. 14.(2019·湖南师大附中模拟)已知△ABC 的面积为1,内切圆半径也为1,若△ABC 的三边长分别为a ,b ,c ,则4a +b+a +b c 的最小值为( ) A.2B.2+ 2C.4D.2+2 2 【答案】 D【解析】 因为△ABC 的面积为1,内切圆半径也为1,所以12(a +b +c )×1=1,所以a +b +c =2, 所以4a +b +a +b c =2(a +b +c )a +b +a +b c =2+2c a +b+a +b c ≥2+22, 当且仅当a +b =2c ,即c =22-2时,等号成立,所以4a +b+a +b c 的最小值为2+2 2. 15.(2017·天津卷)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________. 【答案】 4【解析】 ∵a ,b ∈R ,ab >0,∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab=4, 当且仅当⎩⎪⎨⎪⎧a 2=2b 2,4ab =1ab ,即⎩⎨⎧a 2=22,b 2=24时取得等号. 16.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________. 【答案】 ⎣⎡⎭⎫-83,+∞ 【解析】 对任意x ∈N *,f (x )≥3,即x 2+ax +11x +1≥3恒成立,即a ≥-⎝⎛⎭⎫x +8x +3. 设g (x )=x +8x ,x ∈N *,则g (x )=x +8x≥42, 当x =22时等号成立,又g (2)=6,g (3)=173, ∵g (2)>g (3),∴g (x )min =173.∴-⎝⎛⎭⎫x +8x +3≤-83,∴a ≥-83,故a 的取值范围是⎣⎡⎭⎫-83,+∞. 【新高考创新预测】17.(多填题)已知正数x ,y 满足x +y =1,则x -y 的取值范围为________,1x +x y的最小值为________. 【答案】 (-1,1) 3【解析】 ∵正数x ,y 满足x +y =1,∴y =1-x ,0<x <1,∴-y =-1+x ,∴x -y =2x -1,又0<x <1,∴0<2x <2,∴-1<2x -1<1,即x -y 的取值范围为(-1,1).1x +x y =x +y x +x y =1+y x +x y ≥1+2y x ·x y =1+2=3,当且仅当x =y =12时取“=”;∴1x +x y的最小值为3.。

(名师讲坛)2020版高考数学二轮复习专题三不等式微切口9动态二次函数问题—动轴定区间、定轴动区间课件

(名师讲坛)2020版高考数学二轮复习专题三不等式微切口9动态二次函数问题—动轴定区间、定轴动区间课件

求二次函数在给定区间上最值的方法: 二次函数f (x)=ax2+bx+c(不妨设a>0)在区间[m,n]上的最大或最小值为: (1) 当-2ba∈[m,n],即对称轴在所给区间内时,f (x)的最小值在对称轴处取得, 其最小值是f -2ba=4ac4-a b2;若-2ba≤m+2 n,f (x)的最大值为f (n);若-2ba≥m+2 n, f (x)的最大值为f (m).
(2019·泗洪中学)已知a为实数,函数f (x)=x2+|x-a|+1,x∈R. (1) 求f (x)的最小值; 【思维引导】
【解答】 f (x)=xx22+ -xx- +aa+ +11, ,xx≥ <aa, . ①当a≤-12时,f (x)在-∞,-12上单调递减,在-12,+∞上单调递增, 所以f (x)min=f -12=34-a;
③当a<0时, (i) 当a3≤-1,即a≤-3时,f (x)在[-1,0]上单调递增, 所以f (x)min=f (-1)=3+2a+a2; (ii) 当a3>-1,即-3<a<0时,f (x)min=f a3=23a2.
1-2a-a2,a≥1, -2a2,0≤a<1, 综上,f (x)min=23a2,-3<a<0, 3+2a+a2,a≤-3.
②当-12<a<12时,f (x)在(-∞,a)上单调递减,在(a,+∞)上单调递增, 所以f (x)min=f (a)=a2+1;
③当a≥12时,f (x)在-∞,12上单调递减,在12,+∞上单调递增,
所以f (x)min=f 12=34+a;
34+a,a≥12, 综上,f (x)min=a2+1,-12<a<12,
所以g(a)=a9+ a+1a- 1a-2, 6,a∈ a∈1312,,121,.

浙江2020版高考数学第二章不等式专题突破一高考中的不等式问题讲义(含解析)

浙江2020版高考数学第二章不等式专题突破一高考中的不等式问题讲义(含解析)

高考专题突破一 高考中的不等式问题题型一 含参数不等式的解法例1解关于x 的不等式x 2+ax +1>0(a∈R ). 解 对于方程x 2+ax +1=0,Δ=a 2-4.(1)当Δ>0,即a >2或a <-2时,方程x 2+ax +1=0有两个不等实根x 1=-a -a 2-42,x 2=-a +a 2-42,且x 1<x 2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a -a 2-42或x >-a +a 2-42; (2)当Δ=0,即a =±2时,①若a =2,则原不等式的解集为{x |x ≠-1}; ②若a =-2,则原不等式的解集为{x |x ≠1};(3)当Δ<0,即-2<a <2时,方程x 2+ax +1=0没有实根,结合二次函数y =x 2+ax +1的图象,知此时原不等式的解集为R .思维升华解含参数的一元二次不等式的步骤(1)若二次项含有参数应讨论是否等于0,小于0,和大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)当方程有两个根时,要讨论两根的大小关系,从而确定解集形式.跟踪训练1 (1)若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是________. 答案 3解析 由题意可知-7和-1为方程ax 2+8ax +21=0的两个根. ∴-7×(-1)=21a,故a =3.(2)若关于x 的不等式|x -1|+|x +m |>3的解集为R ,则实数m 的取值范围是__________. 答案 (-∞,-4)∪(2,+∞)解析 依题意得,|x -1|+|x +m |≥|(x -1)-(x +m )|=|m +1|,即函数y =|x -1|+|x +m |的最小值是|m +1|,于是有|m +1|>3,m +1<-3或m +1>3,由此解得m <-4或m >2.因此实数m 的取值范围是(-∞,-4)∪(2,+∞).题型二 线性规划问题例2(2018·浙江五校联考)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,x -y ≥-1,2x -y ≤4,且z =ax +y 的最大值为16,则实数a =________,z 的最小值为________. 答案 2 1解析 如图,作出不等式组所表示的可行域(△ABC 及其内部区域).目标函数z =ax +y 对应直线ax +y -z =0的斜率k =-a .(1)当k ∈(-∞,1],即-a ≤1,a ≥-1时,目标函数在点A 处取得最大值,由⎩⎪⎨⎪⎧ 2x -y =4,x -y =-1,解得A (5,6),故z 的最大值为5a +6,即5a +6=16,解得a =2.(2)当k ∈(1,+∞),即-a >1,a <-1时,目标函数在点C 处取得最大值,由⎩⎪⎨⎪⎧x +2y =2,x -y =-1,解得C (0,1),故z 的最大值为0×a +1=1,不符合题意. 综上,a =2.数形结合知,当直线z =2x +y 经过点C 时,z 取得最小值,z min =2×0+1=1. 思维升华1.利用线性规划求目标函数的基本步骤为一画二移三求,其关键是准确作出可行域,理解目标函数的意义. 2.常见的目标函数有(1)截距型:如z =-2x +y ,z =2y4x ,z =OP →·OM →(其中M (x ,y )为区域内动点,P (-2,1)),等等.(2)距离型:如z =(x -2)2+y 2,z =|2x -y |,等等.(3)斜率型:如z =y +1x ,z =x +y +1x ,z =x y +1,z =y +1x +x y +1=x 2+(y +1)2xy +x ,等等.(4)二次曲线型:如z =xy ,z =y 2x ,z =x 22+y 2,等等.3.解题时要注意可行解是区域的所有点还是区域内的整点.跟踪训练2 (1)(2018·湖州五校模拟)设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1>0,x +y -3<0,y >0,则z =2x-y 的取值范围为( ) A .(-6,-1) B .(-8,-2) C .(-1,8) D .(-2,6)答案 D解析 方法一 作出约束条件所表示的可行域如图中阴影部分所示.作出直线y =2x ,平移直线,直线z =2x -y 在点B (-1,0)处的取最小值为-2,在点C (3,0)处的取最大值为6,所以z =2x -y 的取值范围为(-2,6).方法二 三条直线两两联立求出的交点坐标分别是(1,2),(-1,0),(3,0),分别代入z =2x -y 求值,得0,-2,6,所以z =2x -y 的取值范围为(-2,6). (2)若x ,y 满足⎩⎪⎨⎪⎧2x +5y ≥0,2x -y ≥0,x ≤5,则不等式组表示的平面区域的面积为________,z =(x +1)2+(y -1)2的最小值为________. 答案 30 95解析 作出⎩⎪⎨⎪⎧2x +5y ≥0,2x -y ≥0,x ≤5表示的平面区域如图中阴影部分(含边界)所示,则不等式组表示的平面区域的面积为12×5×2+12×10×5=30.z =(x +1)2+(y -1)2表示可行域内的点(x ,y )与点M (-1,1)之间的距离的平方,数形结合易知,z =(x +1)2+(y -1)2的最小值为点M (-1,1)到直线2x -y =0的距离的平方,即z min =|2×(-1)-1|2[22+(-1)2]2=95. 题型三 基本不等式的应用例3 (1)已知x 2+4xy -3=0,其中x >0,y ∈R ,则x +y 的最小值是( ) A.32B .3C .1D .2 答案 A解析 由x 2+4xy -3=0,得y =3-x24x,即有x +y =x +3-x 24x =34⎝ ⎛⎭⎪⎫x +1x .∵x >0,∴x +1x ≥2,即x +y ≥32,当且仅当x =1x ,即x =1,y =12时,x +y 取得最小值32.(2)已知a >0,b >0,c >1,且a +b =1,则⎝ ⎛⎭⎪⎫a 2+1ab -2·c +2c -1的最小值为______.答案 4+2 2解析 ∵a 2+1ab =a 2+(a +b )2ab =2a 2+2ab +b 2ab=2a b +ba+2≥22a b ·ba+2=22+2,当且仅当⎩⎪⎨⎪⎧2a b =b a,a +b =1,即⎩⎨⎧a =2-1,b =2-2时等号成立,∴⎝ ⎛⎭⎪⎫a 2+1ab -2·c +2c -1≥22c +2c -1=22(c -1)+2c -1+2 2≥222(c -1)·2c -1+22=4+22, 当且仅当22(c -1)=2c -1,即c =1+22时,等号成立. 综上,所求最小值为4+2 2. 思维升华利用基本不等式求最值的方法(1)利用基本不等式求最值的关键是构造和为定值或积为定值,主要思路有两种:①对条件使用基本不等式,建立所求目标函数的不等式求解.②条件变形,进行“1”的代换求目标函数最值.(2)有些题目虽然不具备直接应用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式.常用的方法还有:拆项法、变系数法、凑因子法、分离常数法、换元法、整体代换法.跟踪训练3 (1)已知xy =1,且0<y <22,则x 2+4y2x -2y 的最小值为( )A .4B.92C .22D .4 2答案 A解析 由xy =1且0<y <22,可知x >2, 所以x -2y >0.x 2+4y 2x -2y =(x -2y )2+4xy x -2y =x -2y +4x -2y≥4, 当且仅当x =3+1,y =3-12时等号成立. (2)若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是________. 答案233解析 由x 2+y 2+xy =1,得1=(x +y )2-xy , ∴(x +y )2=1+xy ≤1+(x +y )24,解得-233≤x +y ≤233(当且仅当x =y =33时取得最大值),∴x +y 的最大值为233.题型四 绝对值不等式的应用例4 (1)(2018·浙江五校联考)已知a ∈R ,则“a ≤9”是“2|x -2|+|5+2x |<a 无解”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 2|x -2|+|5+2x |=|2x -4|+|5+2x | ≥|2x -4-5-2x |=9,若2|x -2|+|5+2x |<a 无解,则a ≤9,同样若a ≤9,则2|x -2|+|5+2x |<a 无解, 所以“a ≤9”是“2|x -2|+|5+2x |<a 无解”的充要条件.(2)(2019·温州模拟)已知a ,b ,c ∈R ,若|a cos 2x +b sin x +c |≤1对x ∈R 恒成立,则|a sin x +b |的最大值为________. 答案 2解析 |a cos 2x +b sin x +c |≤1, 即|a sin 2x -b sin x -(a +c )|≤1,分别取sin x =1,-1,0,可知⎩⎪⎨⎪⎧|b +c |≤1,|b -c |≤1,|a +c |≤1,所以|a +b |=|(a +c )+(b -c )|≤|a +c |+|b -c |≤2, 且|a -b |=|(a +c )-(b +c )|≤|a +c |+|b +c |≤2.所以max{|a sin x +b |}=max{|a +b |,|a -b |}≤2,当a =2,b =0,c =-1时,取等号. 思维升华(1)解绝对值不等式可以利用绝对值的几何意义,零点分段法、平方法、构造函数法等.(2)利用绝对值三角不等式可以证明不等式或求最值.跟踪训练4 (1)已知函数f (x )=|x -5|+|x +3|+|x -3|+|x +5|-c ,若存在正实数m ,使f (m )=0,则不等式f (x )<f (m )的解集是________.答案 (-m ,m )解析 由|-x -5|+|-x +3|+|-x -3|+|-x +5|=|x -5|+|x +3|+|x -3|+|x +5|可知,函数f (x )为偶函数,当-3≤x ≤3时,f (x )取最小值16-c .结合题意可得c ≥16.由f (m )=0得f (x )<0,即|x -5|+|x +3|+|x -3|+|x +5|-c <0,结合图象(图略)可知,解集为(-m ,m ).(2)不等式|x -2|+|x +1|≥a 对于任意x ∈R 恒成立,则实数a 的取值范围为__________. 答案 (-∞,3]解析 当x ∈(-∞,-1]时,|x -2|+|x +1|=2-x -x -1=1-2x ≥3;当x ∈(-1,2)时,|x -2|+|x +1|=2-x +x +1=3; 当x ∈[2,+∞)时,|x -2|+|x +1|=x -2+x +1=2x -1≥3,综上可得|x -2|+|x +1|≥3,∴a ≤3.1.(2018·宁波期末)若a ,b ∈R ,且a <b <0,则下列不等式成立的是( ) A .2a -b>1B.1a -1>1b -1C .a 3>b 3D .a +|b |>0答案 B解析 由a <b <0得a -1<b -1<0,则(a -1)(b -1)>0,所以(a -1)·1(a -1)(b -1)<(b -1)·1(a -1)(b -1),即1a -1>1b -1,故选B.2.(2018·浙江绍兴一中期末)若关于x 的不等式|x +2|+|x -a |<5有解,则实数a 的取值范围是( ) A .(-7,7) B .(-3,3) C .(-7,3) D .∅答案 C解析 不等式|x +2|+|x -a |<5有解,等价于(|x +2|+|x -a |)min <5,又因为|x +2|+|x -a |≥|(x +2)-(x -a )|=|2+a |,所以|2+a |<5,-5<2+a <5,解得-7<a <3,即实数a 的取值范围为(-7,3),故选C.3.设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x -y -1≤0,3x -y +1≥0,3x +y -1≤0,x ,y ∈R,则M 表示的平面区域的面积是( )A.2B.32C.322D .2答案 B解析 由题意,M 表示的平面区域是以A (0,1),B (-1,-2),C ⎝ ⎛⎭⎪⎫12,-12为顶点的三角形及其内部,如图中阴影部分所示(含边界),所以其面积为12×2×⎝ ⎛⎭⎪⎫12+1=32.4.(2018·杭州质检)若正数x ,y 满足2x +y -3=0,则2x +1y的最小值为( )A .2B .3C .4D .5 答案 B解析 由2x +y -3=0,得2x +y =3, 所以2x +1y =13(2x +y )⎝ ⎛⎭⎪⎫2x +1y =13⎝ ⎛⎭⎪⎫5+2x y +2y x≥13⎝⎛⎭⎪⎫5+2 2x y·2y x =3,当且仅当2x y =2y x,即x =y =1时等号成立,故选B.5.(2018·金华十校调研)设x ,y ∈R ,下列不等式成立的是( ) A .1+|x +y |+|xy |≥|x |+|y | B .1+2|x +y |≥|x |+|y | C .1+2|xy |≥|x |+|y | D .|x +y |+2|xy |≥|x |+|y |答案 A解析 对于选项B ,令x =100,y =-100,不成立;对于选项C ,令x =100,y =1100,不成立;对于选项D ,令x =13,y =-12,不成立,故选A.6.(2018·杭州学军中学模拟)设关于x ,y 的不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +m ≤0,y -m ≥0表示的平面区域内存在点P (x 0,y 0)满足x 0-2y 0>3,则实数m 的取值范围是( ) A .(-1,0) B .(0,1) C .(-1,+∞) D .(-∞,-1)答案 D解析 作出满足不等式组的平面区域,如图中阴影部分所示(包含边界),当目标函数z =x -2y 经过直线x +m =0与y -m =0的交点时取得最大值,即z max =-m -2m =-3m ,则根据题意有-3m >3,即m <-1,故选D.7.(2018·浙江舟山中学月考)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax+by (a >0,b >0)在该约束条件下取到最小值25时,a 2+b 2的最小值为( ) A .5B .4C.5D .2 答案 B解析 画出满足约束条件的可行域如图中阴影部分(包含边界)所示,可知当目标函数过直线x -y -1=0与2x -y -3=0的交点A (2,1)时取得最小值,所以有2a +b =2 5.因为a 2+b 2表示原点(0,0)到点(a ,b )的距离的平方,所以a 2+b 2的最小值为原点到直线2a +b -25=0的距离,即(a 2+b 2)min =|-25|22+12=2,所以a 2+b 2的最小值是4,故选B.8.(2018·嘉兴教学测试)若直线ax +by =1与不等式组⎩⎪⎨⎪⎧y ≤1,2x -y -1≤0,2x +y +1≥0表示的平面区域无公共点,则2a +3b 的取值范围是( ) A .(-7,1) B .(-3,5) C .(-7,3) D .R答案 C解析 不等式组⎩⎪⎨⎪⎧y ≤1,2x -y -1≤0,2x +y +1≥0表示的平面区域是以A (1,1),B (-1,1),C (0,-1)为顶点的三角形区域(包含边界);因为直线ax +by =1与不等式组⎩⎪⎨⎪⎧y ≤1,2x -y -1≤0,2x +y +1≥0表示的平面区域无公共点,所以a ,b满足⎩⎪⎨⎪⎧a +b -1>0,-a +b -1>0,-b -1>0或⎩⎪⎨⎪⎧a +b -1<0,-a +b -1<0,-b -1<0,故点(a ,b )在如图所示的三角形区域(除边界且除原点)内,所以2a+3b 的取值范围为(-7,3),故选C.9.(2019·诸暨期末)不等式-x 2+2x +3<0的解集为________;不等式|3-2x |<1的解集为________.答案 (-∞,-1)∪(3,+∞) (1,2)解析 依题意,不等式-x 2+2x +3<0,即x 2-2x -3>0,解得x <-1或x >3,因此不等式-x 2+2x +3<0的解集是(-∞,-1)∪(3,+∞);由|3-2x |<1得-1<3-2x <1,1<x <2,所以不等式|3-2x |<1的解集是(1,2).10.(2018·宁波期末)关于实数x 的不等式x 2-4x >1a+3在[0,5]上有解,则实数a 的取值范围为______________.答案 (-∞,0)∪⎝ ⎛⎭⎪⎫12,+∞ 解析 由x 2-4x >1a +3得x 2-4x -3>1a ,则问题等价于1a小于x 2-4x -3在[0,5]上的最大值,又因为x 2-4x -3=(x -2)2-7,所以当x =5时,x 2-4x -3取得最大值2,所以1a<2,解得a <0或a >12,所以a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫12,+∞.11.(2018·嘉兴测试)已知f (x )=x -2,g (x )=2x -5,则不等式|f (x )|+|g (x )|≤2的解集为______________;|f (2x )|+|g (x )|的最小值为________.答案 ⎣⎢⎡⎦⎥⎤53,3 3 解析 由题意得|f (x )|+|g (x )|=|x -2|+|2x -5|=⎩⎪⎨⎪⎧7-3x ,x <2,-x +3,2≤x ≤52,3x -7,x >52,所以|f (x )|+|g (x )|≤2等价于⎩⎪⎨⎪⎧7-3x ≤2,x <2或⎩⎪⎨⎪⎧-x +3≤2,2≤x ≤52或⎩⎪⎨⎪⎧3x -7≤2,x >52,解得53≤x ≤3,|f (2x )|+|g (x )|=|2x -2|+|2x -5|=⎩⎪⎨⎪⎧7-4x ,x <1,3,1≤x ≤52,4x -7,x >52,|f (2x )|+|g (x )|的图象如图,则由图象易得|f (2x )|+|g (x )|的最小值为3.12.(2018·浙江镇海中学模拟)已知正数x ,y 满足1x +2y =1,则1x +1+2y +1的最大值是________. 答案 34解析 设u =1x ,v =1y ,则问题转化为“已知正数u ,v 满足u +2v =1,求u u +1+2vv +1的最大值”.uu +1+2v v +1=3-⎝ ⎛⎭⎪⎫1u +1+2v +1=3-⎝⎛⎭⎪⎫1u +1+2v +1·14[(u +1)+2(v +1)]=3-14⎣⎢⎡⎦⎥⎤5+2(v +1)u +1+2(u +1)v +1≤3-14(5+4)=34. 当且仅当2(v +1)u +1=2(u +1)v +1,即u =v =13时,取等号.13.(2018·浙江金华十校联考)已知实数x ,y ,z 满足⎩⎪⎨⎪⎧xy +2z =1,x 2+y 2+z 2=5,则xyz 的最小值为________. 答案 911-32 解析 将⎩⎪⎨⎪⎧xy +2z =1,x 2+y 2+z 2=5变形为⎩⎪⎨⎪⎧xy =1-2z ,x 2+y 2=5-z 2,由|xy |≤x 2+y 22知,|1-2z |≤5-z22,即-5-z 22≤1-2z ≤5-z 22,解得2-7≤z ≤11-2.所以xyz =(1-2z )z =-2z 2+z 在[2-7,11-2]上的最小值为911-32.14.(2018·宁波模拟)若6x 2+4y 2+6xy =1,x ,y ∈R ,则x 2-y 2的最大值为________. 答案 15解析 方法一 设m =x +y ,n =x -y ,则问题转化为“已知4m 2+mn +n 2=1,求mn 的最大值”.由基本不等式,知1=mn +4m 2+n 2≥mn +4|mn |,所以-13≤mn ≤15,当且仅当n =2m ,即x =-3y 时,取得最大值15.方法二 (齐次化处理)显然要使得目标函数取到最大值,x ≠0.令z =x 2-y 2=x 2-y 26x 2+4y 2+6xy=1-⎝ ⎛⎭⎪⎫y x26+4·⎝ ⎛⎭⎪⎫y x 2+6·y x ,设t =y x ,则z =1-t 26+4t 2+6t,则(4z +1)t 2+6zt +6z -1=0对t ∈R 有解.当z=-14时,t =-53.当z ≠-14时,Δ=36z 2-4(4z +1)(6z -1)≥0,解得-13≤z ≤15.当t =-3z 4z +1=-13时取最大值.方法三 1=6x 2+4y 2+6×x3×3y ≥6x 2+4y 2-6×x 23+3y 22=5x 2-5y 2,所以x 2-y 2≤15,当且仅当x =-3y 时取等号.15.(2019·浙江嘉兴一中模拟)已知点P 是平面区域M :⎩⎨⎧x≥0,y ≥0,3x +y -3≤0内的任意一点,则P 到平面区域M 的边界的距离之和的取值范围为________. 答案 ⎣⎢⎡⎦⎥⎤32,3 解析 设平面区域M :⎩⎨⎧x ≥0,y≥0,3x +y -3≤0为△ABO 区域(包含边界),由题意,|AO |=1,|BO |=3,|AB |=2,P 到平面区域M 的边界的距离之和d 就是P 到△ABO 三边的距离之和,设P 到边界AO ,BO ,AB 的距离分别为a ,b ,c ,则P (b ,a ),由题意0≤a ≤3,0≤b ≤1,0≤c =12(3-a -3b )≤32,所以d =a +b +c =12[a +(2-3)b +3],从而d ≥32,当a =b =0时取等号.如图,P 为可行域内任意一点,过P 作PE ⊥x 轴,PF ⊥y 轴,PP ′⊥AB ,过P ′作P ′E ′⊥x 轴,P ′F ′⊥y 轴,则有PE +PF +PP ′≤P ′F ′+P ′E ′,由P (b ,a ), 可得P ′⎝⎛⎭⎪⎫3+b -3a4,3+3a -3b 4,所以d =a +b +c ≤3+b -3a 4+3+3a -3b 4=3+3+(3-1)(3a -b )4,又0≤a ≤3,0≤b ≤1,则d ≤3,当a =3,b =0时取等号,因此d 的取值范围为⎣⎢⎡⎦⎥⎤32,3. 16.(2018·浙江“七彩阳光”新高考研究联盟联考)若正数a ,b ,c 满足b +c a +a +c b =a +bc+1,则a +bc的最小值是________. 答案1+172解析 由a ,b ,c 为正数,且b +c a +a +c b =a +b c +1得b c +1a c +a c +1b c =a c +b c +1,设m =a c ,n =bc,则有m >0,n >0,上式转化为n +1m +m +1n =m +n +1,即m 2+n 2+m +nmn=m +n +1,又由基本不等式得m 2+n 2≥(m +n )22,mn ≤(m +n )24,所以m +n +1=m 2+n 2+m +n mn ≥(m +n )22+m +n (m +n )24,令t =m +n ,则t >0,上式转化为t +1≥t 22+tt 24,即t 2-t -4≥0,解得t ≥1+172,所以t =m +n =a c +bc =a +b c 的最小值为1+172.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档