高二第一次月考
重庆市巴蜀中学校2024-2025学年高二上学期第一次月考数学试题

重庆市巴蜀中学校2024-2025学年高二上学期第一次月考数学试题一、单选题1.直线:1l y +的倾斜角为( ) A .0︒B .30︒C .45︒D .60︒2.已知直线1:50l x y ++=,2:10l x y ++=,则1l 与2l 的距离为( )A .1B .2C D .3.已知(1,0)A -、(3,6)B ,则以AB 为直径的圆的一般方程为( ) A .222630x y x y +--+= B .222630x y x y +---= C .222630x y x y ++-+=D .222630x y x y ++--=4.已知直线1:10l ax y ++=,2:2(1)30l x a y +--=,若12l l ⊥,则实数a =( )A B C .-1 D .-2 5.已知动点P 在椭圆22:143y x C +=上,(0,1)F -,(3,3)D -,则D |P PF -的最小值为( )A .5BC .2D .16.已知直线1:12l y x =+与椭圆2222:1(0)x y C a b a b+=>>相交于A 、B ,且AB 的中点为11,2M ⎛⎫- ⎪⎝⎭,则椭圆C 的离心率为( )A B C D .127.已知点A 、B 在圆22:16O x y +=上,且AB 的中点M 在圆22:(2)1C x y -+=上,则弦长AB 的最小值为( )A .B .C .D .8.已知椭圆2222:1(0)x y a b a b Γ+=>>的焦距为2c ,若直线()380kx y k c -++=恒与椭圆Γ有两个不同的公共点,则椭圆Γ的离心率范围为( )A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭二、多选题9.已知ABC V 的三个顶点(2,1)A -,(2,7)B -,(2,1)C -,则下列描述正确的有( ) A .直线BC 的倾斜角不存在 B .直线AB 的斜率为-2C .边AB 上的高所在直线的方程为240x y -+=D .边AB 上的中线所在直线的方程为30x y -+=10.已知动点P 在直线:60l x y +-=上,动点Q 在圆22:(1)(1)4C x y -+-=上,过点P 作圆C 的两条切线,切点分别为A 、B ,则下列描述正确的有( )A .直线l 与圆C 相交B .PQ 的最小值为2C .四边形PACB 面积的最小值为4D .存在P 点,使得120APB ︒∠=11.已知椭圆222:1(20)4x y C b b+=>>的左、右焦点分别为1F 、2F ,上顶点为B ,动点P 在椭圆C 上,则下列描述正确的有( )A .若12PF F V 的周长为6,则b =B .若当12π3F PF ∠=时,12PF F V b =C .若存在P 点,使得12PF PF ⊥,则b ∈D .若PB 的最大值为2b ,则b ∈三、填空题12.焦点在x 轴的椭圆C ,长轴长为10,离心率为35,则椭圆C 的标准方程为.13.经过点()0,0O 作直线l ,若直线l 与连接()1,1A -,()2,2B 两点的线段总有公共点,则直线l 斜率的取值范围为.14.已知点()0,1A ,()0,1B -,()0,2C -,动点P 满足:||||10+=PA PB ,且||2||PC PA ≥,则点P 的轨迹长度为.四、解答题15.已知点()2,1P -,直线:220l x y ++=. (1)求点P 到直线l 的距离;(2)求点P 关于直线l 的对称点Q 的坐标.16.已知(1,2)A 、(3,6)B ,动点P 满足4PA PB ⋅=-u u u r u u u r,设动点P 的轨迹为曲线C . (1)求曲线C 的标准方程;(2)求过点(1,2)A 且与曲线C 相切的直线的方程. 17.已知直线2y kx =+与椭圆2213x y +=相交于不同的两点,P Q . (1)求实数k 的取值范围;(2)若OP OQ ⊥,其中O 为坐标原点,求实数k 的值.18.已知圆22:4x y Γ+=,点Q 在圆Γ上,过Q 作y 轴的垂线,垂足为Q ',动点P 满足23Q Q Q P ''=u u u u r u u u r ,设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)斜率存在且不过()0,2B 的直线l 与曲线C 相交于M 、N 两点,BM 与BN 的斜率之积为209. ①证明:直线l 过定点; ②求BMN V 面积的最大值.19.如图1,已知圆心C 在x 轴的圆C 经过点(3,0)D 和(E .过原点且不与x 铀重合的直线l 与圆C 交于A 、B 两点(A 在x 轴上方).(1)求圆C 的标准方程;(2)若ABD △l 的方程;(3)将平面xOy 沿x 轴折叠,使y 轴正半轴和x 轴所确定的半平面(平面AOD )与y 轴负半轴和x轴所确定的半平面(平面BOD)互相垂宜,如图2,求折叠后AB的范围.。
辽宁省名校联盟2024-2025学年高二上学期第一次月考数学试卷

辽宁省名校联盟2024-2025学年高二上学期第一次月考数学试卷一、单选题1.已知直线(20a x y ++=的倾斜角为30o ,则a =( )A .BCD .02.若()1,2,1a =--r,()1,3,2b =-r ,则()()2a b a b +⋅-=r r r r ( )A .22B .22-C .29-D .293.如果0AB >且0BC <,那么直线0Ax By C ++=不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限4.如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,点E 在侧棱PC 上,且12PE EC =,若AB a u u u r r=,AD b =u u u r r ,AP c =u u u r r ,则AE =u u u r ( )A .112333a b c ---r r rB .112333a b c ++r r rC .221333a b c ++r r rD .221333a b c ---r r r5.已知m 为实数,直线()()12:220,:5210l m x y l x m y ++-=+-+=,则“12l l //”是“3m =-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知空间中三点()0,0,0A ,()1,1,2B -,()1,2,1C --,则以AB ,AC 为邻边的平行四边形的面积为( )A .32B C .3 D .7.点()2,4A -到直线()():131440l m x m y m -+-++=(m 为任意实数)的距离的取值范围是( )A .[]0,5B .⎡⎣C .[]0,4D .⎡⎣8.在正三棱锥P ABC -中,4PA AB ==,点,D E 分别是棱,PC AB 的中点,则AD PE ⋅=u u u r u u u r( ) A .2-B .4-C .6-D .8-二、多选题9.下列说法正确的是( )A .直线10x y -+=与直线10x y --=B .直线240x y --=在两坐标轴上的截距之和为6C .将直线y x =绕原点逆时针旋转75o ,所得到的直线为y =D .若直线l 向左平移3个单位长度,再向上平移2个单位长度后,回到原来的位置,则直线l 的斜率为23-10.在正方体1111ABCD A B C D -中,能作为空间的一个基底的一组向量有( )A .1AA u u u r ,AB u u u r,AC u u u r B .BA u u u r ,BC u u ur ,BD u u u rC .1AC uuu r ,1BD u u u u r,1CB u u u rD .1AD uuu r ,1BA u u u r ,AC u u u r11.如图,在棱长均为1的平行六面体1111ABCD A B C D -中,1BB ⊥平面,60ABCD ABC ∠=o ,,P Q 分别是线段AC 和线段1A B 上的动点,且满足()1,1BQ BA CP CA λλ==-u u u r u u u r u u u r u u u r,则下列说法正确的是( )A .当12λ=时,PQ //1A D B .当12λ=时,若()1,,PQ xAB yAD z AA x y z =++∈R u u u r u u u r u u u r u u u r ,则0x y z ++=C .当13λ=时,直线PQ 与直线1CC 所成角的大小为π6D .当()0,1λ∈时,三棱锥Q BCP -三、填空题12.已知直线l 过点()1,2,且在y 轴上的截距为在x 轴上的截距的两倍,则直线l 的方程是. 13.在空间直角坐标系O xyz -中,已知()()()2,2,0,2,1,3,0,2,0A B C -,则三棱锥O ABC -的体积为.14.在棱长为4的正方体1111ABCD A B C D -中,点E ,F 分别为棱DA ,1BB 的中点,M ,N 分别为线段11D A ,11A B 上的动点(不包括端点),且EN FM ⊥,则线段MN 的长度的最小值为.四、解答题15.如图,正方体1111ABCD A B C D -的棱长为2.(1)用空间向量方法证明:11//AC 平面1ACD ;(2)求直线BD 与平面1ACD 所成角的正弦值.16.已知点()1,3P ,点()3,1N --,直线1l 过点()2,4-且与直线PN 垂直. (1)求直线1l 的方程;(2)求直线2:250+-=l x y 关于直线1l 的对称直线的方程. 17.平行六面体ABCD A B C D -'''',(1)若4AB =,3AD =,3AA '=,90BAD ∠=︒,60BAA '∠=︒,60DAA '∠=︒,求AC '长; (2)若以顶点A 为端点的三条棱长均为2,且它们彼此的夹角都是60°,则AC 与BD '所成角的余弦值.18.如图,四边形ABCD 是直角梯形,//,,22,AB CD AB BC AB BC CD E ⊥===为BC 的中点,P 是平面ABCD 外一点,1,,PA PB PE BD M ==⊥是线段PB 上一点,三棱锥M BDE -的体积是19.(1)求证:PA ⊥平面ABCD ; (2)求二面角M DE A --的余弦值.19.图,在三棱台111ABC A B C -中,ABC V 是等边三角形,11124,2AB A B CC ===,侧棱1CC ⊥平面ABC ,点D 是棱AB 的中点,点E 是棱1BB 上的动点(不含端点B ).(1)证明:平面AA B B 平面11DCC;1(2)求平面ABE与平面ACE的夹角的余弦值的最小值.。
云南省玉溪第一中学2024-2025学年高二上学期第一次月考数学试题

云南省玉溪第一中学2024-2025学年高二上学期第一次月考数学试题一、单选题1.下列说法中,正确的有()A .过点()1,2P 且在x 、y 轴截距相等的直线方程为30x y +-=B .直线10x +=的倾斜角为60o C .直线32y x =-在y 轴上的截距为2-D .过点()5,4并且倾斜角为90 的直线方程为40y -=2.平行六面体1111ABCD A B C D -中,1123AC xAB yBC zC C =++,则x y z ++=()A .1B .76C .56D .233.设{},,i j k 是单位正交基底,已知向量p 在基底{},,a b c 下的坐标为()8,6,4,其中a i j =+,b j k =+ ,c k i =+ ,则向量p在基底{},,i j k 下的坐标是()A .()12,14,10B .()10,12,14C .()14,12,10D .()4,3,24.已知()2,1,0a b +=- ,()0,3,2a b -=-,则cos ,a b 的值为()A .13B .3C .3D .35.已知()()()0,0,0,1,1,1,1,2,2A B M -,则M 到直线AB 的距离为()AB C .1D 6.已知圆的方程为2220x y x +-=,(),M x y 为圆上任意一点,则21y x --的取值范围是()A .⎡⎣B .[]1,1-C .(),-∞+∞D .(][),11,-∞-+∞ 7.在空间直角坐标系中,向量()2,1,a m =-,()4,2,4b =- ,下列结论正确的是()A .若//a b r r,则2m =B .若a b ⊥ ,则52m =-C .若,a b 为钝角,则52m <D .若a 在b 上的投影向量为16b,则4m =8.著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数M (x ,y )与点N (a ,b )的距离.结合上述观点,可得()f x =的最小值为()A .B .C .4D .89.关于方程22220x y ax ay ++-=表示的圆,下列叙述中正确的是()A .圆心在直线y x =-上B .其圆心在x 轴上C .过原点D二、多选题10.对于直线1:230l ax y a ++=,()2:3130l x a y a +-+-=.以下说法正确的有()A .12//l l 的充要条件是3a =B .12l l ⊥的充要条件是25a =C .直线2l 一定经过点()1,1M -D .点()1,3P 到直线1l 的距离的最大值为511.如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则下列结论正确的是()A .直线1BD ⊥平面11AC DB .三棱锥11P ACD -的体积为定值C .异面直线AP 与1AD 所成角的取值范围是ππ,42⎡⎤⎢⎥⎣⎦D .直线1C P 与平面11AC D 三、填空题12.两平行直线3450x y ++=和6200x my ++=间的距离是.13.点()2,0P 关于直线l :10x y ++=的对称点Q 的坐标为.14.给定两个不共线的空间向量a 与b,定义叉乘运算:a b ⨯ .规定:(i )a b ⨯ 为同时与a ,b垂直的向量;(ii )a ,b ,a b ⨯三个向量构成右手系(如图1);(iii )sin ,a b a b a b ⨯=.如图2,在长方体1111ABCD A B C D -中,2AB AD ==,14AA =.给出下列四个结论:①1AB AD AA ⨯=;②AB AD AD AB ⨯=⨯ ;③()111AB AD AA AB AA AD AA +⨯=⨯+⨯ ;④()11111ABCD A B C D V AB AD CC -=⨯⋅.其中,正确结论的序号是.四、解答题15.已知ABC V 的三个顶点分别为()()()1,0,3,2,0,3A B C -.(1)求AB 边上的高所在直线的方程;(2)求ABC V 的面积.16.如图,在梯形ABCD 中,π,22,,,2AD BC ABC AB BC AD E F G ∠====∥分别为边AB ,,CD BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)证明:BD EG ⊥;(2)求BD 与平面ABF 所成角的正弦值.17.已知圆M 经过原点和点()3,1-,且它的圆心M 在直线250x y +-=上.(1)求圆M 的方程;(2)若点D 为圆M 上的动点,定点()2,0C ,求线段CD 的中点P 的轨迹方程.18.如图在四棱锥A BCDE -中,//CD EB ,1CD =,2EB =,CB BE ⊥,AE AB BC ===,AD =,O 是AE 的中点.(1)试在AB 上确定点F 的位置,使C 、D 、O 、F 四点共面,并证明;(2)求点O 到平面ACD 的距离;(3)在棱BE 上是否存在点M ,使得半平面ADM 与半平面ABC 所成二面角的余弦值为,若存在,求:EM MB ,若不存在,说明理由.19.A 是直线PQ 外一点,点M 在直线PQ 上(点M 与点,P Q 任一点均不重合),我们称如下操作为“由A 点对PQ 施以视角运算”:若点M 在线段PQ 上,记()sin ,;sin AP PAM P Q M AQ MAQ∠∠=;若点M 在线段PQ 外,记()sin ,;sin AP PAM P Q M AQ MAQ∠∠=-.在ABC V 中,角,,A B C 的对边分别是,,a b c ,点D 在射线BC 上.(1)若AD 是角A 的平分线,且3b c =,由A 点对BC 施以视角运算,求(),;B C D 的值;(2)若60,4,A a AB AD ==⊥ ,由A 点对BC 施以视角运算,(),;2B C D =-ABC V 的周长;(3)若120A =o ,4=AD ,由A 点对BC 施以视角运算,(),;cB C D b=,求4b c +的最小值.。
广东省部分学校2024—2025学年高二上学期第一次月考联考数学试卷解析版

2024—2025学年高二上学期第一次月考联考高二数学试卷解析版满分150分,考试用时120分钟注意事项:1. 答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.已知()()2,1,3,1,1,1a b =−=− ,若()a a b λ⊥−,则实数λ的值为( )A .2−B .143−C .73D .2【答案】C【详解】 向量()()2,1,3,1,1,1a b =−=−若()a a b λ⊥−,则2()(419)(213)0a a b a a b λλλ⋅−−⋅++−++,73λ∴=.故选:C .2.P 是被长为1的正方体1111ABCD A B C D −的底面1111D C B A 上一点,则1PA PC ⋅的取值范围是( )A .11,4−−B .1,02−C .1,04 −D .11,42 −−【答案】B【详解】如图,以点D 为坐标原点,1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系, 则AA (1,0,0),()10,1,1C ,设(),,P x y z ,01x ≤≤,01y ≤≤,1z =,()1,,1PA x y ∴=−−− ,()1,1,0PC x y =−− ,()()2222111111222PA PC x x y y x x y y x y ∴⋅=−−−−=−+−=−+−−,当12x y ==时, 1PA PC ⋅ 取得最小值12−,当0x =或1,0y =或1时,1PA PC ⋅取得最大值0, 所以1PA PC ⋅ 的取值范围是1,02−.故选:B.3.已知向量()4,3,2a =− ,()2,1,1b =,则a 在向量b上的投影向量为( )A .333,,22B .333,,244C .333,,422D .()4,2,2【答案】A【详解】向量a 在向量b()()2333cos ,2,1,12,1,13,,222b a b a a b b b b ⋅⋅⋅=⋅===. 故选:A.4.在棱长为2的正方体1111ABCD A B C D −中,E ,F 分别为棱1AA ,1BB 的中点,G 为棱11A B 上的一点,且()102A G λλ=<<,则点G 到平面1D EF 的距离为( ) ABCD【答案】D【详解】以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z轴,建立如图所示的空间直角坐标系,则()2,,2G λ,()10,0,2D ,()2,0,1E ,()2,2,1F , 所以()12,0,1ED =− ,()0,2,0= EF ,()0,,1EG λ=.设平面1D EF 的法向量为(),,n x y z = ,则12020n ED x z n EF y ⋅=−+= ⋅== , 取1x =,得()1,0,2n =,所以点G 到平面1D EF的距离为EG n d n⋅== , 故选:D .5.已知四棱锥P ABCD −,底面ABCD 为平行四边形,,M N 分别为棱,BC PD 上的点,13CM CB =,PN ND =,设AB a=,AD b =,AP c = ,则向量MN 用{},,a b c 为基底表示为( )A .1132a b c ++B .1162a b c −++C .1132a b c −+D .1162a b c −−+【答案】D【详解】由条件易知()11113232MN MC CD DN BC BA DP AD BA AP AD =++=++=++−()11113262b ac b a b c =−+−=−−+. 故选:D6.在四面体OABC 中,空间的一点M 满足1146OM OA OB OC λ=++ .若,,MA MB MC共面,则λ=( )A .12B .13 C .512D .712【答案】D【详解】在四面体OABC 中,,,OA OB OC不共面,而1146OM OA OB OC λ=++ ,则由,,MA MB MC ,得11146λ++=,所以712λ=. 故选:D7.已知向量()()1,21,0,2,,a t t b t t =−−=,则b a − 的最小值为( ) AB CD 【答案】C【详解】因为()()1,21,0,2,,a t t b t t =−−=,所以b a −=≥当0t =时,等号成立,故b a −的最小值为.故选:C.8.“长太息掩涕兮,哀民生之多艰”,端阳初夏,粽叶飘香,端午是一大中华传统节日.小玮同学在当天包了一个具有艺术感的肉粽作纪念,将粽子整体视为一个三棱锥,肉馅可近似看作它的内切球(与其四个面均相切的球,图中作为球O ).如图:已知粽子三棱锥P ABC −中,PAPB AB AC BC ====,H 、I 、J 分别为所在棱中点,D 、E 分别为所在棱靠近P 端的三等分点,小玮同学切开后发现,沿平面CDE 或平面HIJ .则肉馅与整个粽子体积的比为( ).A B C D 【答案】B 【详解】如图所示,取AB 中点为F ,PF DE G ∩=, 为方便计算,不妨设1PFCF ==, 由PA PB AB AC BC ====,可知PA PB AB AC BC =====又D 、E 分别为所在棱靠近P 端的三等分点, 则2233FG PF ==, 且AB PF ⊥,AB CF ⊥、PF CF F = ,PF ,CF ⊂平面PCF , 即AB ⊥平面PCF ,又AB ⊂平面ABC ,则平面PCF ⊥平面ABC , 设肉馅球半径为r ,CG x =,由于H 、I 、J 分别为所在棱中点,且沿平面HIJ 切开后,截面中均恰好看不见肉馅, 则P 到CF 的距离4d r =,sin 4d PFC r PF∠==,12414233GFC rS r =⋅⋅⋅=△,又2132GFC rS x =++⋅ ,解得:1x =,故22241119cos 223213CF FG CGPFCCF FG+−+−∠===⋅⋅⋅⋅, 又2222111cos 21132P PF CF PC PC F F C P F C +−+⋅−∠==⋅=⋅⋅,解得PC =,sin PFC ∠所以:4sin 1r PFC ∠==,解得r =343V r =π球, 由以上计算可知:P ABC −为正三棱锥,故111sin 4332ABC V S d AB AC BAC r =⋅⋅=⋅⋅⋅⋅∠⋅粽11432=⋅.故选:B.二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分)9.如图,在棱长为2的正方体1111ABCD A B C D −中,E 为1BB 的中点,F 为11A D 的中点,如图所示建立空间直角坐标系,则下列说法正确的是( )A .13DB =B .向量AE 与1ACC .平面AEF 的一个法向量是()4,1,2−D .点D 到平面AEF【答案】BCD【详解】由题可知,AA (2,0,0),()0,0,0D ,()2,2,1E ,()1,0,2F ,()12,2,2B ,()10,2,2C ,所以1DB =A 错误;()0,2,1AE = ,()12,2,2AC =−,所以111·cos ,AE AC AE AC AE AC ==B 正确; ()0,2,1AE = ,()1,0,2AF =− ,记()4,1,2n =−, 则0,0AE AF n n == ,故,AE AF n n ⊥⊥,因为AE AF A ∩=,,AE AF ⊂平面AEF ,所以()4,1,2n =−垂直于平面AEF ,故选项C 正确;DDAA �����⃗=(2,0,0),所以点D 到平面AEF的距离·DA n d n==,故选项D 正确;故选:BCD10.在正三棱柱111ABC A B C −中,1AB AA =,点P 满足][1([0,1,0,])1BP BC BB λµλµ=+∈∈,则下列说法正确的是( )A .当1λ=时,点P 在棱1BB 上B .当1µ=时,点P 到平面ABC 的距离为定值 C .当12λ=时,点P 在以11,BC B C 的中点为端点的线段上 D .当11,2λµ==时,1A B ⊥平面1AB P 【答案】BCD【详解】对于A ,当1λ=时,[]1,0,1CP BP BC BB µµ=−=∈ , 又11CC BB =,所以1CP CC µ= 即1//CP CC ,又1CP CC C = ,所以1C C P 、、三点共线,故点P 在1CC 上,故A 错误;对于B ,当1µ=时,[]11,0,1B P BP BB BC λλ=−=∈, 又11B C BC =,所以111B P B C λ= 即111//B P B C ,又1111B B C P B = ,所以11B C P 、、三点共线,故点P 在棱11B C 上,由三棱柱性质可得11//B C 平面ABC ,所以点P 到平面ABC 的距离为定值,故B 正确; 对于C ,当12λ=时,取BC 的中点11,D B C 的中点E , 所以1//DE BB 且1DE BB =,BP BD =+ []1,0,1BB µµ∈ ,即1DP BB µ= , 所以DP E D µ= 即//DP DE,又DP DE D ∩=,所以D E P 、、三点共线,故P 在线段DE 上,故C 正确;对于D ,当11,2λµ==时,点P 为1CC 的中点,连接1,A E BE , 由题111A B C △为正三角形,所以111A E B C ⊥,又由正三棱柱性质可知11A E BB ⊥,因为1111BB B C B = ,111BB B C ⊂、平面11BB C C ,所以1A E ⊥平面11BB C C , 又1B P ⊂平面11BB C C ,所以11A E B P ⊥,因为1111B C BB CC ==,所以11B E C P =,又111π2BB E B C P ∠=∠=, 所以111BB E B C P ≌,所以111B EB C PB ∠=∠, 所以1111111π2PB C B EB PB C C PB ∠+∠=∠+∠=, 设BE 与1B P 相交于点O ,则1π2B OE ∠=,即1BE B P ⊥,又1A E BE E = ,1A E BE ⊂、平面1A EB , 所以1B P ⊥平面1A EB ,因为1A B ⊂平面1A EB , 所以11B P A B ⊥,由正方形性质可知11A B AB ⊥, 又111AB B P B = ,11B P AB ⊂、平面1AB P , 所以1A B ⊥平面1AB P ,故D 正确. 故选:BCD.11.布达佩斯的伊帕姆维泽蒂博物馆收藏的达・芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图1,把三片这样的达・芬奇方砖拼成图2的组合,这个组合再转换成图3所示的几何体.若图3中每个正方体的棱长为1,则( )A .122CG AB AA =+B .直线CQ 与平面1111DC B A 所成角的正弦值为23C .点1C 到直线CQD .异面直线CQ 与BD 【答案】BC【详解】A 选项,以A 为坐标原点,1,,DA AB AA所在直线分别为,,x y z 轴,建立空间直角坐标系,则()()()()()()10,0,0,0,1,0,0,0,1,1,1,2,0,1,2,1,1,0A B A G Q C −−−−,()()()110,1,1,1,1,1,1,0,0B C D −−,()()()10,2,2,0,1,0,0,0,1CG AB AA =−== , 则()()()1220,2,00,0,20,2,2AB AA CG +=+=≠,A 错误; B 选项,平面1111D C B A 的法向量为()0,0,1m =, ()()()0,1,21,1,01,2,2CQ =−−−=− ,设直线CQ 与平面1111D C B A 所成角的大小为θ,则2sin cos 3CQ θ= ,B 正确;C 选项,()10,0,1CC =,点1C 到直线CQ 的距离为d ,C 正确; D 选项,()()()1,0,00,1,01,1,0BD =−−=−−,设异面直线CQ 与BD 所成角大小为α,则cos cos ,CQ α= D 错误.故选:BC三、填空题(本大题共3小题,每小题5分,共15分)12.正三棱柱111ABC A B C −的侧棱长为2,底面边长为1,M 是BC的中点.在直线1CC 上求一点N ,当CN 的长为 时,使1⊥MN AB . 【答案】18/0.125【详解】取11B C 的中点为1M ,连接1,MM AM ,由正三棱柱性质可得11,,AM MM BM MM AM BM ⊥⊥⊥, 因此以M 为坐标原点,以1,,AM BM MM 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如下图所示:易知()11,0,,2,0,0,02A B M ,设CN 的长为a ,且0a >,可得10,,2N a− ; 易知1110,,,,222MN a AB=−=若1⊥MN AB ,则1112022MN AB a ⋅=−×+= ,解得18a =, 所以当CN 的长为18时,使1⊥MN AB .故答案为:1813.四棱锥P ABCD −中,PD ⊥底面ABCD ,底面ABCD 是正方形,且1PD =,3AB =,G 是ABC 的重心,则PG 与平面PAD 所成角θ的正弦值为 . 【答案】23【详解】因为PD ⊥底面ABCD ,底面ABCD 是正方形,所以,,DA DC DP 两两垂直,以D 为坐标原点,,,DA DC DP的方向分别为,,x y z 轴的正方向,建立如图所示空间直角坐标系,则()0,0,0D ,()0,0,1P ,()3,0,0A ,()3,3,0B ,()0,3,0C ,则重心()2,2,0G ,因而()2,2,1PG =− ,()3,0,0DA = ,()0,0,1DP = ,设平面PAD 的一个法向量为(),,m x y z = ,则300m DA x m DP z ⋅== ⋅== ,令1y =则()0,1,0m = , 则22sin cos ,133m PG m PG m PG θ⋅====×⋅ , 故答案为:23. 14.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮那,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m AB =,10m BC =,且等腰梯形所在平面、等腰三角形所在平面与平面ABCD的夹角的正切值均为,则该五面体的所有棱长之和为 .【答案】117m【详解】如图,过E 做EO ⊥平面,垂足为O ,过E 分别做EG BC ⊥,EM AB ⊥,垂足分别为G ,M ,连接OG ,OM ,由题意得等腰梯形所在的面、等腰三角形所在的面与底面夹角分别为EMO ∠和EGO ∠,所以tan tan EMO EGO ∠=∠ 因为EO ⊥平面ABCD ,⊂BC 平面ABCD ,所以EO BC ⊥,因为EG BC ⊥,EO ,EG ⊂平面EOG ,EO EG E = ,所以⊥BC 平面EOG ,因为OG ⊂平面EOG ,所以BC OG ⊥,同理,OM BM ⊥,又BM BG ⊥,故四边形OMBG 是矩形,所以由10BC =得5OM =,所以EO =5OG =,所以在直角三角形EOG中,EG =在直角三角形EBG 中,5BG OM ==,8EB =, 又因为55255515EF AB −−−−,所有棱长之和为2252101548117×+×++×=. 故答案为:117m四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题13分)如图,在长方体1111ABCD A B C D −中,11,2AD AA AB ===,点E 在棱AB 上移动.(1)当点E 在棱AB 的中点时,求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)当AE 为何值时,直线1A D 与平面1D EC 所成角的正弦值最小,并求出最小值.【答案】(2)当2AE =时,直线1A D 与平面1D EC【详解】(1)以D 为坐标原点,1,,DA DC DD 所在直线为坐标轴建立如图所示的空间直角坐标系,当点E 在棱AB 的中点时,则1(0,0,1),(1,1,0),(0,2,0),(0,0,0),(1,0,0)E C D A D ,则1(1,1,1),(1,1,0),(1,0,0)ED EC DA =−−=−= ,设平面1D EC 的一个法向量为(,,)n x y z = ,则1·0·0n ED x y z n EC x y =−−+= =−+= ,令1x =,则1,2y z ==,所以平面1D EC 的一个法向量为(1,1,2)n = ,又平面1DCD 的一个法向量为(1,0,0)DA = ,所以·cos ,·DA n DA n DA n == 所以平面1D EC 与平面1DCD(2)设AE m =,则11(0,0,1),(1,,0),(0,2,0),(0,0,0),(1,0,1)E m C D A D ,则11(1,,1),(1,2,0),(02),(1,0,1)ED m EC m m DA =−−=−−≤≤= ,设平面1D EC 的一个法向量为(,,)n x y z =,则1·0·(2)0n ED x my z n EC x m y =−−+= =−+−=,令1y =,则2,2x m z =−=, 所以平面1D EC 的一个法向量为(2,1,2)n m =− , 设直线1A D 与平面1D EC 所成的角为θ,则11||sin ||||n DA n DA θ== 令4[2,4]m t −=∈,则sin θ= 当2t =时,sin θ16.(本小题15分) 如图所示,直三棱柱11ABC A B C −中,11,92,0,,CA CB BCA AA M N °==∠==分别是111,A B A A 的中点.(1)求BN 的长;(2)求11cos ,BA CB 的值.(3)求证:BN ⊥平面1C MN .【答案】(3)证明见解析【详解】(1)如图,建立以点O 为坐标原点,CA 、CB 、1CC 所在直线分别为x 轴、y 轴、z 轴的空间直角坐标系.依题意得(0,1,0),(1,0,1)B N ,∴BN = ;(2)依题意得,()()()()111,0,2,0,1,0,0,0,0,0,1,2A B C B ,∴1(1,1,2)BA =− ,1(0,1,2)CB = ,113BA CB =⋅,1BA =,1CB =所以11111cos ,BA CB BA CB BA CB ⋅==⋅ (3)证明:()()()10,0,2,0,1,0,1,0,1C B N ,11,,222M. ∴111,,022C M = ,()11,0,1C N =− ,()1,1,1BN =− ,∴1111(1)10022C M BN ⋅×+×−+× , 1110(1)(1)10C N BN ⋅=×+×−+−×= ,∴1C M BN ⊥ ,1C N BN ⊥ ,即11,C M BN C N BN ⊥⊥, 又1C M ⊂平面1C MN ,1C N ⊂平面1C MN ,111= C M C N C , ∴BN ⊥平面1C MN .17.(本小题15分)如图,在四棱维P ABCD −中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求直线PB 与平面PCD 所成角的正切值;(2)在PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AM AP的值;若不存在,说明理由.【答案】 (2)存在点M ,使得//BM 平面PCD ,14AM AP =. 【详解】(1)取AD 的中点为O ,连接,PO CO ,因为PA PD =,所以PO AD ⊥,又平面PAD ⊥平面ABCD , 平面PAD ∩平面ABCD AD =,PO ⊂平面PAD ,所以⊥PO 平面ABCD ,又AC CD =,所以CO AD ⊥,PA PD ⊥,2AD =,所以1PO =,AC CD ==2CO =, 所以以O 为坐标原点,分别以,,OC OA OP 所在的直线为,,x y z 轴建立空间直角坐标系, PP (0,0,1),()2,0,0C ,()0,1,0A ,()1,1,0B ,()0,1,0D −,所以()2,0,1PC =− ,()0,1,1PD =−− ,()1,1,1PB =− ,设平面PCD 的一个法向量为mm��⃗=(xx ,yy ,zz ), 则00PC m PD m ⋅= ⋅=,200x z y z −= −−= ,令1,x =则2,2z y ==−, 所以()1,2,2m =− ,设直线PB 与平面PCD 所成角为θ,sin cos ,m θ=所以cos θ==tan θ= 所以直线PB 与平面PCD. (2)在PA 上存在点M ,使得()01PMPA λλ=≤≤ , 所以()0,1,1PA =− ,所以()0,,PM PA λλλ==− ,所以()0,,1M λλ−,所以()1,1,1BM λλ=−−− ,因为//BM 平面PCD ,所以BM m ⊥ ,即()()121210λλ−−−+−=,解得34λ=, 所以存在点M ,使得//BM 平面PCD ,此时14AM AP =. 18.(本小题17分)如图1,在边长为4的菱形ABCD 中,60DAB ∠=°,点M ,N 分别是边BC ,CD 的中点,1AC BD O ∩=,AC MN G ∩=.沿MN 将CMN 翻折到PMN 的位置,连接PA ,PB ,PD ,得到如图2 所示的五棱锥P ABMND −.(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)若平面PMN ⊥平面MNDB ,线段PA 上是否存在一点Q ,使得平面QDN 与平面PMN 所成角的余弦值为Q 的位置;若不存在,请说明理由. 【答案】(1)总有平面PBD ⊥平面PAG ,证明详见解析(2)存在,Q 是PA 的靠近P 的三等分点,理由见解析.【详解】(1)折叠前,因为四边形ABCD 是菱形,所以AC BD ⊥, 由于,M N 分别是边BC ,CD 的中点,所以//MN BD , 所以MN AC ⊥,折叠过程中,,,,,MN GP MN GA GP GA G GP GA ⊥⊥∩=⊂平面PAG , 所以MN ⊥平面PAG ,所以BD ⊥平面PAG ,由于BD ⊂平面PBD ,所以平面⊥平面PAG .(2)存在,理由如下:当平面PMN ⊥平面MNDB 时,由于平面PMN 平面MNDB MN =,GP ⊂平面PMN ,GP MN ⊥, 所以GP ⊥平面MNDB ,由于AG ⊂平面MNDB ,所以GP AG ⊥, 由此以G 为空间坐标原点建立如图所示空间直角坐标系,依题意可知())(),2,0,2,0,0,1,0,2,P DB N PB −− ()A ,(PA = ,设()01PQ PA λλ=≤≤ ,则(()(),0,GQ GP PQ GP PA λ=+=+=+= , 平面PMN 的法向量为()11,0,0n = ,()(),DQ DN , 设平面QDN 的法向量为()2222,,n x y z = ,则()2222222200n DQ x y z n DN y ⋅=++= ⋅+= ,故可设()21n λλ=−+ , 设平面QDN 与平面PMN 所成角为θ,由于平面QDN 与平面PMN所以1212cos n n n n θ⋅==⋅ 解得13λ=, 所以当Q 是PA 的靠近P 的三等分点时,平面QDN 与平面PMN19.(本小题17分)如图,四棱锥P ABCD −中,四边形ABCD 是菱形,PA ⊥平面,60ABCD ABC ∠= ,11,,2PA AB E F ==分别是线段BD 和PC 上的动点,且()01BE PF BD PC λλ==<≤.(1)求证://EF 平面PAB ;(2)求直线DF 与平面PBC 所成角的正弦值的最大值;(3)若直线AE 与线段BC 交于M 点,AH PM⊥于点H ,求线段CH 长的最小值.【答案】(1)证明见解析【详解】(1)由于四边形ABCD 是菱形,且60ABC ∠= ,取CD 中点G ,则AG CD ⊥, 又PA ⊥平面ABCD ,可以A 为中心建立如图所示的空间直角坐标系, 则()()()()()2,0,0,,,0,0,1,B C D P G −,所以()()()1,,2,0,1PC BD BP −−=− , 由()01BE PF BD PCλλ==<≤, 可知,,BE BD PF PC EF EB BP PF BD BP PC λλλλ==∴=++=−++ ()42,0,1λλ=−−,易知()AG = 是平面PAB 的一个法向量, 显然0EF AG ⋅= ,且EF ⊄平面PAB ,即//EF 平面PAB ;(2)由上可知()()()1,,DP PF DF λλλλ+==+−=+− , 设平面PBC 的一个法向量为(),,n x y z =,则200n BP x z n PC x z ⋅=−+= ⋅=−= , 令1x =,则2,z y ==2n =, 设直线DF 与平面PBC 所成角为α,则sin cos ,n DF n DF n DF α⋅===⋅ 易知35λ=时,()2min 165655λλ−+=,即此时sin α(3)设()(](),0,0,12,0BM tBC t t AM AB BM t ==−∈⇒=+=− , 由于,,H M P 共线,不妨设()1AH xAM x AP =+− ,易知AM AP ⊥,则有()()22010AH PM AH AM AP xAM x AP ⋅=⋅−=⇒−−= , 所以22114451x t t AM =−++ , 则()()2CH CA AH t x x =+=−−− , 即()()2222454454655445t CH t t x t x t t −−=−+−++=+−+ 记()(]()2450,1445t f t t t t −−=∈−+,则()()()2228255445t t f t t t −−+=−+′, 易知22550t t −+>恒成立,所以()0f t ′<,即()f t 单调递减,所以()()min 915f t f CH ≥=−⇒。
高二数学第一次月考模拟(基础卷)(空间向量与立体几何+直线方程)(解析版)

2024-2025学年高二上学期第一次月考模拟(基础卷)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(23-24高二上·重庆·月考)已知A 1,2,-3 ,则点A 关于xOy 平面的对称点的坐标是()A.-1,2,-3B.-1,-2,3C.-1,2,3D.1,2,3【答案】D【解析】点A 关于xOy 平面的对称点的坐标是(1,2,3),故选:D .2.(23-24高二上·河南·月考)若直线经过A 1,0 ,B 2,3 两点,则直线AB 的倾斜角为()A.30°B.45°C.60°D.135°【答案】C【解析】由直线经过A 1,0 ,B 2,3 两点,可得直线的斜率为3-02-1=3,设直线的倾斜角为θ,有tan θ=3,又0°≤θ<180°,所以θ=60°.故选:C .3.(23-24高二上·广东湛江·月考)已知a =1,2,-y ,b =x ,1,2 ,且a +2b ∥2a -b ,则()A.x =13,y =1 B.x =2,y =14C.x =12,y =-4 D.x =1,y =-1【答案】C【解析】向量a =1,2,-y ,b =x ,1,2 ,则a +2b =1+2x ,4,4-y ,2a -b =2-x ,3,-2y -2 ,因a +2b ⎳2a -b ,于是得1+2x 2-x =43=4-y -2y -2,解得x =12,y =-4,所以x =12,y =-4.故选:C .4.(23-24高二上·福建福州·期中)两条平行直线2x -y +3=0和ax -3y +6=0间的距离为d ,则a ,d 的值分别为()A.a =6,d =63B.a =-6,d =63C.a =-6,d =55D.a =6,d =55【答案】D【解析】由已知可得,2×-3 --1 ×a =0,解得a =6.代入ax -3y +6=0化简可得,2x -y +2=0.根据两条平行线之间的距离公式可得,d =3-222+-1 2=55.故选:D .5.(23-24高二上·黑龙江哈尔滨·期中)如图,空间四边形OABC 中,OA =a ,OB =b ,OC =c,点M在OA 上,且OM =23OA ,点N 为BC 中点,则MN等于()A.12a +12b -12c B.-23a +12b +12cC.-23a +23b -12cD.23a +23b -12c【答案】B【解析】由题意可得,MN =ON -OM =12OB +OC -23OA =-23a +12b +12c.故选:B6.(23-24高二上·山东·月考)过点P 0,-1 作直线l ,若直线l 与连接A -2,1 ,B 23,1 两点的线段总有公共点,则直线l 的倾斜角范围为()A.π4,π6B.π6,3π4C.0,π6∪3π4,πD.π6,π2 ∪3π4,π 【答案】B【解析】设直线l 的斜率为k ,倾斜角为θ,0≤θ<π,k P A =-1-10--2 =-1,k PB =1--1 23-0=33,因为直线l 经过点P 0,-1 ,且与线段AB 总有公共点,所以k ∈-∞,-1 ∪33,+∞ ,因为0≤θ<π,所以π6≤θ≤3π4.故选:B .7.(23-24高二上·天津河西·月考)以下各组向量中的三个向量,不能构成空间基底的是()A.a =1,0,0 ,b =0,2,0 ,c =12,-2,0 B.a =1,0,0 ,b =0,1,0 ,c=0,0,2C.a =1,0,1 ,b =0,1,1 ,c=2,1,2D.a =1,1,1 ,b =0,1,0 ,c=1,0,2【答案】A【解析】若空间三个向量a ,b ,c 能构成空间的基底,则向量a ,b ,c 不共面,反之亦然,对于A ,由a =1,0,0 ,b =0,2,0 ,c =12,-2,0 ,得c =12a -22b,即向量a ,b ,c共面,不能构成空间基底;对于B ,令c =xa +yb ,则(0,0,2)=(x ,y ,0),不成立,即a ,b ,c不共面,可构成基底;对于C ,令c =xa +yb ,则(2,1,2)=(x ,y ,x +y ),即x =2y =1x +y =2 无解,即a ,b ,c不共面,可构成基底;对于D ,令c =xa +yb ,则(1,0,2)=(x ,x +y ,x ),即x =1x +y =1x =2无解,即a ,b ,c不共面,可构成基底.故选:A8.(23-24高二上·江苏南京·月考)点P (-2,-1)到直线l :(1+3λ)x +(1+λ)y -2-4λ=0(λ∈R )的距离最大时,其最大值以及此时的直线方程分别为()A.13;3x +2y -5=0B.11;3x +2y -5=0C.13;2x -3y +1=0D.11;2x -3y +1=0【答案】A【解析】将直线l :(1+3λ)x +(1+λ)y -2-4λ=0(λ∈R )变形得x +y -2+λ(3x +y -4)=0,由x +y -2=03x +y -4=0 ,解得x =1y =1 ,因此直线l 过定点A (1,1),当AP ⊥l 时,点P (-2,-1)到直线l :(1+3λ)x +(1+λ)y -2-4λ=0(λ∈R )的距离最大,最大值为AP =(-2-1)2+(-1-1)2=13,又直线AP 的斜率k AP =-1-1-2-1=23,所以直线l 的方程为y -1=-32(x -1),即3x +2y -5=0.故选:A二、多选选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.(23-24高二上·浙江嘉兴·月考)已知AB =(-2,1,4),AC =(4,2,0),AP =(1,-2,1),AQ=(0,4,4),则下列说法正确的是()A.AP是平面ABC 的一个法向量B.A ,B ,C ,Q 四点共面C.PQ ∥BCD.BC =53【答案】AD【解析】AP ⋅AB =(-2)×1+1×(-2)+4×1=0,AP ⋅AC=1×4+(-2)×2+1×0=0,所以AP ⊥AB ,AP ⊥AC ,AB ∩AC =A ,AB ,AC ⊂平面ABC ,所以AP ⊥平面ABC ,所以AP是平面ABC 的一个法向量,故A 正确;设AB =λAC +μAQ,则-2=4λ1=2λ+4μ4=4μ,无解,所以A ,B ,C ,Q 四点不共面,故B 错误;PQ =AQ -AP =(-1,6,3),BC =AC -AB =(6,1,-4),-16≠61≠3-4,所以PQ 与BC 不平行,故C 错误;|BC|=62+12+(-4)2=53,故D 正确;故选:AD .10.(23-24高二上·河北保定·月考)已知直线l 1:x +a -1 y +1=0,直线l 2:ax +2y +2=0,则下列结论正确的是()A.l 1在x 轴上的截距为-1B.l 2过定点0,-1C.若l 1⎳l 2,则a =-1或a =2D.若l 1⊥l 2,则a =23【答案】ABD【解析】由l 1:x +a -1 y +1=0易知y =0⇒x =-1,故A 正确;由l 2:ax +2y +2=0⇒x =0,y =-1,故B 正确;若两直线平行,则有1×2=a a -1 且1×2≠a ×1,解得a =-1,故C 错误;若两直线垂直,则有a ×1+2×a -1 =0⇒a =23,故D 正确.故选:ABD11.(24-25高二上·湖南邵阳·开学考试)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点P 是正方体的上底面A 1B 1C 1D 1内(不含边界)的动点,点Q 是棱BC 的中点,则以下命题正确的是()A.三棱锥Q -PCD 的体积是定值B.存在点P ,使得PQ 与AA 1所成的角为60°C.直线PQ 与平面A 1ADD 1所成角的正弦值的取值范围为0,22D.若PD 1=PQ ,则P 的轨迹的长度为354【答案】ACD【解析】对于A ,三棱锥Q -PCD 的体积等于三棱锥P -QCD 的体积,V 三棱锥P -QCD =13S △QCD ×AA 1=13×12×2×1×2=23是定值,A 正确;以A 1为坐标原点,A 1B 1,A 1D 1,AA 1分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则Q (2,1,-2),设P (x ,y ,0)(0<x <2,0<y <2),则QP=(x -2,y -1,2)对于B ,AA 1=(0,0,2),使得PQ 与AA 1所成的角α满足:cos α=QP ⋅AA 1 QP ⋅AA 1 =2×2x -2 2+y -1 2+4×2,因为0<x <2,0<y <2,故0<x -2 2+y -1 2<5,故cos α∈23,1,而cos60°=12∉23,1 ,B 错误;对于C ,平面A 1ADD 1的法向量n=(1,0,0),所以直线PQ 与平面A 1ADD 1所成角β的正弦值为:sin β=x -2(x -2)2+(y -1)2+4,因为0<x <2,0<y <2,故-2<x -2<0故x -2 (x -2)2+5<x -2 (x -2)2+(y -1)2+4≤x -2(x -2)2+4,而x -2 (x -2)2+5=11+5(x -2)2∈0,23 ,x -2 (x -2)2+4=11+4(x -2)2∈0,22,故0<x -2(x -2)2+(y -1)2+4<22即sin β的取值范围为0,22,C 正确;对于D ,D 1(0,2,0),D 1P=(x ,y -2,0),由PD 1=PQ ,可得x 2+(y -2)2=(x -2)2+(y -1)2+4,化简可得4x -2y -5=0,在xA 1y 平面内,令x =0,得y =32,令y =0,得x =54,则P 的轨迹的长度为2-54 2+32 2=354,D 正确;故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12.(23-24高二上·山东德州·月考)已知a =-2,1,3 ,b =-1,2,1 ,则a与b 夹角的余弦值为.【答案】216/1621【解析】∵a =-2,1,3 ,b =-1,2,1 ,∴cos <a ,b >=a ⋅b a b=2+2+314×6=216.13.(23-24高二下·江苏扬州·月考)在空间直角坐标系中,点M 0,0,1 为平面ABC 外一点,其中A 1,0,0 、B 0,2,1 ,若平面ABC 的一个法向量为1,y 0,-1 ,则点M 到平面ABC 的距离为.【答案】233/233【解析】因为A 1,0,0 、B 0,2,1 ,所以AB=-1,2,1 ,记平面ABC 的一个法向量为n=1,y 0,-1 ,则n ⋅AB=-1 ×1+2y 0+1×-1 =0,解得y 0=1,故平面ABC 的一个法向量为n=1,1,-1 .因为M 0,0,1 ,所以MA=1,0,-1 ,所以点M 到平面ABC 的距离为d =MA ⋅n n=1+0+1 1+1+1=233.14.(23-24高二上·四川达州·月考)直线l 1:x +m +1 y -2m -2=0与直线l 2:m +1 x -y -2m -2=0相交于点P ,对任意实数m ,直线l 1,l 2分别恒过定点A ,B ,则P A +PB 的最大值为【答案】4【解析】直线l 1:x +m +1 y -2m -2=0化为x +y -2+m y -2 =0,当y -2=0x +y -2=0,得x =0y =2 ,即直线l 1恒过点0,2 ,即点A 0,2 ,直线l 2:m +1 x -y -2m -2=0化为x -y -2+m x -2 =0,当x -y -2=0x -2=0,得x =2y =0 ,即直线l 2恒过点2,0 ,即点B 2,0 ,且两条直线满足1×m +1 +m +1 ×-1 =0,∴l 1⊥l 2,即P A ⊥PB ,∴P A 2+PB 2=AB 2=22+22=8,∴P A +PB ≤2P A 2+PB 2 =4,当且仅当P A =PB 时,等号成立,∴P A +PB 的最大值为4.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(23-24高二上·广东湛江·月考)已知点P -2,0,2 ,Q -1,1,2 ,R -3,0,4 ,设a =PQ ,b =PR ,c=QR .(1)若实数k 使ka +b 与c垂直,求k 值.(2)求a 在b上的投影向量.【答案】(1)k =2;(2)15,0,-25.【解析】(1)依题意,a =(1,1,0),b =(-1,0,2),c =(-2,-1,2),ka +b=(k ,k ,0)+(-1,0,2)=(k -1,k ,2),由ka +b 与c 垂直,得(ka +b )⋅c =-2(k -1)-k +2×2=0,解得k =2,所以k =2.(2)由(1)知,a ⋅b =-1,|b |=5,所以a 在b 上的投影向量为a ⋅b |b |2b =-15b =15,0,-25 .16.(23-24高二上·江苏南京·月考)已知△ABC 的三个顶点为A 4,0 ,B 0,2 ,C 2,6 .(1)求AC 边上的高BD 所在直线的方程;(2)求BC 边上的中线AE 所在直线的方程.【答案】(1)x -3y +6=0;(2)4x +3y -16=0.【解析】(1)因为△ABC 的三个顶点为A 4,0 ,B 0,2 ,C 2,6 ,所以直线AC 的斜率为k AC =6-02-4=-3,所以AC 边上的高BD 所在直线的斜率为k BD =13,所以直线BD 的方程为y -2=13x ,化为一般式方程为x -3y +6=0;(2)因为B 0,2 ,C 2,6 ,所以BC 的中点为E 1,4 ,又因为A 4,0 ,E 1,4 ,所以直线AE 的斜率为k =-43,所以直线AE 的点斜式方程为y -0 =-43x -4 ,化为一般式为4x +3y -16=0.17.(23-24高二上·安徽安庆·月考)已知平行六面体ABCD -A 1B 1C 1D 1,底面是正方形,AD =AB =2,AA 1=1,∠A 1AB =∠DAA 1=60°,A 1C 1 =3NC 1 ,D 1B =2MB ,设AB =a ,AD =b ,AA 1 =c.(1)试用a ,b ,c表示AN ;(2)求MN 的长度.【答案】(1)AN =AA 1 +A 1N =23a +23b +c ;(2)MN =296【解析】(1)AN =AA 1 +A 1N =AA 1 +23(A 1B 1 +A 1D 1 )=c +23(a +b )=23a +23b +c.(2)AM =AB +12BD 1 =AB +12(BA +AD +DD 1 )=12a +12b +12c ,NM =AM -AN =12a +12b +12c -23a +23b +c =-16a -16b -12c ,所以|NM |=-16a -16b -12c 2=136a 2+136b 2+14c 2+118a ∙b +16a ∙c +16b ∙c=136×4+136×4+14×1+16×2×1×12+16×2×1×12=296.所以MN =296.18.(23-24高二上·湖北武汉·月考)已知直线l 过点P 4,1 且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,(1)求三角形OAB 面积取最小值时直线l 的方程;(2)求OA +OB 取最小值时直线l 的方程.【答案】(1)x +4y -8=0;;(2)x +2y -6=0.【解析】(1)由题意设A a ,0 ,B (0,b ),其中a ,b 为正数,可设直线的方程为xa +y b=1,因为直线l 过点P 4,1 ,所以4a +1b =1,由基本不等式可得1=4a +1b ≥24a ⋅1b =4ab,所以ab ≥4,ab ≥16,当且仅当4a +1b =14a=1b即a =8b =2时,ab 取得最小值16,所以△AOB 面积S =12ab ≥8,所以当a =8,b =2时,△AOB 面积最小,此时直线l 的方程为x8+y 2=1,即x +4y -8=0,(2)因为4a +1b=1,a >0,b >0 ,所以OA +OB =a +b =a +b 4a +1b =5+4b a +ab ≥5+24b a ⋅a b=5+2×2=9,当且仅当4ba =ab 4a+1b =1即a =6b =3时等号成立,所以当a =6,b =3时,OA +OB 的值最小,此时直线l 的方程为x6+y 3=1,即x +2y -6=0.19.(24-25高二上·安徽阜阳·开学考试)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,∠ADC =∠BCD =90°,BC =1,CD =3,PD =2,∠PDA =60°,∠P AD =30°,且平面P AD ⊥平面ABCD ,在平面ABCD 内过B 作BO ⊥AD ,交AD 于O ,连PO .(1)求证:PO ⊥平面ABCD ;(2)求二面角A -PB -C 的正弦值;(3)在线段P A 上存在一点M ,使直线BM 与平面P AD 所成的角的正弦值为277,求PM 的长.【答案】(1)证明见解析;(2)77;(3)32.【解析】(1)因为BO ⊥AD ,因为BC ⎳AD ,∠ADC =∠BCD =90°,所以四边形BODC 为矩形,在△PDO 中,PD =2,DO =BC =1,∠PDA =60°,则PO =PD 2+OD 2-2PD ⋅OD cos60°=3,∴PO 2+DO 2=PD 2,∴PO ⊥AD ,且平面P AD ⊥平面ABCD ,PO ⊂平面P AD 平面P AD ∩平面ABCD =AD ,∴PO ⊥平面ABCD ;(2)以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,∵PO =3,∠P AD =30°,可得AO =3,则O (0,0,0),A (3,0,0),P 0,0,3 ,B 0,3,0 ,C -1,3,0 ,设平面APB 的法向量为m=(x ,y ,z ),P A =3,0,-3 ,PB =0,3,-3 ,由P A ⋅m=3x -3z =0PB ⋅m =3y -3z =0,取m =1,3,3 .设平面CPB 的法向量为n=(a ,b ,c ),PC =-1,3,-3 ,由n ⋅PB=3b -3c =0n ⋅PC =-a +3b -3c =0,取n =(0,1,1),cos m ,n =m ⋅n m n=237×2=427.∵二面角A -PB -C 是钝角,∴二面角A -PB -C 的正弦值为77.(3)设AM =λAP ,则BM =BA +AM =3,-3,0 +λ-3,0,3 =3-3λ,-3,3λ ,又平面P AD 的法向量为OB=0,3,0 ,直线BM 与平面P AD 所成的角的正弦值为cos OB ,BM =33×(3-3λ)2+3+3λ2=27,解得λ=34,∴PM =14AP =14PO 2+OA 2=32.。
高二第二学期第一次月考总结1000字8篇

高二第二学期第一次月考总结1000字8篇篇1随着春风拂面,高二第二学期的第一次月考也已经落下帷幕。
本次考试不仅是对学生们学习成果的一次检验,更是对班级整体学习氛围和教学成果的全面评估。
在此,我将对本次月考进行全面而深入的总结。
一、考试概况本次月考共涉及九门学科,包括语文、数学、英语等核心科目以及物理、化学、生物等自然科学。
考试时间为三天,形式为闭卷考试。
全体高二学生参加,总体考试情况良好,但也暴露出一些问题。
二、成绩分析1. 总体成绩:本次月考平均成绩较上学期有所提高,反映出学生们在寒假期间进行了有效的复习和预习。
尤其是数学和英语成绩提升明显,显示出学生们在基础学科上的扎实功底和持续进步。
2. 学科差异:在学科之间,成绩存在差异。
语文、历史等人文科目的成绩相对稳定,而物理、化学等自然科学科目则呈现出较大的波动。
这可能与学科特点和教学方法有关,需要在后续教学中加以关注和调整。
3. 学生表现:部分优秀学生表现出色,成绩稳定在班级前列。
然而,也有部分学生在某些科目上表现不佳,需要找到原因并采取措施加以改进。
三、存在问题1. 心态问题:部分学生在考试前存在过度紧张现象,影响正常发挥。
建议加强心理辅导,引导学生树立正确的学习态度。
2. 复习方法:一些学生复习方法不够科学,导致效率低下。
老师需要指导学生们制定合理的复习计划,提高学习效率。
3. 知识掌握:部分学生在自然科学科目上表现出知识掌握不牢的现象,需要在日常教学中加强基础知识的巩固和深化。
四、改进措施1. 加强心理辅导:组织专题心理辅导活动,帮助学生缓解考试压力,调整心态。
2. 优化教学方法:针对不同学科特点,调整教学策略,提高教学效果。
3. 提高课堂效率:加强课堂管理,确保课堂效率。
老师需要关注每位学生的学习情况,及时解答疑惑。
4. 加强基础训练:针对自然科学科目,加强基础知识的训练和巩固,提高学生知识掌握程度。
5. 家校合作:加强与家长的沟通与合作,共同关注学生的学习情况,形成家校共同促进的良好氛围。
2024-2025学年江西省抚州市临川二中高二(上)第一次月考数学试卷(含答案)

2024-2025学年江西省抚州市临川二中高二(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若直线3x +2y−3=0和直线6x +my +1=0互相平行,则m 的值为( )A. −9B. 32C. −4D. 42.若两个非零向量a ,b 的夹角为θ,且满足|a |=2|b |,(a +3b )⊥a ,则cosθ=( )A. −23B. −13C. 13D. 233.已知直线3x−(a−2)y−2=0与直线x +ay +8=0互相垂直,则a =( )A. 1B. −3C. −1或3D. −3或14.为了得到函数y =sin (5x +π3)的图象,只要将函数y =sin5x 的图象( )A. 向左平移π15个单位长度 B. 向右平移π15个单位长度C. 向左平移π3个单位长度D. 向右平移π3个单位长度5.过点(3,−2)且与椭圆4x 2+9y 2−36=0有相同焦点的椭圆方程是( )A. x 215+y 210=1 B. x 25+y 210=1 C. x 210+y 215=1 D. x 225+y 210=16.已知圆的方程为x 2+y 2−2x =0,M(x,y)为圆上任意一点,则y−2x−1的取值范围是( )A. [− 3,3]B. [−1,1]C. (−∞,− 3]∪[3,+∞)D. [1,+∞)∪(−∞,−1]7.已知圆C :(x−3)2+(y−4)2=1和两点A(−m ,0),B(m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为 ( )A. 7B. 6C. 5D. 48.已知向量a ,b 满足|a |=1,|2a +b |+|b |=4,则|a +b |的取值范围是( )A. [2−3,2]B. [1,3]C. [2− 3,2+3]D. [3,2]二、多选题:本题共3小题,共18分。
2024-2025学年吉林省长春市高二上学期第一次月考数学检测试题(含解析)

2024-2025学年吉林省长春市高二上学期第一次月考数学检测试题一、单选题(本大题共8小题)1.在空间直角坐标系中,已知点,点则( )Oxyz ()1,3,5P ()1,3,5Q --A .点和点关于轴对称B .点和点关于轴对称P Q x P Q y C .点和点关于轴对称D .点和点关于原点中心对称P Q z P Q 2.向量,若,则( )()()2,1,3,1,2,9a x b y ==- a ∥b A .B .1x y ==11,22x y ==-C .D .13,62x y ==-12,63x y =-=3.直三棱柱中,若,则( )111ABC A B C -1,,CA a CB b CC c === 1A B =A .B .a b c +-r r ra b c -+r r rC .D .a b c -++ a b c -+- 4.下列可使非零向量构成空间的一组基底的条件是( ),,a b c A .两两垂直B .,,a b c b cλ= C .D .a mb nc =+a b c ++=5.已知,则直线恒过定点( )2b a c =+0ax by c ++=A .B .(1,2)-(1,2)C .D .(1,2)-(1,2)--6.已知:,:,则两圆的位1C 2222416160x y x y +++-=2C 22228840x y x y ++--=置关系为( )A .相切B .外离C .相交D .内含7.已知点为椭圆上任意一点,直线过的圆心且P 22:11612x y C +=l 22:430M x y x +-+= 与交于两点,则的取值范围是( )M ,A B PA PB ⋅A .B .C .D .[]3,35[]2,34[]2,36[]4,368.已知圆和圆交于两点,点在圆221:2470C x y x y +---=222:(3)(1)12C x y +++=P 上运动,点在圆上运动,则下列说法正确的是( )1C Q 2C A .圆和圆关于直线对称1C 2C 8650x y +-=B .圆和圆的公共弦长为1C 2CC .的取值范围为PQ0,5⎡+⎣D .若为直线上的动点,则的最小值为M 80-+=x y PM MQ+-二、多选题(本大题共3小题)9.已知向量,,则下列正确的是( )()1,2,0a =-()2,4,0b =-A .B .//a ba b⊥ C .D .在方向上的投影向量为2b a = a b ()1,2,0-10.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图,把三片这样的达·芬奇方砖拼成组合,把这个组合再转换成空间几何体.若图中每个正方体的棱长为1,则下列结论正确的是( )A .B .点到直线的距离是122CQ AB AD AA =--+1C CQ C .D .异面直线与所成角的正切值为43CQ = CQ BD 11.已知实数满足方程,则下列说法正确的是( ),x y 22410x y x +-+=A .的最大值为B .的最大值为y x -2-22x y +7+C .的最大值为D .的最小值为y x x y+2三、填空题(本大题共3小题)12.O 为空间任意一点,若,若ABCP 四点共面,则3148OP OA OB tOC=++ t =.13.已知点和点,是动点,且直线与的斜率之积等于,则()2,0A -()2,0B P AP BP 34-动点的轨迹方程为.P 14.已知点为圆上位于第一象限内的点,过点作圆P 221:(5)4C x y -+=P 的两条切线,切点分别为,直线222:2C x y ax +-220(25)a a a +-+=<<,PM PN M N 、分别交轴于两点,则 , .,PM PN x (1,0),(4,0)A B ||||PA PB =||MN =四、解答题(本大题共5小题)15.分别求满足下列各条件的椭圆的标准方程.(1)已知椭圆的离心率为,短轴长为23e =(2)椭圆与有相同的焦点,且经过点,求椭圆的标准方程.C 2212x y +=31,2M ⎛⎫⎪⎝⎭C 16.已知圆心为的圆经过点,且圆心在直线上.C ()()1,4,3,6A B C 340x y -=(1)求圆的方程;C (2)已知直线过点且直线截圆所得的弦长为2,求直线的一般式方程.l ()1,1l C l 17.如图,四边形与四边形均为等腰梯形,ABCD ADEF,,,,,平面,//BC AD //EF AD 4=AD AB =2BC EF ==AF =FB ⊥ABCD 为上一点,且,连接、、M AD FM AD ⊥BD BE BM(1)证明:平面;⊥BC BFM (2)求平面与平面的夹角的余弦值.ABF DBE18.已知圆与圆内切.()222:0O x y r r +=>22:220E x y x y +--=(1)求的值.r (2)直线与圆交于两点,若,求的值;:1l y kx =+O ,M N 7OM ON ⋅=-k (3)过点作倾斜角互补的两条直线分别与圆相交,所得的弦为和,若E O AB CD ,求实数的最大值.AB CDλ=λ19.已知两个非零向量,,在空间任取一点,作,,则叫a bO OA a = OB b = AOB ∠做向量,的夹角,记作.定义与的“向量积”为:是一个向量,它与向a b ,a ba b a b ⨯ 量,都垂直,它的模.如图,在四棱锥中,底面a b sin ,a b a b a b ⨯=⋅ P ABCD -为矩形,底面,,为上一点,.ABCD PD ⊥ABCD 4DP DA ==E AD AD BP ⨯=(1)求的长;AB (2)若为的中点,求二面角的余弦值;E AD P EB A --(3)若为上一点,且满足,求.M PB AD BP EM λ⨯=λ答案1.【正确答案】B【详解】由题得点与点的横坐标与竖坐标互为相反数,纵坐标相同,P Q 所以点和点关于轴对称,P Q y 故选:B.2.【正确答案】C【分析】利用空间向量平行列出关于的方程组,解之即可求得的值.,x y ,x y 【详解】因为,所以,由题意可得,a b ∥a b λ=()()()2,1,31,2,9,2,9x y y λλλλ=-=-所以则.2,12,39,x y λλλ=⎧⎪=-⎨⎪=⎩131632x y λ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩故选C.【思路导引】根据题目条件列出关于的方程组,解方程组即可得到答案.a∥b ,x y 3.【正确答案】D【详解】.()11111A A B B a b B A B cCC C CB =+=-+=-+--+ 故选:D .4.【正确答案】A【详解】由基底定义可知只有非零向量不共面时才能构成空间中的一组基底.,,a b c对于A ,因为非零向量两两垂直,所以非零向量不共面,可构成空间的一,,a b c ,,a b c 组基底,故A 正确;对于B ,,则共线,由向量特性可知空间中任意两个向量是共面的,所以b c λ=,b c 与共面,故B 错误;a,b c 对于C ,由共面定理可知非零向量共面,故C 错误;,,a b c 对于D ,即,故由共面定理可知非零向量共面,故D 错误.0a b c ++= a b c =--,,a b c 故选:A.5.【正确答案】A【分析】由题意可得,可得定点坐标.(1)(2)0a x b y -++=【详解】因为,所以,2b a c =+2c b a =-由,可得,所以,0ax by c ++=(2)0ax by b a ++-=(1)(2)0a x b y -++=当时,所以对为任意实数均成立,1,2x y ==-(11)(22)0a b -+-+=,a b 故直线过定点.(1,2)-故选A.6.【正确答案】C 【详解】因为可化为22221:22416160,2880C x y x y x y x y +++-=+++-= ,则,半径,()()221425x y +++=()11,4C --15r =因为可化为,22222:228840,4420C x y x y x y x y ++--=++--= ()()222210x y ++-=则,半径()22,2C -2r =则,因为.1C =122155r r r r -=<<+=+故选:C.7.【正确答案】A【详解】,即,22:430M x y x +-+= ()2221x y -+=则圆心,半径为.(2,0)M 1椭圆方程,,22:11612x y C +=2216,12a b ==则,22216124,2c a b c =-=-==则圆心为椭圆的焦点,(2,0)M 由题意的圆的直径,且AB 2AB = 如图,连接,由题意知为中点,则,PM M AB MA MB =-可得()()()()PA PB PM MA PM MB PM MB PM MB ⋅=+⋅+=-+ .2221PM MB PM =-=- 点为椭圆上任意一点,P 22:11612x y C +=则,,min 2PM a c =-= max 6PM a c =+= 由,26PM ≤≤ 得.21PA PB PM ⋅=- []3,35∈故选:A.8.【正确答案】D【详解】对于A ,和圆,221:2470C x y x y +---=222:(3)(1)12C x y +++=圆心和半径分别是,()()12121,2,3,1,C C R R --==则两圆心中点为,11,2⎛⎫- ⎪⎝⎭若圆和圆关于直线对称,则直线是的中垂线,1C 2C 8650x y +-=12C C 但两圆心中点不在直线上,故A 错误;11,2⎛⎫- ⎪⎝⎭8650x y +-=对于B ,到直线的距离,1C 8650x y ++=81255102d ++==故公共弦长为,B错误;=对于C ,圆心距为,当点和重合时,的值最小,5=P QPQ当四点共线时,的值最大为12,,,P Q C CPQ 5+故的取值范围为,C 错误;PQ0,5⎡+⎣对于D ,如图,设关于直线对称点为,1C 80-+=x y (),A m n则解得即关于直线对称点为,21,11280,22n mm n -⎧=-⎪⎪-⎨++⎪-+=⎪⎩6,9,m n =-⎧⎨=⎩1C 80-+=x y ()6,9A -连接交直线于点,此时最小,2AC M PM MQ +122PM MQ MC MC C A +≥+-=-==即的最小值为,D 正确.PM MQ+故选:D.9.【正确答案】ACD【详解】ABC 选项,由题意得,故且,AC 正确,B 错误;2b a= //a b2b a= D 选项,在,Da b ()01,2,=-正确.故选:ACD10.【正确答案】ABC 【详解】依题意得,12CQ CB BQ AD BA =+=-+()11222AD AA AB AB AD AA =-+-=--+ 故A 正确;如图,以为坐标原点,建立空间直角坐标系,1A 111(0,1,0),(1,1,0),(1,0,0),(0,1,1),(1,1,1),(1,1,1),B C D Q C E -------,(1,1,1),(0,1,1),(1,0,1)G B D -----对于BC ,,1(1,2,1),(1,2,2)QC CQ =--=-所以,设,3CQ==173QC CQ m CQ ⋅==- 则点到直线的距离BC 正确;1C CQd ==对于D ,因为,(1,2,2),(1,1,0)CQ BD ---==所以cos ,CQ BD 〈〉==tan ,CQ BD 〈〉= 所以异面直线与所成角的正切值为D 错误.CQ BD 故选:ABC .11.【正确答案】ABD【详解】根据题意,方程,即,22410x y x +-+=22(2)3x y -+=表示圆心为,半径为(2,0)对于A ,设,即,y x z -=0x y z -+=直线与圆有公共点,0x y z -+=22(2)3x y -+=所以≤22z ≤≤则的最大值为,故A 正确;z y x =-2-对于B ,设,其几何意义为圆上的点到原点的距离,t =22(2)3x y -+=所以的最大值为,t 2故的最大值为B 正确;22x y +22(27t ==+对于C ,设,则,直线与圆有公共点,yk x =0kx y -=0kx y -=22(2)3x y -+=则,解得的最大值为C 错误;≤k ≤≤yx 对于D ,设,作出图象为正方形,作出圆,如图,m x y=+22(2)3x y -+=由图象可知,正方形与圆有公共点A 时,有最小值m 2即的最小值为,故D 正确;x y+2故选:ABD12.【正确答案】/0.12518【详解】空间向量共面的基本定理的推论:,且、、不共OP xOA yOB zOC =++ A B C 线,若、、、四点共面,则,A B C P 1x y z ++=因为为空间任意一点,若,且、、、四点共面,O 3148OP OA OB tOC=++ A B C P所以,,解得.31148t ++=18t =故答案为.1813.【正确答案】221(2)43x y x +=≠±【详解】设动点的坐标为,又,,P (,)x y ()2,0A -()2,0B 所以的斜率,的斜率,AP (2)2AP y k x x =≠-+BP (2)2BP yk x x =≠-由题意可得,3(2)224y y x x x ⨯=-≠±+-化简,得点的轨迹方程为.P 221(2)43x y x +=≠±故221(2)43x y x +=≠±14.【正确答案】 2,【详解】圆的标准方程为,圆心,2C 22()2(2)x a y a a -+=->()2,0C a 则为的角平分线,所以.2PC APB ∠22AC PA BC PB=设,则,()00,P x y ()22054x y -+=所以,则,2PAPB===222AC BC =即,解得,则,()124a a -=-3a =222:(3)1C x y -+=所以点与重合,N ()4,0B 此时,可得,221,30C M MAC =∠=52M ⎛ ⎝.故;215.【正确答案】(1)或;22114480x y +=22114480y x +=(2).22143x y +=【详解】(1)由题得,222212328c a a b b a b c c ⎧=⎪=⎧⎪⎪⎪=⇒=⎨⎨⎪⎪=+=⎩⎪⎪⎩所以椭圆的标准方程为或.22114480x y +=22114480y x +=(2)椭圆满足,故该椭圆焦点坐标为,2212x y +=1c ==()1,0±因为椭圆与有相同的焦点,且经过点,C 2212x y +=31,2M ⎛⎫ ⎪⎝⎭所以可设椭圆方程为,且,解得,C 22221x y a b +=22222231211ab a b ⎧⎛⎫⎪ ⎪⎪⎝⎭+=⎨⎪⎪=+⎩4241740a a -+=故,解得(舍去)或,故.()()224140aa --=214a =24a =2213b a =-=所以椭圆的标准方程为.C 22143x y +=16.【正确答案】(1)()()224310x y -+-=(2)或10x -=512170x y +-=【详解】(1)由题意,则的中点为,且,()()1,4,3,6A B AB (2,5)64131AB k -==-故线段中垂线的斜率为,AB 1-则中垂线的方程为,即,5(2)y x -=--70x y +-=联立,解得,即圆心,34070x y x y -=⎧⎨+-=⎩43x y =⎧⎨=⎩()4,3C 则半径r CA ===故圆的方程为.C ()()224310x y -+-=(2)当直线斜率不存在时,直线的方程为,l 1x =圆心到直线的距离为,由半径,(4,3)C 3r =则直线截圆所得的弦长,满足题意;l C 2=当直线斜率存在时,设直线方程为,l l 1(x 1)y k -=-化为一般式得,10kx y k -+-=由直线截圆所得的弦长,半径.l C 2r =1则圆心到直线的距离,又圆心,3d ==(4,3)由点到直线的距离公式得,3d 解得,故直线方程为,512k =-l 51(1)12y x -=--化为一般式方程为.512170x y +-=综上所述,直线的方程为或.l 10x -=512170x y +-=17.【正确答案】(1)证明见详解;【分析】(1)根据线面垂直的性质,结合线面垂直的判定定理、平行线的性质进行证明即可;(2)作,垂足为,根据平行四边形和矩形的判定定理,结合(1)的结论,EN AD ⊥N 利用勾股定理,因此可以以,,所在的直线分别为轴、轴、轴建立空BM BC BF x y z 间直角坐标系,利用空间向量夹角公式进行求解即可.【详解】(1)因为平面,又平面,FB ⊥ABCD AD ⊂ABCD 所以.又,且,FB AD ⊥FM AD ⊥FB FM F ⋂=所以平面.因为,所以平面.AD ⊥BFM //BC AD ⊥BC BFM (2)作,垂足为.则.又,EN AD ⊥N //FM EN //EF AD 所以四边形是平行四边形,又,FMNE EN AD ⊥所以四边形是矩形,又四边形为等腰梯形,且,,FMNE ADEF 4=AD 2EF =所以.1AM =由(1)知平面,所以.又,AD ⊥BFM BM AD⊥AB =所以.在中,1BM =Rt AFMFM ==在中,.Rt FMB 3FB ==所以由上可知,能以,,所在的直线分别为轴、轴、轴建立如图所示空间BM BC BF x y z 直角坐标系.则,,,,,所以,,(1,1,0)A --(0,0,0)B (0,0,3)F (1,3,0)D -(0,2,3)E (1,1,0)AB =,,,设平面的法向量为,(0,0,3)BF = (1,3,0)BD =- (0,2,3)BE =ABF ()111,,m x y z = 由,得可取.00m AB m BF ⎧⋅=⎪⎨⋅=⎪⎩ 1110,0,x y z +=⎧⎨=⎩(1,1,0)m =- 设平面的法向量为,BDE ()222,,n x y z =由,得,可取.00n BD n BE ⎧⋅=⎪⎨⋅=⎪⎩ 222230,230,x y y z -+=⎧⎨-+=⎩(9,3,2)n = 因此,.cos ,m n m n m n ⋅===依题意可知,平面与平面的夹角的余弦值为ABFDBE 18.【正确答案】(1)r =(2);1k =±(3)max λ=【详解】(1)由题意得,,O (0,0)()()2222220112x y x y x y +--=⇒-+-=故圆心,圆E 的半径为()1,1E 因为,故在圆E 上,()()2201012-+-=O (0,0)所以圆O 的半径,且r >OE r ==r =(2)由(1)知,联立,22:8O x y +=()2222812701x y k x kx y kx ⎧+=⇒++-=⎨=+⎩设,则恒成立,()()1122,,,M x y N x y ()22Δ42810k k =++>且,12122227,11k x x x x k k +=-=-++所以,()2222121212222721811111k k k y y k x x k x x k k k -=+++=--+=+++所以,解得.221212222718681711O k k x x y O y k k k M N ⋅=---+=-+==+++-1k =±(3)如图,因为直线和直线倾斜角互补,AB CD所以当直线斜率不存在时,此时直线的斜率也不存在,AB CD 此时,,AB CD=1AB CDλ==当直线的斜率为0时,直线的斜率为0,不满足倾斜角互补,AB CD 当直线斜率存在且不为0时,设直线 即,AB ():11AB y k x -=-10kx y k --+=圆心O 到直线的距离为AB d故AB ===由直线方程得直线的方程为即,AB CD ()11y k x -=--10kx y k +--=同理得CD =则,AB CD λ====当,,0k>AB CDλ====因为对勾函数在上单调递减,在上单调递增,()1f x x x =+(0,1)(1,+∞)所以时,,0x >()())[)1,2,f x f ∞∞⎡∈+=+⎣所以时,故,0k >[)17212,k k ∞⎛⎫+-∈+ ⎪⎝⎭4411,1372k k ⎛⎤+∈ ⎥⎛⎫⎝⎦+- ⎪⎝⎭所以,λ⎛= ⎝当,0k <AB CDλ====由上知时,故,0k <()[)17216,k k ∞⎡⎤⎛⎫-+-+∈+ ⎪⎢⎥⎝⎭⎣⎦()431,14172k k ⎡⎫-∈⎪⎢⎡⎤⎛⎫⎣⎭-+-+ ⎪⎢⎥⎝⎭⎣⎦所以.λ⎫=⎪⎪⎭综上,max λ=19.【正确答案】(1)2(2)13-(3)10【分析】(1)首先说明为直线与所成的角,即,设PBC ∠AD PB ,AD BP PBC=∠,根据所给定义得到方程,解得即可;()0AB x x =>(2)在平面内过点作交的延长线于点,连接,为二ABCD D DF BE ⊥BE F PF PFD ∠面角的平面角,由锐角三角函数求出,设二面角的平面P EB D --cos PFD ∠P EB A --角为,则,利用诱导公式计算可得;θπPFD θ=-∠(3)依题意可得平面,在平面内过点作,垂足为,即EM ⊥PBC PDC D DN PC ⊥N 可证明平面,在平面内过点作交于点,在上取点DN ⊥PBC PBC N //MN BC PB M DA,使得,连接,即可得到四边形为平行四边形,求出,即E DE MN =EM DEMN DN可得解.【详解】(1)因为底面为矩形,底面,ABCD PD ⊥ABCD 所以,,又底面,所以,//AD BC BC DC ⊥BC ⊂ABCD PD BC ⊥又,平面,所以平面,PD DC D = ,PD DC ⊂PDC BC ⊥PDC 又平面,所以,PC ⊂PDC BC PC ⊥所以为直线与所成的角,即,PBC ∠AD PB ,AD BP PBC=∠设,则,()0AB x x =>PC ==PB ==在中Rt PBC s n i PCPBC PB ∠==又,解得(负值已舍去),AD BP ⨯==2x =所以;2AB =(2)在平面内过点作交的延长线于点,连接,ABCD D DF BE ⊥BE F PF 因为底面,底面,所以,又,PD ⊥ABCD BF ⊂ABCD PD BF ⊥DF PD D = 平面,所以平面,又平面,所以,,DF PD ⊂PDF BF ⊥PDF PF ⊂PDF BF PF ⊥所以为二面角的平面角,PFD ∠P EB D --因为为的中点,E AD所以π2sin4DF ==PF ==所以,1cos 3DF PFD PF ∠===设二面角的平面角为,则,P EB A --θπPFD θ=-∠所以,()1cos cos πcos 3PFD PFD θ=-∠=-∠=-即二面角的余弦值为;P EB A --13-(3)依题意,,又,()AD BP AD⨯⊥ ()AD BP BP⨯⊥ AD BP EM λ⨯= 所以,,又,所以,EM AD ⊥EM BP ⊥//AD BC EM BC ⊥又,平面,所以平面,PB BC B = ,PB BC ⊂PBC EM ⊥PBC 在平面内过点作,垂足为,PDC D DN PC ⊥N 由平面,平面,所以,BC ⊥PDC DN ⊂PDC BC DN ⊥又,平面,所以平面,PC BC C = ,PC BC ⊂PBC DN ⊥PBC 在平面内过点作交于点,在上取点,使得,连接PBC N //MN BC PB M DA E DE MN =,EM 所以且,所以四边形为平行四边形,//DE MN DE MN =DEMN 所以,又,即EM DN =DN ==EM=所以.10AD BP EMλ⨯===【关键点拨】本题关键是理解并应用所给定义,第三问关键是转化为求.DN。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年下学期10月高二月考地理试卷问卷:(时间:90分钟满分100分考试班级文科班:H92和H93)
一、选择题(在每小题给出的四个选项中,只有一个选项最符合题目要求。
请将正确选项的字母填在下列表格中。
每题2分,总共50分,注意:请把答案写在后面的表格里)
如图示意我国及东部、中部、西部三大地带能源自给率的变化情况。
完成1~2题。
(1~2题) (3~4题)
1.图中四条曲线代表西部地带的是()
A.I B.II C.III D.IV
2.下列地区可以大量调出能源输往IV地带的是()
①东北地区②西北地区③青藏地区④西南地区
A.①②B.①④C.②③D.②④
读右图5,“我国东、中、西部三个经济地带的产业结构图(2004年)”,完成3-4题。
3、能分别正确反映东、中、西部三个经济地带产业结构的排序是:()
A.①②③ B.①③② C.②③① D.③②①
4、关于①、②、③三个经济地带产业结构差异的
原因叙述正确的是:()
A.①位于干旱或高寒区,所以第一产业比重小
B.②由于自然条件优越,所以第一产业比重大
C.③交通便利,生产力水平高,二、三产业
比重远大于第一产业比重远大于第一产业
D.①沿海区位,交通便利,历史基础好,开放
政策,第二、三产业比重远大于第一产业
黄土高原地貌千姿百态,地域文化丰富多彩,生态环境日益改善。
据此回答5~6题。
5.治理黄土高原水土流失的合理措施有()
①坡面修梯田,减缓坡度②加快林地建设,调节地面径流
③保持传统轮荒耕作制度④在低处修建淤池坝,贮水拦沙
A.①②③B.②③④C.①②④D.①③④
6.沙尘暴对地理环境的影响是多方面的。
华北地区沙尘暴的降尘会()A.导致气候变暖B.引发草场退化
C.引起地表水体酸化D.增加土壤肥力
继“西部大开发”、“中部崛起”后,我国又制订了“实现东部新跨越”的战略方针,环渤海经济圈作为东部的一个重要组成部分,正在加速崛起,读图回答7~8题。
7.图中阴影区是我国重要的商品棉基地,其棉花生长的有利气候条件是()A.地势平坦广阔B.土壤深厚肥沃
C.降水丰富,水源充足 D.光热条件好,雨热同期
8.天津、青岛、大连吸引外资企业纷纷落户,其共同的优势区位条件是()
①水陆交通便利②劳动力价廉质优
③接近原料和零部件产地④水源、动力充足⑤市场前景广阔
A.①②③B.②③④C.②④⑤ D.①②⑤
9、右图中东西走向的铁路线名称是( )
C、京包线D、襄渝线
我国的大西南经济协作区主要由西南三省一市
和广西、西藏两自治区组成。
据此回答10~12题:
10、大西南协作区所在的主要地形区包括( )
①云贵高原②柴达木盆地③东南丘陵④四川盆地
A、①②③B、②③④C、①②④D、①③④
11、对大西南经济协作区交通建设影响最深刻的自然因素是( )
A、地形地势B、气温C、降水D、河流
12、关于大西南经济协作区地理特征的叙述中,不正确的是( )
A、地跨我国地势的三级阶梯B、耕地资源丰富
C、是我国少数民族的主要聚居区D、目前交通运输是制约经济发展的主要因素下图表示某产业在亚太地区的历史发展过程,读图回答13—14题
13、分析图中反映的产业部门可能是:()
A.玩具制造B.汽车工业C.石化工业D.钢铁工业
14、产品生产环节中,附加值最低的环节是:()
A.加工阶段B.设计阶段C.营销阶段D.以上都不是我国某中学地理兴趣研究小组,沿图甲所示A、B、C、D四地进行生态调查,图乙是他
们调查某地后所作的一水井周边景观示意图。
据图回答15~17题。
15.图乙所示生态特征最可能是下列哪种人类活动引起的()
A.滥采矿产B.过度农垦C.过度樵采D.过度放牧
16.图乙所示生态现象最可能出现在图甲所示哪一地区()
A.A地B.B地C.C地D.D地
17.若B地要发展种植业,从可持续发展的角度看应注重发展()
A.绿洲农业B.河谷农业C.节水农业D.高效农业
流域的开发都以河流的利用与治理为核心,结合流域的具体特征,对资源进行综合开发和利用。
据此完成18~20题。
18.田纳西河流域实施梯级开发的有利影响是()
①有利于整个流域进行有效的防洪调度②提高了流域内的通航能力③为区域开发提供了充足的电力供应④可根本上防治流域内的环境污染
A.①②③
B.②③④
C.①②④
D.①②③④
A(田纳西河流域管理局)在流域开发过程中,合理利用的土地主要措施是()
①留出土地用于生态恢复和建立自然保护区②调整农、林、牧业结构③恢复治理采矿区土地的生态④建立公园、野生动物的管理区、风景区
A.①②③
B.②③④
C.①②④
D.①③④
20.下列措施中,不能提高水质的是()
A.建设抽水蓄能电站
B.防治水污染
C.保护水源涵养林
D.改善库区生态环境
位于长江中上游的某茶场,茶园面积600亩,每年四月、七月、十一月要锄草三次,久而久之,茶园“消瘦”了,同时,锄草需要大量劳动力,困惑之际,茶场主人想到“羊喜吃嫩草,却不吃嫩茶”,于是把羊引进茶园,既节约人力物力,又保持了水土,肥沃了茶园,可谓一举两得。
据此完成21~23题。
21、长江中上游植被破坏后,给下游地区带来的危害是()
A.泥沙淤积河、湖,洪水排泄不畅,致使洪涝灾害频繁
B.水土流失日趋严重
C.气候恶化,导致全球变暖
D.河流径流的季节变化减小
22、根据长江流域地理特征可以推知,三次锄草中,水土流失最严重的是()
A.四月、七月
B.四月
C.七月
D.十一月
23、茶园“消瘦”的主要原因是()
A.缺乏分解者
B. 缺少枯枝落叶
C.土壤中有机质被微生物分解
D. 表层土壤被大量冲走
中国既是能源生产大国,又是消费大国,但每吨标准煤的产出效率仅相当于日本的10.3%,欧盟的16.8%,美国的28.6%。
读“中国和世界能源消费结构图”(煤、石油、天然气和其他能源),回答24~25题。
24.中国能源消费结构中,目前需要大量进口的能源在图中是指()
A.a
B.b
C.c
D.d
25.我国能源产出效率低的主要原因是()
A.能源消费结构不合理
B.多高能耗、低产出的工业
C.管理不善,浪费现象严重
D.工业布局不合理
二、综合题(本大题4个小题,共50分)
26.读图回答:(12分)
(1)ABCDEF六省中,既位于西部经济带又位于南方地区的省是_______________;既位于中部经济带又位于北方地区的省是_______________:F省是。
(3分)(2)试从自然资源、产业结构两方面比较B与F两省的差异。
(4分)
(3)列举D与F两省加强经济合作的举措(至少2条;2分)
(4)B、C两省之间的资源调配工程是_______________,(1分)该工程对B省可能带来的环境问题有哪些?(2分)
27.读下列资料回答:(10分)
洞庭湖是重要的淡水湖泊,对周围地区有着不同寻常的经济和生态意义。
下图是洞庭湖不同
时期的湖泊略图(阴影代表水域)。
(1)四图按照时间先后的排列顺序是。
(2分)
(2)简述洞庭湖区发展水稻种植业的有利的自然条件。
(4分)
(3)描述洞庭湖形态的变化,并且简要分析发生变化主要原因。
(4分)
28.下图“为印度著名的乔塔那格浦尔工业区”和“中国的沪宁杭工业区”,读图回答下列问题。
(18分)
(1)根据图中信息,比较两个工业区的工业区位条件的相同点和不同点。
(8分)
(2)乔塔那格浦尔工业区作为一个形成较晚的传统重工业区,为了避免出现德国鲁尔区曾经出现过的衰落现象,应当采取哪些主要措施?(答出三点即可)(6分)
(3)针对沪宁杭工业区在发展中的主要制约因素,近年来采取了哪些解决措施?(4分)
29、2007年l月9日下发的《中共中央国务院关于积极发展现代农业,扎实推进社会主义新农村建没的若干意见》明确提出发展现代农业是社会主义新农村建设的首要任务,要用现代物质条件装备农业,用现代科学技术改造农业,用现代产业体系提升农业,用现代经营形式推进农业,提高农民素质,增强农业效益和竟争力。
根据相关资料,回答下列问题。
(12分)
材料一:中国和美国玉米带分布地区图
(1)说明我国东北玉米带和美国玉米带所共同具备的有利自然条件。
(4分)
(2)影响中美两国玉米带形成和发展的共同社会经济因素有。
(2分)
①劳动力②机械化程度③市场④农业生物技术⑤交通运输
A. ①③⑤
B. ②④⑤
C. ②③⑤
D. ①②④
(3)图中沼泽地是不是属于湿地?()(是或不是)(2分)
(4)图中沼泽地具有哪些作用?(至少写二点)(2分)。