The elliptical galaxy NGC 5044 Stellar population and ionized gas

合集下载

天体英语知识点总结高中

天体英语知识点总结高中

天体英语知识点总结高中一、IntroductionThe study of celestial bodies, or heavenly bodies, is known as astronomy. Astronomy is a natural science that involves the observation and analysis of celestial phenomena. It has been a subject of human fascination for millennia, with civilizations around the world creating myths, legends, and astronomical calendars associated with the movements of the sun, moon, and stars.In recent centuries, astronomy has developed into a field of scientific inquiry, using advanced tools and techniques to study the universe and its contents. This has led to many groundbreaking discoveries and a better understanding of the cosmos.In this article, we will explore some key concepts and terms related to astronomy and celestial bodies, providing a comprehensive overview of this fascinating field of study.二、The Solar SystemThe solar system is the collection of celestial bodies that orbit the sun, including planets, moons, asteroids, comets, and other objects. The sun is the central star of the solar system, providing light and heat to the planets and other bodies that orbit it.1. Planets: There are eight recognized planets in the solar system, including Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. These planets vary in size, composition, and distance from the sun, and each has its own unique characteristics.2. Moons: Moons are natural satellites that orbit planets. The most well-known example is Earth's moon, but many other planets in the solar system also have moons of their own. Some planets, such as Jupiter and Saturn, have a large number of moons, while others have only a few.3. Asteroids: Asteroids are small, rocky bodies that orbit the sun. They are found primarily in the asteroid belt, which lies between the orbits of Mars and Jupiter. Some asteroids have elliptical or irregular orbits that bring them close to the inner solar system, posing a potential threat to Earth and other planets.4. Comets: Comets are icy bodies that orbit the sun in highly elliptical orbits. When a comet approaches the sun, its ice begins to vaporize, creating a bright glowing tail that can be seen from Earth. Comets are thought to be remnants from the early solar system and provide valuable insights into its formation and evolution.5. Dwarf Planets: In addition to the eight recognized planets, there are also a number of dwarf planets in the solar system. These are celestial bodies that are similar to planets in some ways but do not meet all the criteria for being classified as planets. The best-known example is Pluto, which was reclassified as a dwarf planet in 2006.三、Stars and GalaxiesStars are massive, luminous spheres of plasma that emit light and heat through nuclear fusion. They are the building blocks of galaxies, which are vast collections of stars, gas, and dust held together by gravity.1. Star Formation: Stars form from the gravitational collapse of dense regions within interstellar clouds of gas and dust. As the cloud contracts, it heats up and eventually reaches a temperature and density at which nuclear fusion reactions can occur, turning hydrogen into helium and releasing large amounts of energy in the process.2. Stellar Evolution: Stars go through a life cycle that depends on their initial mass. Low-mass stars, such as our sun, spend most of their lives in a stable state, fusing hydrogen into helium in their cores. Eventually, they exhaust their nuclear fuel and expand into red giants before shedding their outer layers and becoming white dwarfs. High-mass stars, on the other hand, undergo more dramatic evolutionary stages, including supernova explosions and the formation of neutron stars or black holes.3. Galaxies: Galaxies come in a variety of shapes and sizes, from small irregular galaxies to giant elliptical and spiral galaxies. The Milky Way, the galaxy in which our solar system resides, is a spiral galaxy with several arms of stars and gas. Galaxies are thought to have formed from the gravitational collapse of large clouds of gas and dust in the early universe.4. The Universe: The universe is the vast expanse of space and time that contains all known matter and energy. It is believed to have originated from a single point in an event known as the Big Bang, which occurred approximately 13.8 billion years ago. The study of the universe, its origin, and its evolution is a fundamental aspect of astronomy, leading to many important discoveries and insights into the nature of the cosmos.四、Observational AstronomyObservational astronomy is the study of celestial objects and phenomena through direct observation using telescopes, cameras, and other instruments. This branch of astronomy plays a crucial role in advancing our understanding of the universe.1. Telescopes: Telescopes are the primary tools used by astronomers to observe celestial objects. They collect and magnify light from distant objects, allowing astronomers to study stars, planets, galaxies, and other phenomena in great detail. There are several types of telescopes, including optical telescopes that work by collecting visible light, as well as radio telescopes, X-ray telescopes, and other specialized instruments that capture non-visible forms of radiation.2. Astronomical Imaging: Astronomical imaging refers to the process of capturing and analyzing images of celestial objects. Modern digital cameras and imaging sensors have revolutionized this field, allowing astronomers to produce high-resolution images of distantgalaxies, planetary surfaces, and other astronomical features. Imaging data is often used to study the composition, structure, and evolution of celestial bodies.3. Spectroscopy: Spectroscopy is the study of the interaction between light and matter. By analyzing the spectrum of light emitted or absorbed by an object, astronomers can learn about its composition, temperature, and other important properties. Spectroscopy has been instrumental in advancing our knowledge of stars, galaxies, and the interstellar medium.4. Astronomical Surveys: Astronomical surveys are large-scale projects that aim to systematically observe and catalog objects in the sky. These surveys cover a wide range of wavelengths and are used to study the distribution of galaxies, the structure of the universe, and the properties of individual celestial objects. The data collected from these surveys is crucial for advancing our understanding of the cosmos.五、Astrophysics and CosmologyAstrophysics is the branch of astronomy that seeks to understand the physical properties and behavior of celestial objects and phenomena. It involves the application of principles from physics and other sciences to study the universe and its contents.1. Stellar Physics: Stellar physics focuses on the study of stars, including their structure, evolution, and energy production. It seeks to explain the processes that govern the behavior of stars, such as nuclear fusion in their cores, the generation of magnetic fields, and the formation of stellar remnants.2. Galactic and Extragalactic Astrophysics: This subfield of astrophysics deals with the study of galaxies and the large-scale structures of the universe. It explores the distribution of matter and energy, the formation of galaxies, and the dynamics of galactic clusters. It also addresses the properties of objects outside our galaxy, such as quasars, pulsars, and active galactic nuclei.3. Cosmology: Cosmology is the study of the origin, evolution, and ultimate fate of the universe. It seeks to understand the large-scale structure of the cosmos, the nature of dark matter and dark energy, and the cosmic microwave background radiation left over from the Big Bang. Cosmologists use principles from general relativity and particle physics to develop theoretical models of the universe and test them against observational data.4. Black Holes and Neutron Stars: Black holes and neutron stars are extreme objects that result from the gravitational collapse of massive stars. They have unique properties, such as intense gravitational fields and the emission of powerful radiation. The study of these objects is an important area of research in astrophysics, as they provide insights into the behavior of matter under extreme conditions.六、ConclusionAstronomy is a fascinating and dynamic field of study that encompasses a wide range of topics, from the study of stars and planets to the exploration of the universe on the largest scales. It offers a unique perspective on the nature of our existence and our place in the cosmos.The knowledge and insights gained from astronomy have practical applications in many areas, including space exploration, the development of new technologies, and the search for extraterrestrial life. As our understanding of the universe continues to expand, so too will the impact of astronomy on our lives and our understanding of the world around us.In conclusion, astronomy is a cornerstone of human curiosity and scientific endeavor, revealing the wonders of the universe and the beauty of the celestial realm. The study of celestial bodies continues to capture the imagination of people around the world and drive us to explore and understand the cosmos in ever-greater detail.。

九下英文单词表第三单元中文

九下英文单词表第三单元中文

九下英文单词表第三单元中文Unit 3 Vocabulary List with Chinese Translations for Grade 9 English.1. astronomy 天文学(tiānwénxué) The study of the universe, including stars, planets, galaxies, and other celestial objects.2. telescope 望远镜(yuànwàngjìng) An optical instrument used to observe objects in the distance by collecting and focusing light.3. microscope 显微镜(xiǎnjìng) An optical instrument used to observe small objects by magnifying their image.4. satellite 卫星(wèixīng) A spacecraft orbiting a planet, moon, or other celestial body.5. rocket 火箭(huǒjiàn) A vehicle that can travel through space using thrust generated by the combustion ofpropellants.6. spaceship 宇宙飞船(yǔzhòufēichuán) A spacec raft designed to carry humans into space.7. astronaut 宇航员(yǔhángyuán) A person trained to travel in a spacecraft and perform tasks in space.8. gravity 重力(zhònglì) The force that attracts all matter towards the center of the earth.9. orbit 轨道(guǐdào) The path followed by a satellite, planet, or other celestial body around a larger object.10. constellation 星座(xīngzuò) A group of starsthat form a recognizable pattern in the night sky.11. galaxy 银河系(yínhéxì) A vast system of stars, dust, and gas that forms a spiral or irregular shape.12. solar system 太阳系(tàiyángxì) The system ofplanets, moons, asteroids, comets, and other celestial objects that orbit the sun.13. universe 宇宙(yǔzhòu) All existing matter and space considered as a whole; everything that exists, everywhere.14. astronomer 天文学家(tiānwénxuéjiā) A scientist who studies astronomy.15. celestial 天体的(tiāntǐde) Referring to objects or phenomena in the sky or space.16. observation 观察(guānchá) The act of carefully watching and noting something, especially for scientific purposes.17. exploration 探索(tànsuǒ) The activity of searching for and studying new information, especially in a scientific or冒险的(màoxiǎn de) context.18. mystery 神秘(shénmì) Something that is difficultto understand or explain, often associated with a feeling of wonder or curiosity.19. universe exploration 宇宙探索(yǔzhòusuànsuǒ) The act of searching for and studying new information about the universe.20. telescope observation 望远镜观测(yuànwàngjìng guāncè) The use of a telescope to observe objects in the sky.21. microscope observation 显微镜观测(xiǎnjìngguāncè) The use of a microscope to observe small objects.22. space exploration 太空探索(tàikōng suànsuǒ) The act of searching for and studying new information about space.23. astronomical 天文学的(tiānwénxuéde) Relating to or involving astronomy.24. astronomical event 天文事件(tiānwén shìjiàn)An occurrence or phenomenon in the sky, such as an eclipseor supernova.25. astronomical discovery 天文发现(tiānwén fāxiàn) The identification of a new object or phenomenon in the sky.26. celestial map 星图(xīngtú) A map showing the positions of stars, constellations, and other celestial objects.27. astronomical instrument 天文仪器(tiānwén yíqì)A device used for observing or studying objects in the sky.28. stellar 恒星的(héngxīngde) Relating to stars.29. nebula 星云(xīngyún) A large collection of dust, gas, and stars in space.30. comet 彗星(huìxīng) A small solar system bodywith a highly elliptical orbit, composed of ice, dust, and rock.These are the vocabulary words for Unit 3 of Grade 9 English, focusing on the topic of astronomy. Each word is provided with its Chinese translation to aid in understanding and learning.。

天文学名词

天文学名词

中国天文学会天文学名词审定委员会第1-6批天文学名词的推荐译名The 1st - 6th Drafts for the Chinese-Translation of Astronomical Termsrecommanded byThe Astronomical Terminology Committee of the CASabsolute stability 绝对稳定性absorbing dust mass 致吸尘物质absorption trough 吸收槽abundance standard 丰度标准星accreting binary 吸积双星accretion column 吸积柱accretion flow 吸积流accretion mound 吸积堆accretion ring 吸积环accretion stream 吸积流acoustic mode 声模active binary 活动双星active chromosphere binary 活动色球双星active chromosphere star 活动色球星active optics 主动光学actuator 促动器Adams ring 亚当斯环adaptive optics 自适应光学additional perturbation 附加摄动AGB, asymptotic giant branch 渐近巨星支Alexis, Array of Low-Energy X-ray 〈阿列克希斯〉低能X 射线Imaging Sensors 成象飞行器AM Herculis star 武仙AM 型星amplitude spectrum 变幅谱angular elongation 距角anonymous galaxy 未名星系anonymous object 未名天体anti-jovian point 对木点annular-total eclipse 全环食aperture photometry 孔径测光APM, Automated Photographic Measuring 〈APM〉底片自动测量仪systemapoapse 远质心点apoapse distance 远质心距apogalacticon 远银心点apomartian 远火点apparent association 表观成协apparent luminosity function 视光度函数apparent superluminal motion 视超光速运动apsidal advance 拱线进动apsidal precession 拱线进动Arcturus group 大角星群area image sensor 面成象敏感器area photometry 面源测光area spectroscopy 面源分光argument of pericentre 近心点幅角ASCA, Advanced Satellite for Cosmology 〈ASCA〉宇宙学和天体物理学and Astrophysics 高新卫星asteroidal dynamics 小行星动力学asteroidal resonance 小行星共振asteroid family 小行星族asteroid-like object 类小行星天体asteroseismology 星震学astration 物质改造astroparticle physics 天文粒子物理学astrostatistics 天文统计学asymptotic branch 渐近支asymptotic branch giant 渐近支巨星atmospheric parameter 大气参数ATNT, Australia Telescope National 澳大利亚国立望远镜FacilityATT, Advanced Technology Telescope 〈ATT〉高新技术望远镜automated measuring machine 天文底片自动测量仪automatic photooelectric telescope 自动光电测光望远镜( APT )AXAF, Advanced X-ray Astrophysical 高新X射线天体物理台FacilityBaade's window 巴德窗Baade—Wesselink analysis 巴德—韦塞林克分析Baade—Wesselink mass 巴德—韦塞林克质量Baade—Wesselink method 巴德—韦塞林克方法Baade—Wesselink radius 巴德—韦塞林克半径background galaxy 背景星系Barnard's galaxy ( NGC 6822 ) 巴纳德星系barycentric dynamical time ( TDB ) 质心力学时Belinda 天卫十四Bianca 天卫八bidimensional spectrography 二维摄谱bidimensional spectroscopy 二维分光Big-Bang nucleosynthesis 大爆炸核合成binarity 成双性binary asteroid 双小行星binary flare star 耀变双星binary millisecond pulsar 毫秒脉冲双星binary protostar 原双星bioastronomy 生物天文学bipolar jet 双极喷流bipolar outflow 偶极外向流bipolar planetary nebula 双极行星状星云blazar 耀变体blazarlike activity 类耀活动blazarlike object 耀变体Black-eye galaxy ( M 64 ) 黑眼星系BL Lacertae object 蝎虎天体BL Lacertid 蝎虎天体blue compact galaxy ( BCG ) 蓝致密星系blue straggler 蓝离散星bolometric albedo 热反照率bolometric light curve 全波光变曲线bolometric temperature 热温度Bootes void 牧夫巨洞bow-shock nebula 弓形激波星云box photometry 方格测光broad-band imaging 宽波段成象broad-line radio galaxy ( BLRG ) 宽线射电星系buried channel CCD 埋沟型CCDButterfly nebula 蝴蝶星云BY Draconis star 天龙BY 型星BY Draconis variable 天龙BY 型变星CAMC, Carlsberg Automatic Meridian 卡尔斯伯格自动子午环Circlecannibalism 吞食cannibalized galaxy 被吞星系cannibalizing galaxy 吞食星系cannibalizing of galaxies 星系吞食carbon dwarf 碳矮星Cassegrain spectrograph 卡焦摄谱仪Cassini 〈卡西尼〉土星探测器Cat's Eye nebula ( NGC 6543 ) 猫眼星云CCD astronomy CCD 天文学CCD camera CCD 照相机CCD photometry CCD 测光CCD spectrograph CCD 摄谱仪CCD spectrum CCD 光谱celestial clock 天体钟celestial mechanician 天体力学家celestial thermal background 天空热背景辐射celestial thermal background radiation 天空热背景辐射central overlap technique 中心重迭法Centaurus arm 半人马臂Cepheid distance 造父距离CFHT, Canada-Franch-Hawaii Telecope 〈CFHT〉望远镜CGRO, Compton Gamma-Ray Observatory 〈康普顿〉γ射线天文台chaos 混沌chaotic dynamics 混沌动力学chaotic layer 混沌层chaotic region 混沌区chemically peculiar star 化学特殊星Christmas Tree cluster ( NGC 2264 ) 圣诞树星团chromosphere-corona transition zone 色球-日冕过渡层chromospheric activity 色球活动chromospherically active banary 色球活动双星chromospherically active star 色球活动星chromospheric line 色球谱线chromospheric matirial 色球物质chromospheric spectrum 色球光谱CID, charge injected device CID、电荷注入器件circular solution 圆轨解circumnuclear star-formation 核周产星circumscribed halo 外接日晕circumstellar dust disk 星周尘盘circumstellar material 星周物质circumsystem material 双星周物质classical Algol system 经典大陵双星classical quasar 经典类星体classical R Coronae Borealis star 经典北冕R 型星classical T Tauri star 经典金牛T 型星Clementine 〈克莱芒蒂娜〉环月测绘飞行器closure phase imaging 锁相成象cluster centre 团中心cluster galaxy 团星系COBE, Cosmic Background Explorer 宇宙背景探测器coded mask imaging 编码掩模成象coded mask telescope 编码掩模望远镜collapsing cloud 坍缩云cometary burst 彗暴cometary dynamics 彗星动力学cometary flare 彗耀cometary H Ⅱregion 彗状电离氢区cometary outburst 彗爆发cometary proplyd 彗状原行星盘comet shower 彗星雨common proper-motion binary 共自行双星common proper-motion pair 共自行星对compact binary galaxy 致密双重星系compact cluster 致密星团; 致密星系团compact flare 致密耀斑composite diagram method 复合图法composite spectrum binary 复谱双星computational astrophysics 计算天体物理computational celestial mechanics 计算天体力学contact copying 接触复制contraction age 收缩年龄convective envelope 对流包层cooling flow 冷却流co-orbital satellite 共轨卫星coplanar orbits 共面轨道Copernicus 〈哥白尼〉卫星coprocessor 协处理器Cordelia 天卫六core-dominated quasar ( CDQ ) 核占优类星体coronal abundance 冕区丰度coronal activity 星冕活动、日冕活动coronal dividing line 冕区分界线coronal gas 星冕气体、日冕气体coronal green line 星冕绿线、日冕绿线coronal helmet 冕盔coronal magnetic energy 冕区磁能coronal red line 星冕红线、日冕红线cosmic abundance 宇宙丰度cosmic string 宇宙弦cosmic void 宇宙巨洞COSMOS 〈COSMOS〉底片自动测量仪C-O white dwarf 碳氧白矮星Cowling approximation 柯林近似Cowling mechnism 柯林机制Crescent nebula ( NGC 6888 ) 蛾眉月星云Cressida 天卫九critical equipotential lobe 临界等位瓣cross-correlation method 交叉相关法cross-correlation technique 交叉相关法cross disperser prism 横向色散棱镜crustal dynamics 星壳动力学cryogenic camera 致冷照相机cushion distortion 枕形畸变cut-off error 截断误差Cyclops project 〈独眼神〉计划D abundance 氘丰度Dactyl 艾卫dark halo 暗晕data acquisition 数据采集decline phase 下降阶段deep-field observation 深天区观测density arm 密度臂density profile 密度轮廓dereddening 红化改正Desdemona 天卫十destabiliizing effect 去稳效应dew shield 露罩diagonal mirror 对角镜diagnostic diagram 诊断图differential reddening 较差红化diffuse density 漫射密度diffuse dwarf 弥漫矮星系diffuse X-ray 弥漫X 射线diffusion approximation 扩散近似digital optical sky survey 数字光学巡天digital sky survey 数字巡天disappearance 掩始cisconnection event 断尾事件dish 碟形天线disk globular cluster 盘族球状星团dispersion measure 频散量度dissector 析象管distance estimator 估距关系distribution parameter 分布参数disturbed galaxy 受扰星系disturbing galaxy 扰动星系Dobsonian mounting 多布森装置Dobsonian reflector 多布森反射望远镜Dobsonian telescope 多布森望远镜dominant galaxy 主星系double-mode cepheid 双模造父变星double-mode pulsator 双模脉动星double-mode RR Lyrae star 双模天琴RR 型星double-ring galaxy 双环星系DQ Herculis star 武仙DQ 型星dredge-up 上翻drift scanning 漂移扫描driving system 驱动系统dumbbell radio galaxy 哑铃状射电星系Du Pont Telescope 杜邦望远镜dust ring 尘环dwarf carbon star 碳矮星dwarf spheroidal 矮球状星系dwarf spheroidal galaxy 矮球状星系dwarf spiral 矮旋涡星系dwarf spiral galaxy 矮旋涡星系dynamical age 动力学年龄dynamical astronomy 动力天文dynamical evolution 动力学演化Eagle nebula ( M 16 ) 鹰状星云earty cluster 早型星系团early earth 早期地球early planet 早期行星early-stage star 演化早期星early stellar evolution 恒星早期演化early sun 早期太阳earth-approaching asteroid 近地小行星earth-approaching comet 近地彗星earth-approaching object 近地天体earth-crossing asteroid 越地小行星earth-crossing comet 越地彗星earth-crossing object 越地天体earth orientation parameter 地球定向参数earth rotation parameter 地球自转参数eccentric-disk model 偏心盘模型effect of relaxation 弛豫效应Egg nebula ( AFGL 2688 ) 蛋状星云electronographic photometry 电子照相测光elemental abundance 元素丰度elliptical 椭圆星系elliptical dwarf 椭圆矮星系emulated data 仿真数据emulation 仿真encounter-type orbit 交会型轨道enhanced network 增强网络equatorial rotational velocity 赤道自转速度equatorium 行星定位仪equipartition of kinetic energy 动能均分eruptive period 爆发周期Eskimo nebula ( NGC 2392 ) 爱斯基摩星云estimated accuracy 估计精度estimation theory 估计理论EUVE, Extreme Ultraviolet Explorer 〈EUVE〉极紫外探测器Exclamation Mark galaxy 惊叹号星系Exosat 〈Exosat〉欧洲X 射线天文卫星extended Kalman filter 扩充卡尔曼滤波器extragalactic jet 河外喷流extragalactic radio astronomy 河外射电天文extrasolar planet 太阳系外行星extrasolar planetary system 太阳系外行星系extraterrestrial intelligence 地外智慧生物extreme helium star 极端氦星Fabry-Perot imaging spectrograph 法布里-珀罗成象摄谱仪Fabry-Perot interferometry 法布里-珀罗干涉测量Fabry-Perot spectrograph 法布里-珀罗摄谱仪face-on galaxy 正向星系face-on spiral 正向旋涡星系facility seeing 人为视宁度fall 见落陨星fast pulsar 快转脉冲星fat zero 胖零Fermi normal coordinate system 费米标准坐标系Fermi-Walker transportation 费米-沃克移动fibre spectroscopy 光纤分光field centre 场中心field galaxy 场星系field pulsar 场脉冲星filter photography 滤光片照相观测filter wheel 滤光片转盘find 发见陨星finder chart 证认图finderscope 寻星镜first-ascent giant branch 初升巨星支first giant branch 初升巨星支flare puff 耀斑喷焰flat field 平场flat field correction 平场改正flat fielding 平场处理flat-spectrum radio quasar 平谱射电类星体flux standard 流量标准星flux-tube dynamics 磁流管动力学f-mode f 模、基本模following limb 东边缘、后随边缘foreground galaxy 前景星系foreground galaxy cluster 前景星系团formal accuracy 形式精度Foucaultgram 傅科检验图样Foucault knife-edge test 傅科刀口检验fourth cosmic velocity 第四宇宙速度frame transfer 帧转移Fresnel lens 菲涅尔透镜fuzz 展云Galactic aggregate 银河星集Galactic astronomy 银河系天文Galactic bar 银河系棒galactic bar 星系棒galactic cannibalism 星系吞食galactic content 星系成分galactic merge 星系并合galactic pericentre 近银心点Galactocentric distance 银心距galaxy cluster 星系团Galle ring 伽勒环Galilean transformation 伽利略变换Galileo 〈伽利略〉木星探测器gas-dust complex 气尘复合体Genesis rock 创世岩Gemini Telescope 大型双子望远镜Geoalert, Geophysical Alert Broadcast 地球物理警报广播giant granulation 巨米粒组织giant granule 巨米粒giant radio pulse 巨射电脉冲Ginga 〈星系〉X 射线天文卫星Giotto 〈乔托〉空间探测器glassceramic 微晶玻璃glitch activity 自转突变活动global change 全球变化global sensitivity 全局灵敏度GMC, giant molecular cloud 巨分子云g-mode g 模、重力模gold spot 金斑病GONG, Global Oscillation Network 太阳全球振荡监测网GroupGPS, global positioning system 全球定位系统Granat 〈石榴〉号天文卫星grand design spiral 宏象旋涡星系gravitational astronomy 引力天文gravitational lensing 引力透镜效应gravitational micro-lensing 微引力透镜效应great attractor 巨引源Great Dark Spot 大暗斑Great White Spot 大白斑grism 棱栅GRO, Gamma-Ray Observatory γ射线天文台guidscope 导星镜GW Virginis star 室女GW 型星habitable planet 可居住行星Hakucho 〈天鹅〉X 射线天文卫星Hale Telescope 海尔望远镜halo dwarf 晕族矮星halo globular cluster 晕族球状星团Hanle effect 汉勒效应hard X-ray source 硬X 射线源Hay spot 哈伊斑HEAO, High-Energy Astronomical 〈HEAO〉高能天文台Observatoryheavy-element star 重元素星heiligenschein 灵光Helene 土卫十二helicity 螺度heliocentric radial velocity 日心视向速度heliomagnetosphere 日球磁层helioseismology 日震学helium abundance 氦丰度helium main-sequence 氦主序helium-strong star 强氦线星helium white dwarf 氦白矮星Helix galaxy ( NGC 2685 ) 螺旋星系Herbig Ae star 赫比格Ae 型星Herbig Be star 赫比格Be 型星Herbig-Haro flow 赫比格-阿罗流Herbig-Haro shock wave 赫比格-阿罗激波hidden magnetic flux 隐磁流high-field pulsar 强磁场脉冲星highly polarized quasar ( HPQ ) 高偏振类星体high-mass X-ray binary 大质量X 射线双星high-metallicity cluster 高金属度星团;高金属度星系团high-resolution spectrograph 高分辨摄谱仪high-resolution spectroscopy 高分辨分光high - z 大红移Hinotori 〈火鸟〉太阳探测器Hipparcos, High Precision Parallax 〈依巴谷〉卫星Collecting SatelliteHipparcos and Tycho Catalogues 〈依巴谷〉和〈第谷〉星表holographic grating 全息光栅Hooker Telescope 胡克望远镜host galaxy 寄主星系hot R Coronae Borealis star 高温北冕R 型星HST, Hubble Space Telescope 哈勃空间望远镜Hubble age 哈勃年龄Hubble distance 哈勃距离Hubble parameter 哈勃参数Hubble velocity 哈勃速度hump cepheid 驼峰造父变星Hyad 毕团星hybrid-chromosphere star 混合色球星hybrid star 混合大气星hydrogen-deficient star 缺氢星hydrogenous atmosphere 氢型大气hypergiant 特超巨星Ida 艾达( 小行星243号)IEH, International Extreme Ultraviolet 〈IEH〉国际极紫外飞行器HitchhikerIERS, International Earth Rotation 国际地球自转服务Serviceimage deconvolution 图象消旋image degradation 星象劣化image dissector 析象管image distoration 星象复原image photon counting system 成象光子计数系统image sharpening 星象增锐image spread 星象扩散度imaging polarimetry 成象偏振测量imaging spectrophotometry 成象分光光度测量immersed echelle 浸渍阶梯光栅impulsive solar flare 脉冲太阳耀斑infralateral arc 外侧晕弧infrared CCD 红外CCDinfrared corona 红外冕infrared helioseismology 红外日震学infrared index 红外infrared observatory 红外天文台infrared spectroscopy 红外分光initial earth 初始地球initial mass distribution 初始质量分布initial planet 初始行星initial star 初始恒星initial sun 初始太阳inner coma 内彗发inner halo cluster 内晕族星团integrability 可积性Integral Sign galaxy ( UGC 3697 ) 积分号星系integrated diode array ( IDA ) 集成二极管阵intensified CCD 增强CCDIntercosmos 〈国际宇宙〉天文卫星interline transfer 行间转移intermediate parent body 中间母体intermediate polar 中介偏振星international atomic time 国际原子时International Celestial Reference 国际天球参考系Frame ( ICRF )intraday variation 快速变化intranetwork element 网内元intrinsic dispersion 内廪弥散度ion spot 离子斑IPCS, Image Photon Counting System 图象光子计数器IRIS, Infrared Imager / Spectrograph 红外成象器/摄谱仪IRPS, Infrared Photometer / Spectro- 红外光度计/分光计meterirregular cluster 不规则星团; 不规则星系团IRTF, NASA Infrared Telescope 〈IRTF〉美国宇航局红外Facility 望远镜IRTS, Infrared Telescope in Space 〈IRTS〉空间红外望远镜ISO, Infrared Space Observatory 〈ISO〉红外空间天文台isochrone method 等龄线法IUE, International Ultraviolet 〈IUE〉国际紫外探测器ExplorerJewel Box ( NGC 4755 ) 宝盒星团Jovian magnetosphere 木星磁层Jovian ring 木星环Jovian ringlet 木星细环Jovian seismology 木震学jovicentric orbit 木心轨道J-type star J 型星Juliet 天卫十一Jupiter-crossing asteroid 越木小行星Kalman filter 卡尔曼滤波器KAO, Kuiper Air-borne Observatory 〈柯伊伯〉机载望远镜Keck ⅠTelescope 凯克Ⅰ望远镜Keck ⅡTelescope 凯克Ⅱ望远镜Kuiper belt 柯伊伯带Kuiper-belt object 柯伊伯带天体Kuiper disk 柯伊伯盘LAMOST, Large Multi-Object Fibre 大型多天体分光望远镜Spectroscopic TelescopeLaplacian plane 拉普拉斯平面late cluster 晚型星系团LBT, Large Binocular Telescope 〈LBT〉大型双筒望远镜lead oxide vidicon 氧化铅光导摄象管Leo Triplet 狮子三重星系LEST, Large Earth-based Solar 〈LEST〉大型地基太阳望远镜Telescopelevel-Ⅰcivilization Ⅰ级文明level-Ⅱcivilization Ⅱ级文明level-Ⅲcivilization Ⅲ级文明Leverrier ring 勒威耶环Liapunov characteristic number 李雅普诺夫特征数( LCN )light crown 轻冕玻璃light echo 回光light-gathering aperture 聚光孔径light pollution 光污染light sensation 光感line image sensor 线成象敏感器line locking 线锁line-ratio method 谱线比法Liner, low ionization nuclear 低电离核区emission-line regionline spread function 线扩散函数LMT, Large Millimeter Telescope 〈LMT〉大型毫米波望远镜local galaxy 局域星系local inertial frame 局域惯性架local inertial system 局域惯性系local object 局域天体local star 局域恒星look-up table ( LUT ) 对照表low-mass X-ray binary 小质量X 射线双星low-metallicity cluster 低金属度星团;低金属度星系团low-resolution spectrograph 低分辨摄谱仪low-resolution spectroscopy 低分辨分光low - z 小红移luminosity mass 光度质量luminosity segregation 光度层化luminous blue variable 高光度蓝变星lunar atmosphere 月球大气lunar chiaroscuro 月相图Lunar Prospector 〈月球勘探者〉Ly-αforest 莱曼-α森林MACHO ( massive compact halo 晕族大质量致密天体object )Magellan 〈麦哲伦〉金星探测器Magellan Telescope 〈麦哲伦〉望远镜magnetic canopy 磁蓬magnetic cataclysmic variable 磁激变变星magnetic curve 磁变曲线magnetic obliquity 磁夹角magnetic period 磁变周期magnetic phase 磁变相位magnitude range 星等范围main asteroid belt 主小行星带main-belt asteroid 主带小行星main resonance 主共振main-sequence band 主序带Mars-crossing asteroid 越火小行星Mars Pathfinder 火星探路者mass loss rate 质量损失率mass segregation 质量层化Mayall Telescope 梅奥尔望远镜Mclntosh classification 麦金托什分类McMullan camera 麦克马伦电子照相机mean motion resonance 平均运动共振membership of cluster of galaxies 星系团成员membership of star cluster 星团成员merge 并合merger 并合星系; 并合恒星merging galaxy 并合星系merging star 并合恒星mesogranulation 中米粒组织mesogranule 中米粒metallicity 金属度metallicity gradient 金属度梯度metal-poor cluster 贫金属星团metal-rich cluster 富金属星团MGS, Mars Global Surveyor 火星环球勘测者micro-arcsec astrometry 微角秒天体测量microchannel electron multiplier 微通道电子倍增管microflare 微耀斑microgravitational lens 微引力透镜microgravitational lensing 微引力透镜效应microturbulent velocity 微湍速度millimeter-wave astronomy 毫米波天文millisecond pulsar 毫秒脉冲星minimum mass 质量下限minimum variance 最小方差mixed-polarity magnetic field 极性混合磁场MMT, Multiple-Mirror Telescope 多镜面望远镜moderate-resolution spectrograph 中分辨摄谱仪moderate-resolution spectroscopy 中分辨分光modified isochrone method 改进等龄线法molecular outflow 外向分子流molecular shock 分子激波monolithic-mirror telescope 单镜面望远镜moom 行星环卫星moon-crossing asteroid 越月小行星morphological astronomy 形态天文morphology segregation 形态层化MSSSO, Mount Stromlo and Siding 斯特朗洛山和赛丁泉天文台Spring Observatorymultichannel astrometric photometer 多通道天测光度计( MAP )multi-object spectroscopy 多天体分光multiple-arc method 复弧法multiple redshift 多重红移multiple system 多重星系multi-wavelength astronomy 多波段天文multi-wavelength astrophysics 多波段天体物理naked-eye variable star 肉眼变星naked T Tauri star 显露金牛T 型星narrow-line radio galaxy ( NLRG ) 窄线射电星系Nasmyth spectrograph 内氏焦点摄谱仪natural reference frame 自然参考架natural refenence system 自然参考系natural seeing 自然视宁度near-contact binary 接近相接双星near-earth asteroid 近地小行星near-earth asteroid belt 近地小行星带near-earth comet 近地彗星NEO, near-earth object 近地天体neon nova 氖新星Nepturian ring 海王星环neutrino astrophysics 中微子天文NNTT, National New Technology Telescope国立新技术望远镜NOAO, National Optical Astronomical 国立光学天文台Observatoriesnocturnal 夜间定时仪nodal precession 交点进动nodal regression 交点退行non-destroy readout ( NDRO ) 无破坏读出nonlinear infall mode 非线性下落模型nonlinear stability 非线性稳定性nonnucleated dwarf elliptical 无核矮椭圆星系nonnucleated dwarf galaxy 无核矮星系nonpotentiality 非势场性nonredundant masking 非过剩遮幅成象nonthermal radio halo 非热射电晕normal tail 正常彗尾North Galactic Cap 北银冠NOT, Nordic Optical Telescope 北欧光学望远镜nova rate 新星频数、新星出现率NTT, New Technology Telescope 新技术望远镜nucleated dwarf elliptical 有核矮椭圆星系nucleated dwarf galaxy 有核矮星系number density profile 数密度轮廓numbered asteroid 编号小行星oblique pulsator 斜脉动星observational cosmology 观测宇宙学observational dispersion 观测弥散度observational material 观测资料observing season 观测季occultation band 掩带O-Ne-Mg white dwarf 氧氖镁白矮星one-parameter method 单参数法on-line data handling 联机数据处理on-line filtering 联机滤波open cluster of galaxies 疏散星系团Ophelia 天卫七optical aperture-synthesis imaging 光波综合孔径成象optical arm 光学臂optical disk 光学盘optical light 可见光optical luminosity function 光学光度函数optically visible object 光学可见天体optical picture 光学图optical spectroscopy 光波分光orbital circularization 轨道圆化orbital eccentricity 轨道偏心率orbital evolution 轨道演化orbital frequency 轨道频率orbital inclination 轨道倾角orbit plane 轨道面order region 有序区organon parallacticon 星位尺Orion association 猎户星协orrery 太阳系仪orthogonal transformation 正交变换oscillation phase 振动相位outer asteroid belt 外小行星带outer-belt asteroid 外带小行星outer halo cluster 外晕族星团outside-eclipse variation 食外变光overshoot 超射OVV quasar, optically violently OVV 类星体variable quasar、optically violent variablequasaroxygen sequence 氧序pan 摇镜头parry arc 彩晕弧partial-eclipse solution 偏食解particle astrophysics 粒子天体物理path of annularity 环食带path of totality 全食带PDS, photo-digitizing system、PDS、数字图象仪、photometric data system 测光数据仪penetrative convection 贯穿对流pentaprism test 五棱镜检验percolation 渗流periapse 近质心点periapse distance 近质心距periapsis distance 近拱距perigalactic distance 近银心距perigalacticon 近银心点perimartian 近火点period gap 周期空隙period-luminosity-colour relation 周光色关系PG 1159 star PG 1159 恒星photoflo 去渍剂photographic spectroscopy 照相分光photometric accuracy 测光精度photometric error 测光误差photometric night 测光夜photometric standard star 测光标准星photospheric abundance 光球丰度photospheric activity 光球活动photospheric line 光球谱线planetary biology 行星生物学planetary geology 行星地质学Pleiad 昴团星plerion 类蟹遗迹plerionic remnant 类蟹遗迹plerionic supernova remnant 类蟹超新星遗迹plumbicon 氧化铅光导摄象管pluton 类冥行星p-mode p 模、压力模pointimg accuracy 指向精度point spread function 点扩散函数polarimetric standard star 偏振标准星polarization standard star 偏振标准星polar-ring galaxy 极环星系Portia 天卫十二post AGB star AGB 后恒星post-core-collapse cluster 核心坍缩后星团post-coronal region 冕外区post-main-sequence star 主序后星post red-supergiant 红超巨后星post starburst galaxy 星暴后星系post T Tauri star 金牛T 后星potassium-argon dating 钾氩计年precataclysmic binary 激变前双星precataclysmic variable 激变前变星preceding limb 西边缘、前导边缘precessing-disk model 进动盘模型precession globe 岁差仪precession period 进动周期preflash 预照光pre-main-sequence spectroscopic 主序前分光双星binarypre-planetary disk 前行星盘pre-white dwarf 白矮前身星primary crater 初级陨击坑primordial binary 原始双星principle of mediocrity 折衷原则progenitor 前身星; 前身天体progenitor star 前身星projected density profile 投影密度轮廓proper-motion membership 自行成员星proper reference frame 固有参考架proper reference system 固有参考系proplyd 原行星盘proto-binary 原双星proto-cluster 原星团proto-cluster of galaxies 原星系团proto-earth 原地球proto-galactic cloud 原星系云proto-galactic object 原星系天体proto-Galaxy 原银河系proto-globular cluster 原球状星团proto-Jupiter 原木星proto-planet 原行星proto-planetary disk 原行星盘proto-planetary system 原行星系proto-shell star 原气壳星proto-sun 原太阳pseudo body-fixed system 准地固坐标系Puck 天卫十五pulsar time scale 脉冲星时标pulsation axis 脉动对称轴pulsation equation 脉动方程pulsation frequency 脉动频率pulsation phase 脉动阶段pulsation pole 脉动极pulse light curve 脉冲光变曲线pyrometry 高温测量QPO, quasi-periodic oscillation 似周期振荡quantum cosmology 量子宇宙学quantum universe 量子宇宙quasar astronomy 类星体天文quiescence 宁静态radial pulsator 径向脉动星radial-velocity orbit 分光解radial-velocity reference star 视向速度参考星radial-velocity standard star 视向速度标准星radial-velocity survey 视向速度巡天radio arm 射电臂radio counterpart 射电对应体radio loud quasar 强射电类星体radio observation 射电观测radio picture 射电图radio pollution 射电污染radio supernova 射电超新星rapid burster 快暴源rapidly oscillating Ap star 快速振荡Ap 星readout 读出readout noise 读出噪声recycled pulsar 再生脉冲星reddened galaxy 红化星系reddened object 红化天体reddened quasar 红化类星体red horizontal branch ( RHB ) 红水平分支red nebulous object ( RNO ) 红色云状体Red Rectangle nebula 红矩形星云redshift survey 红移巡天red straggler 红离散星reflex motion 反映运动regression period 退行周期regular cluster 规则星团; 规则星系团relaxation effect 弛豫效应reset 清零resonance overlap theory 共振重叠理论return-beam tube 回束摄象管richness parameter 富度参数Ring nebula ( M 57、NGC 6720 ) 环状星云ring-plane crossing 环面穿越Rosalind 天卫十三ROSA T, Roentgensatellit 〈ROSAT〉天文卫星Rosette Molecular Cloud ( RMC ) 玫瑰分子云Rossby number 罗斯贝数rotating variable 自转变星rotational evolution 自转演化rotational inclination 自转轴倾角rotational modulation 自转调制rotational period 自转周期rotational phase 自转相位rotational pole 自转极rotational velocity 自转速度rotation frequency 自转频率rotation phase 自转相位rotation rate 自转速率rubber second 负闰秒rubidium-strontium dating 铷锶计年Sagittarius dwarf 人马矮星系Sagittarius dwarf galaxy 人马矮星系Sagittarius galaxy 人马星系Saha equation 沙哈方程Sakigake 〈先驱〉空间探测器Saturn-crossing asteroid 越土小行星Saturnian ringlet 土星细环Saturnshine 土星反照scroll 卷滚Sculptor group 玉夫星系群Sculptor Supercluster 玉夫超星系团Sculptor void 玉夫巨洞secondary crater 次级陨击坑secondary resonance 次共振secular evolution 长期演化secular resonance 长期共振seeing management 视宁度控管segregation 层化selenogony 月球起源学separatrice 分界sequential estimation 序贯估计sequential processing 序贯处理serendipitous X-ray source 偶遇X 射线源serendipitous γ-ray source 偶遇γ射线源Serrurier truss 赛路里桁架shell galaxy 壳星系shepherd satellite 牧羊犬卫星shock temperature 激波温度silicon target vidicon 硅靶光导摄象管single-arc method 单弧法SIRTF, Space Infrared Telescope 空间红外望远镜Facilityslitless spectroscopy 无缝分光slit spectroscopy 有缝分光slow pulsar 慢转脉冲星SMM, Solar Maximum MIssion 太阳极大使者SMT, Submillimeter Telescope 亚毫米波望远镜SOFIA, Stratospheric Observatory for 〈索菲雅〉机载红外望远镜Infrared Astronomysoft γ-ray burst repeater 软γ暴复现源soft γrepeater ( SGR ) 软γ射线复现源SOHO, Solar and Heliospheric 〈索贺〉太阳和太阳风层探测器Observatorysolar circle 太阳圈solar oscillation 太阳振荡solar pulsation 太阳脉动solar-radiation pressure 太阳辐射压solar-terrestrial environment 日地环境solitary 孤子性soliton star 孤子星South Galactic Cap 南银冠South Galactic Pole 南银极space density profile 空间密度轮廓space geodesy 空间大地测量space geodynamics 空间地球动力学Spacelab 空间实验室spatial mass segregation 空间质量分层speckle masking 斑点掩模speckle photometry 斑点测光speckle spectroscopy 斑点分光spectral comparator 比长仪spectrophotometric distance 分光光度距离spectrophotometric standard 分光光度标准星spectroscopic period 分光周期specular density 定向密度spherical dwarf 椭球矮星系spin evolution 自旋演化spin period 自旋周期spin phase 自旋相位spiral 旋涡星系spiral arm tracer 示臂天体Spoerer minimum 斯珀勒极小spotted star 富黑子恒星SST, Spectroscopic Survey Telescope 分光巡天望远镜standard radial-velocity star 视向速度标准星standard rotational-velocity star 自转速度标准星standard velocity star 视向速度标准星starburst 星暴starburst galaxy 星暴星系starburst nucleus 星暴star complex 恒星复合体star-formation activity 产星活动star-formation burst 产星暴star-formation efficiency ( SFE ) 产星效率star-formation rate 产星率star-formation region 产星区star-forming region 产星区starpatch 星斑static property 静态特性statistical orbit-determination 统计定轨理论theorysteep-spectrum radio quasar 陡谱射电类星体stellar environment 恒星环境stellar halo 恒星晕stellar jet 恒星喷流stellar speedometer 恒星视向速度仪stellar seismology 星震学Stokes polarimetry 斯托克斯偏振测量strange attractor 奇异吸引体strange star 奇异星sub-arcsec radio astronomy 亚角秒射电天文学Subaru Telescope 昴星望远镜subcluster 次团subclustering 次成团subdwarf B star B 型亚矮星subdwarf O star O 型亚矮星subgiant branch 亚巨星支submilliarcsecond optical astrometry 亚毫角秒光波天体测量submillimeter astronomy 亚毫米波天文submillimeter observatory 亚毫米波天文台submillimeter photometry 亚毫米波测光submillimeter space astronomy 亚毫米波空间天文submillimeter telescope 亚毫米波望远镜submillisecond optical pulsar 亚毫秒光学脉冲星submillisecond pulsar 亚毫秒脉冲星submillisecond radio pulsar 亚毫秒射电脉冲星substellar object 亚恒星天体subsynchronism 亚同步subsynchronous rotation 亚同步自转Sunflower galaxy ( M 63 ) 葵花星系sungrazer comet 掠日彗星supercluster 超星团; 超星系团supergalactic streamer 超星系流状结构supergiant molecular cloud ( SGMC ) 超巨分子云superhump 长驼峰superhumper 长驼峰星supermaximum 长极大supernova rate 超新星频数、超新星出现率supernova shock 超新星激波superoutburst 长爆发superwind galaxy 超级风星系supporting system 支承系统surface activity 表面活动surface-brightness profile 面亮度轮廓surface-channel CCD 表面型CCDSU Ursae Majoris star 大熊SU 型星SWAS, Submillimeter Wave Astronomy 亚毫米波天文卫星Satallitesymbiotic binary 共生双星symbiotic Mira 共生刍藁symbiotic nova 共生新星synthetic-aperture radar 综合孔径雷达systemic velocity 质心速度TAMS, terminal-age main sequence 终龄主序Taurus molecular cloud ( TMC ) 金牛分子云TDT, terrestrial dynamical time 地球力学时television guider 电视导星器television-type detector 电视型探测器Tenma 〈天马〉X 射线天文卫星terrestrial reference system 地球参考系tetrad 四元基thermal background 热背景辐射thermal background radiation 热背景辐射thermal pulse 热脉冲thermonuclear runaway 热核暴涨thick-disk population 厚盘族thinned CCD 薄型CCDthird light 第三光源time-signal station 时号台timing age 计时年龄tomograph 三维结构图toner 调色剂torquetum 赤基黄道仪TRACE, Transition Region and Coronal 〈TRACE〉太阳过渡区和日冕Explorer 探测器tracker 跟踪器transfer efficiency 转移效率transition region line 过渡区谱线trans-Nepturnian object 海外天体Trapezium cluster 猎户四边形星团triad 三元基tri-dimensional spectroscopy 三维分光triquetum 三角仪tuning-fork diagram 音叉图。

巨大质量恒星列表-推荐下载

巨大质量恒星列表-推荐下载

∙∙∙∙∙∙∙∙表中所列出的恒星质量都是从理论上推测的,依据的是恒星很难测定的温度和绝对星等。

所有列出的质量都是不确定的:因为都已经将目前的理论和测量技术发挥到了极限,而无论是理论或观测,只要有一个错误,或是两者都错,结果就会不正确。

例如,仙王座VV变星,依据这颗恒星特有的产物审查,质量就可能是太阳的25至40倍,或是100倍。

大质量恒星是很罕见的,表中列出的恒星距离都在数千光年以上,它们孤单的存在着,使距离很难测量。

除了很远之外,这些质量极端巨大的恒星似乎都被喷发出来的气体云气包围着;周围的气体会遮蔽恒星的光度,使原本就很难测量的光度和温度更难测量,并且也使测量他们内部化学成分变成更加复杂的问题。

另一方面,云气的遮蔽也阻碍了观测,而难以确认是一颗大质量恒星,还是多星系统。

下表中必然有一定数量的恒星也许是轨道极近的联星,每一颗恒星的质量必然也不小,但不一定是巨大的质量;这些系统仍然可以二选一的是一颗或多颗大质量恒星,或有许多质量不大的伴星。

因此表中许多恒星的质量经常是目前被研究的主题,质量经常被重测,而且经常被校正。

表中列出的质量中,最可靠的是NGC 3603-A1和WR20a+b,它们是从轨道测量中得到的。

NGC 3603-A1和WR20a+b两者都是联星系统(两颗恒星沿着轨道互绕),运用开普勒行星运动定律,经由研究它们的轨道运动可以测量出两颗恒星各自的质量。

NGC 3603-A1和WR20a+b还都是食双星,还可以测量径向速度和光度曲线来测量质量。

一定数量的恒星也许已经抛出了比目前估计还要多的质量,但因为这些巨额质量的流失是经由次级的假超新星爆炸事件产生的,因此可能已经抛出了10倍于太阳的质量。

也会有一定数量的超新星和极超新星残骸,它们的质量可以依据在爆炸前观测到的前超新星或前极超新星的质量,和超新星或极超新星爆炸时的能量和事件的类型来估计。

这种恒星(如果还未爆炸)将很容易出现在这张表中(但是它们也可能不在表中)。

innumberable英译

innumberable英译

innumberable英译"Innumerable" in English refers to a large or countless number of something. Here is a step-by-step response to the topic of "innumerable," consisting of a 1500-2000 word article:Title: Exploring the Innumerable Wonders of the UniverseIntroduction (150 words):The universe is a vast expanse filled with innumerable wonders that have captivated human imagination for centuries. From the billions of stars in the night sky to the countless galaxies swirling around us, the scale and mysteries of the cosmos seem unfathomable. In this article, we will embark on a journey to explore some of these innumerable wonders and understand their significance in unraveling the secrets of the universe.1. The Immensity of Space (200 words):The first awe-inspiring aspect of the universe is its sheer immensity. It encompasses an innumerable number of stars, planets, and galaxies, stretching billions of light-years in every direction. Looking up at the night sky, it becomes difficult to comprehend the countless trillions of stars that exist. Further, recent discoverieshave revealed the existence of over two trillion galaxies, each containing billions of stars. The vastness of space is both humbling and exhilarating, challenging us to contemplate our place in the cosmos.2. Galaxies: Cosmic Island Chains (300 words):Within the universe, galaxies are the building blocks of cosmic structure. These vast systems consist of stars, planets, gas, dust, and dark matter, all held together by gravity. The most common type of galaxy is the spiral galaxy, characterized by its rotating arms and central bulge. Examples include our own Milky Way and the Andromeda Galaxy. However, other types, such as elliptical and irregular galaxies, are also innumerable in number.3. Black Holes: Cosmic Monsters (350 words):Black holes are one of the most mysterious and captivating objects in the universe. These gravitational powerhouses are formed from the remnants of massive stars that have exhausted their nuclear fuel. Their gravity is so strong that nothing, not even light, can escape their gravitational pull. Black holes are thought to be innumerable in number, ranging in sizes from stellar black holes to supermassive ones that exist at the centers of galaxies. Their studyprovides insights into the nature of spacetime and the behavior of matter under extreme conditions.4. Exoplanets: Homes Beyond Our Solar System (350 words):The discovery of exoplanets, or planets orbiting stars outside our solar system, has revolutionized our understanding of the universe. The exoplanet population is believed to be innumerable, with an estimated hundreds of billions in just our Milky Way galaxy alone. These distant worlds come in all shapes and sizes, some resembling Earth and potentially harboring conditions suitable for life as we know it. Understanding exoplanets is crucial in our quest to find extraterrestrial life and expand human exploration beyond our celestial neighborhood.5. Dark Matter: The Invisible Enigma (400 words):Dark matter is perhaps the greatest unsolved mystery in modern astrophysics. It is called "dark" because it neither emits nor absorbs light, making it invisible. Nevertheless, its gravitational effects have been observed throughout the universe, shaping the formation of galaxies and large-scale structures. Despite its innumerable presence, dark matter's nature and composition remain largely unknown, baffling scientists. Unlocking the secrets of dark matterwill provide a deeper understanding of the cosmos and the invisible forces that govern it.Conclusion (200 words):The universe is an ever-expanding tapestry of innumerable wonders, challenging our comprehension and pushing the boundaries of human knowledge. From the vastness of space to the mesmerizing beauty of galaxies, the existence of black holes, the discovery of exoplanets, and the enigma of dark matter, each aspect unravels a distinct piece of the cosmic puzzle. As we continue to explore and study these wonders, we inch closer to unraveling the mysteries of the universe and understanding our place within it. The only limit to our knowledge of the universe is our ability to imagine and inquire, urging us to continue the journey of discovery and exploration of the innumerable marvels that lie beyond our planet Earth.。

宇宙大家庭作文英语

宇宙大家庭作文英语

宇宙大家庭作文英语Title: The Cosmic Family: A Unified Perspective。

In the vast expanse of the cosmos, amidst the twinkling stars and swirling galaxies, lies a profound truth: we are all part of one cosmic family. This realization transcends borders, cultures, and even species, binding us together in a web of interconnectedness that spans the universe.At the heart of this cosmic family is the notion of unity. Just as the cells in our bodies work together to sustain life, so too do the countless celestial bodies in the universe collaborate to maintain cosmic harmony. From the smallest asteroid to the mightiest star, each entity plays a vital role in the intricate tapestry of existence.One of the most striking examples of this interconnectedness is found in the phenomenon of stellar nurseries. These vast clouds of gas and dust serve as the cosmic cradles where new stars are born. Through the forcesof gravity and nuclear fusion, these stellar infants emerge, their light illuminating the darkness of space. In this process, the elements forged within the cores of earlier generations of stars are dispersed, seeding the cosmos with the building blocks of life itself.But the bonds of the cosmic family extend far beyondthe realm of stars. Every planet, moon, and comet in our solar system is interconnected, each influencing the others through gravitational tugs and orbital dances. Even here on Earth, we are intimately connected to the wider cosmos. The air we breathe, the water we drink, and the nutrients that sustain us all originate from the depths of space, forgedin the fiery furnaces of distant stars.Moreover, the concept of the cosmic family extends beyond the confines of our own solar system. Throughout the universe, galaxies dance in cosmic ballets, their movements governed by the same laws of physics that govern our own celestial neighborhood. Whether they are spiraling galaxies like our own Milky Way or elliptical behemoths withmillions of stars, each galaxy is a testament to the unityof the cosmos.Yet, perhaps the most profound realization of all is that we, as conscious beings, are also part of this cosmic family. From the earliest civilizations gazing up at the night sky to the modern-day astronomers peering into the depths of space, humanity has always sought to understand its place in the universe. And though we may be but a speck of dust in the vastness of the cosmos, our capacity for wonder and awe connects us to something greater than ourselves.In the face of this cosmic perspective, the divisions that separate us seem trivial and insignificant. Borders drawn on maps, conflicts fueled by greed or ideology, all pale in comparison to the vastness of space and time. In the words of astronomer Carl Sagan, "The Earth is a very small stage in a vast cosmic arena."As we journey through the cosmos, let us remember that we are all members of the same cosmic family. Let us strive to cherish and protect the precious planet that we callhome, for it is but a tiny oasis in the vast desert of space. And let us embrace the unity that binds us together, for in the end, we are all star stuff, born of the same cosmic crucible.In conclusion, the concept of the cosmic family serves as a powerful reminder of our interconnectedness with the wider universe. From the smallest atom to the largest galaxy, we are all part of a grand cosmic tapestry, woven together by the forces of nature and the bonds of consciousness. In embracing this unity, we can transcend our differences and work together to build a brighterfuture for all beings in the cosmic family.。

第七章星系系统的介绍

第七章星系系统的介绍

17
棒旋星系 (Barred spiral galaxies)
Type SBa
Type SBb
Type SBc
18
银河系主要成分 (1) 银盘 (disk) (旋臂spiral arm)、 (2) 核球 (bulge) 、 (3) 银晕 (halo) 、(4) 银 冕 (corona)
19
星际物质(星际介质,Interstellar Medium) 星系内分布在恒星与恒星之间(~ 6-10 ly)的物质。 包括星际气体、星际尘埃、宇宙线与星际磁场。 星际物质的质量约为银河系恒星质量的10%。 主要分布在距离银道面约1000 ly的范围内。
33
所有这些激烈的物理过程主要是集中在星系的 核心,或者是由核心引发的。 通常也称这类星系为活动星系核(Active Galactic Nuclei,简称AGN) 只要不是专门讨论活动星系本身的结构,两者 之间不再严格加以区分
34
1918年(美)柯 蒂斯(Curtis)发 现星“云”M87的 光学喷流
28
星系质量测量结果
正常旋涡星系质量~ 109 -1012 M⊙ 椭圆星系质量~ 105 -1013 M⊙ 不规则星系质量~ 106 -1010 M⊙ 星系团质量~ 1013 -1014 M⊙ 星系和星系团的引力质量大约是可见质量的10倍。
29
星系的大小变化很大: 不规则星系,只有银河系的1%-25%; 巨椭圆星系,银河系大小的5倍; 矮椭圆星系,银河系大小的1%。
10
哈勃的裁决
1924年,哈勃 (Edwin Hubble) 分解出 “仙女座大星云” (M31) 中的造父变星, 证实它确实是恒星系统。 由造父变星周光关系哈勃估计M31的距 离285 kpc(实际距离778 kpc) > 最远 的球状星团的距离 (100 kpc) 。

河外星系的认识和分类

河外星系的认识和分类

2020/3/17
xkong@
35
Disk Component: stars of all ages, many gas clouds
Spheroidal Component: bulge & halo, old stars, few gas clouds
Blue-white color indicates ongoing star formation
Hubble Deep Field
2020/3/17
xkong@
14
Hubble Ultra Deep Field
2020/3/17
xkong@
15
Hubble Ultra Deep Field
2020/3/17
xkong@
16
Hubble Ultra Deep Field
第六章 河外星系
研究历史
星系分类 星系测量 特殊星系 星系团 星系演化
2020/3/17
xkong@
1
研究历史
公元前5世纪,希腊哲学家德谟克利特:银 河是由无数恒星所构成,太暗而不能区分
公元前3世纪,希腊哲学家亚里士多德 : 银河是纯粹的大气现象,是地球发出的水 蒸汽
11
2020/3/17
xkong@
12
第六章 河外星系
/~xkong/introast
研究历史 星系分类 星系测量 特殊星系 星系团 星系演化
2020/3/17
xkong@
13
What are the three major types of galaxies?
-22 < MV < -18
2020/3/17
xkong@
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :0711.4372v 1 [a s t r o -p h ] 27 N o v 2007Astronomy &Astrophysics manuscript no.(will be inserted by hand later)The Elliptical Galaxy NGC 5044:Stellar Population and IonizedGasM.G.Rickes 1,M.G.Pastoriza 1and Ch.Bonatto 1Universidade Federal do Rio Grande do Sul (UFRGS),Instituto de F ´ısica,Departamento de Astronomia e-mail:maurogr@if.ufrgs.br;mgp@if.ufrgs.br and charles@if.ufrgs.br Received –;accepted –Abstract.In this work we investigate the stellar population,metallicity distribution and ionized gas in the elliptical galaxy NGC 5044,using long-slit spectroscopy and a stellar population synthesis method.We found differences in the slope of metal-line profiles along the galaxy which suggests an enhancement of αelements,particularly towards the central region.The stellar population synthesis showed that the component with [Z/Z ⊙]∼0.0dominates the λ5870˚A flux in the central region of NGC 5044,contributing with ∼42%of the total flux,while in the external regions the contribution decreases to ∼8.0%.The component with [Z/Z ⊙]∼−0.4contributes with ∼32%in the central region,and ∼55%in the external regions.The component with [Z/Z ⊙]∼−1.1contributes with ∼26%in the central region,and ∼37%in the external regions.The three components have ∼1010years.The presence of a non-thermal ionization source,such as a low-luminosity AGN and/or shock ionization,is implied by the large values of the ratio [N ii ]Send offprint requests to :Ch.Bonatto -charles@if.ufrgs.brbeing larger in the southern part of the galaxy (Macchetto et al.1996;Goudfrooij 1991).The dust distribution has an irregular morphology,concentrated in the inner 10′′,where two central dark clouds can be seen (Ferrari et al.1999).NGC 5044has also been detected by IRAS at 60and 100µm and also at 6,12,and 18µm by ISO (Ferrari et al.2002).Its IRAS luminosity is 14×108L ⊙.The galaxy has a nuclear radio source and extended X-ray emission (Fabbiano et al.1992)and shows a very complex gas and stellar kinematics.The gas velocity profile is very irreg-ular,with many humps and dips;its radial velocity is systematically blueshifted with respect to the stellar sys-temic velocity by ∼60−100km s −1.Furthermore,the stellar velocity curves observed on a fairly large area near the galaxy center counter-rotate with respect to the outer regions.Very slow or no stellar rotation is detected along the galaxy’s minor axis.The velocity dispersion of the gas peaks at ∼200−230km s −1in the center,decreasing rapidly outwards (Caon et al.2000).The peculiar kine-matics and gas morphology described above may be sig-natures either of interactions of NGC 5044with the envi-ronment or a post-merger event.The goal of this paper is to investigate the stellar popu-lation,metallicity distribution and the presence of ionized gas in NGC 5044,which are fundamental parameters to understand the formation and evolution of this galaxy.2M.G.Rickes et al.:Stellar population and ionized gas in NGC5044Parameter NGC5044Table1.Data obtained at the NASA/IPAC Extragalactic Database(NED)which is operated by the Jet Propulsion Laboratory,California Institute of Technology,under contract with the National Aeronautics and Space Administration.This paper is organized as follows:Sect.2presents the observations and data reduction;Sect.3deals with the equivalent width analysis of the absorption lines and their radial dependence;Sect.4describes the stellar population synthesis,whose results are discussed in Sect.5;Sect.6 presents an analysis of the emission lines and the nature of the ionization source.Finally,in Sect.7a general dis-cussion of the results and conclusions will be drawn.2.Observations and spectra extractionNGC5044is a bright southern elliptical galaxy for which the general parameters are given in Table1.The star formation history,metallicity distribution and emission-gas properties of NGC5044are studied using long-slit spectroscopy.The observations were ob-tained with the ESO3.6m telescope at La Silla,Chile, equipped with EFOSC1.The spectra cover the range λλ5100−6800˚A with a3.6˚A/pixel resolution.The spa-tial scale of the observational configuration is0.6′′pixel−1; the slit length was3.1′while its width wasfixed at1.5′′corresponding approximately to the average seeing;two 2-dimensional spectra were obtained with the same ex-position time(approximately45minutes)and position angle P A=10◦.The slit positioning on the galaxy is shown in Fig.1(right panel),in which the dashes mark the spatial location of each extracted spectrum.Afinal one-dimensional spectrum was obtained combining(by weighted average)the two extractions for each position marked in Fig.1.Details on the extracted spectra are given in Table2. The spectra have been extracted within different areas in order to increase the signal to noise ratio(S/N),since more external regions have lowerflux.Each spectrum was cor-rected for radial velocity(V r=2704km s−1)and Galactic extinction(A V=0.07).Thefinal average spectra,nor-malized atλ5870˚A are shown in Fig.2,separately for the north and south directions on the galaxy.Table2.Spatial extractionsSpectra R/R ef f(kpc)(kpc)20.000.06bN,bS111.060.13dN,dS322.120.25fN,fS533.190.30hN,hS85M.G.Rickes et al.:Stellar population and ionized gas in NGC 504435000540058006200λ (A)0.511.522.533.5R e l a t i v e F λSouth5300570061006500λ (A)NorthCenter3.05"6.10"9.15"12.20"15.25"18.30"24.40"3.05"6.10" ]9.15"12.20"15.25"18.30"24.40"FeI5782Mg2FeI5270FeI5709FeI5406FeI5335Fig.2.Spatial extractions for the South (left panel)and North (right panel)directions normalized at λ5870˚A .The distance to the galaxy center is indicated on each spec-trum.Except for the bottom ones,the spectra have been shifted by an arbitrary constant,for clarity purposes portant absorption lines used in stellar population studies.However,in this spectral region the galaxy presents sev-eral neutral iron lines,e.g.Fe i λ5270,Fe i λ5335,Fe i λ5406,Fe i λ5709and Fe i λ5782,as well as the Mg 2band.These absorption features present strong dependence on the age and metallicity of the underlying stellar population (Bica &Alloin 1986).Previous to the measurements,all spectra have been normalized at λ5870˚A .The continuum tracing and spec-tral windows of the absorption lines used in the present paper are those defined by the Lick system (Faber et al.1985),which are reproduced in Table 3.Each equivalent width (EW)and the Mg 2index have been measured three times taking into account the uncertainties in the contin-uum level definition.This procedure allowed us to esti-mate the average value and corresponding standard devi-ation for each measurement.Although Na i λ5895is the strongest absorption feature present in our spectra,it was not used in the analysis be-cause it may be contaminated by dust concentrated in the central region of the galaxy (Ferrari et al.1999).Besides the EWs and Mg 2index,we measured as well contin-uum points at 5300˚A ,5313˚A ,5406˚A ,5800˚A ,5870˚A andTable 3.Lick indices definitionsIndex Line/Band∆λ(˚A )AC (˚A )F e λ5270Fe i5247.375—5287.3755234.875—5249.8755287.375—5319.875F e λ5406Fe i5390.250—5417.7505379.000—5390.2505417.750—5427.750F e λ5782Fe i5778.375—5798.3755767.125—5777.1255799.625—5813.375Table Notes.Column 3:Spectral window;Column 4:AdjacentContinuum.6630˚A ,as defined in Bica &Alloin (1986).These contin-uum points,normalized at λ5870˚A ,are listed in Table 5.In order to compare our results for NGC 5044with other elliptical galaxies which present similar radial gra-dients in the Mg 2band and in Fe i 5270and Fe i 5335lines (e.g.Davies et al.,1987;Carollo et al.1993),we first cor-rected these features for the line broadening due to the internal stellar velocity dispersion.The spectrum of the G giant star HR 5333was used to estimate the velocity dispersion correction.HR 5333was assumed to have zero intrinsic velocity and its spectrum was broadened with a series of gaussian filters with a ve-locity dispersion σvarying from 0−300km s −1,in steps of 10km s −1.For each absorption feature considered we calculate an empirical correction index C(σ),so that C (σ)Mg 2=Mg 2(0)W λ(σ).The velocity dispersion inNGC 5044varies from ∼260in the center to ∼230km s −1in the external regions (Caon et al.2000).We have calcu-lated the correction index C (σ)for each marked position in Fig.1using Caon et al.’s (2000)σvalues.Our correc-tion factors vary from 1.23to 1.27for the Mg 2index and from 1.20to 1.23for the Fe I lines,in the velocity range 230–260km s −1.Our correction factors for the Mg 2in-dex are somewhat larger than those given by Davies et al.(1993),while those for Fe i λ5270are similar.As can be seen in Fig.3,except for Fe i λ5406(panel(d)),the other absorption features present strong variations with distance to the center.In particular,the Mg 2band (panel (a))clearly presents a positive gradient,i.e.increas-ing towards the center of the galaxy,whereas the other Fe i lines present evidence of negative gradients.3.1.Metallicity gradientThe radial distributions of the Mg 2index and those of the EWs of Fe i 5270,Fe i 5335,Fe i 5406,Fe i 5709and Fe i 5782,corrected for velocity dispersion,are shown in Fig.??.The corrected Mg 2index (panel(a))presents an enhancement of the gradient which decreases from 0.42mag in the cen-ter to ∼0.32mag in the external regions of the galaxy.On the other hand,the corrected EW of Fe i 5270(panel(b))4M.G.Rickes et al.:Stellar population and ionized gas in NGC5044Table4.Mg2index and EWs of the Mg2and Fe i lines.R(′′)0.370±0.00813.33±0.382.67±0.111.17±0.250.96±0.321.35±0.030.97±0.06 6.10S0.339±0.01411.72±0.702.29±0.641.21±0.300.77±0.241.35±0.010.93±0.07 12.20S0.317±0.01411.69±0.702.87±0.131.31±0.300.45±0.241.45±0.150.74±0.23 18.30S0.320±0.00611.23±0.363.58±0.623.12±0.501.22±0.012.24±0.261.15±0.490.365±0.01713.29±0.381.99±0.112.00±0.250.82±0.161.08±0.130.93±0.13 6.10N0.335±0.00211.47±0.701.92±0.121.55±0.300.63±0.020.89±0.120.99±0.12 12.20N0.330±0.00511.54±0.172.21±0.131.16±0.300.66±0.200.98±0.150.64±0.15 18.30N0.320±0.01011.29±0.362.92±0.621.59±0.501.15±0.172.05±0.270.52±0.27Cλ/C5870λ5300λ5313λ5546λ5800λ5822λ66300.95±0.031.02±0.070.99±0.021.02±0.051.02±0.050.98±0.123.05S1.03±0.051.03±0.020.98±0.051.01±0.021.02±0.040.95±0.069.15S1.01±0.051.01±0.010.97±0.050.99±0.020.99±0.010.94±0.0615.25S1.01±0.041.02±0.020.98±0.041.02±0.031.01±0.030.96±0.0724.40S3.05N0.99±0.041.00±0.020.95±0.061.00±0.011.01±0.030.94±0.059.15N1.00±0.041.00±0.030.97±0.010.99±0.031.01±0.020.95±0.0615.25N1.00±0.061.00±0.020.97±0.021.00±0.011.00±0.020.94±0.0524.40NTable Notes.N and S correspond to north and south respectively.increases from2.30˚A in the center to∼3.57˚A in the ex-ing Poveda’s approximation,M tot=0.9σ2R eternal regions.This result is in reasonable agreement withCarollo et al.(1993)who found no correlation of the Mg2index with either Fe i5270and Fe i5335.In Fig.4we plotthe velocity dispersion corrected values of the Mg2indexvs.the EWs of Fe i5270and Fe i5335,in which we see nocorrelation between these features.The different slope ofthe Mg2gradient relative to those of Fe i5270and Fe i5335can be accounted for by an enhancement ofα-elements ingeneral,Mg in particular(Faber et al.1992and Wortheyet al.1994).In NGC5044this effect is more intense in thecenter than in the outer regions.The dependence of metallicity gradients on fundamen-tal parameters was investigated by Carollo et al.(1993)who found that the Mg2gradient shows a bimodal trend.For objects with masses lower than1011M⊙,the Mg2gradient slope correlates with galaxy mass,whereas forobjects more massive than1011M⊙,no such correlationappears.In order to compare our results with the data of Carolloet al.(1993),first we estimate the mass of NGC5044us-M.G.Rickes et al.:Stellar population and ionized gas in NGC 50445R (arcsec)123E W (A )1234E W (A )0.30.350.40.45m a g n i t u d eR (arcsec)0.511.5E W (A )123E W (A )0.511.5E W (A )Fig.3.Spatial variation of absorption features in NGC 5044.which are based on models of galactic globular clus-ters with 18Gyrs of age.From Figure 1of Worthey et al.(1992)we found that for our corrected Mg 2index,[Fe/H]=0.5and 0.17in the central and externalregions,respectively.In the same way,using Fe i 5270we found [Fe/H]=−0.5,0.2;and for Fe i 5335,we found [Fe/H]=−1.0,−0.5in the central and external regions,respec-tively.Therefore,we found an [Fe/H]abundance above solar using as metallicity indicator the Mg 2index,while [Fe/H]is lower than solar for Fe i 5270and Fe i 5335lines;in addition Mg is above solar in NGC 5044.4.Stellar population synthesisFor a good understanding of some properties of NGC 5044,such as the presence of central gas emission,a precise determination of the star formation process is necessary.Therefore,the age of the constituent stars in NGC 5044is an important parameter to be determined.The integrated spectrum of a given galaxy contains sig-nificant information on its stellar content and chemical en-richment (Bica &Alloin,1985).In principle,this informa-tion together with a stellar population synthesis method,can be used to determine the star formation history (Bica &Alloin,1986).In this work we employ the stellar pop-ulation synthesis method developed by Bica (1988)whichMg2 (mag.)0.00.51.01.52.02.53.03.5E W (A )1.01.52.02.53.03.54.04.5E W (A )Fig.4.Mg 2index vs.Fe i 5270and Fe i 5335line strength.is based on integrated spectra of star clusters and H ii regions,characterized by different ages and metallicities.In the present case,due to the small number of observa-tional constraints (EWs and continuum points),we use three old components with different metallicities in order to minimize the degeneracy between age and metallicity of the different population components.These metallici-ties components (templates)are:G 1→[Z/Z ⊙]∼0.0,G 2→[Z/Z ⊙]∼−0.4and G 3→[Z/Z ⊙]∼−1.1,the three with age 1010years.Alternatively,we have also performed a stellar popu-lation synthesis with a set of three components with sim-ilar (solar)metallicities and different ages:G1(1010yr),Y3(108yr)and RHII (106yr).We found that the spectra presented in Fig.2are better fitted by a range in metal-licities than a range in ages.The base elements that we use are taken from the star cluster population templates described in Bica &Alloin (1986),and are presented in Fig.5.The corresponding EWs and continuum points for the base elements have been measured similarly as those for NGC 5044and are given in Tables 6and 7,respec-tively.We remind that,for the stellar population analysis we use the EW of Mg 2,which is given in column (3)of Table 4.Basically the algorithm uses the selected EWs and pivot points for the continuum measured in a given spec-trum and compares them to those of a model computed from a base of simple stellar population elements.The6M.G.Rickes et al.:Stellar population and ionized gas in NGC 50445100535056005850610063506600λ (A)0.650.750.850.951.05R e l a t i v e F λG1G2G3Fig.5.Population templates (age components)used in the synthesis,normalized at λ5870˚A .algorithm is not a minimization procedure,instead it gen-erates all combinations of the base elements according to a given flux contribution step.The code also successively dereddens galaxy input continuum points and compares them against a given base model.Every combination is subsequently tested against a set of windows of maximum allowed difference between the observed and the resulting features obtained.Finally,the solutions satisfying all fea-ture windows are averaged out,and this average is adopted as the final synthesis solution.Initially we used a 10%step for testing flux contribu-tion at λ5870˚A generating about ∼5200combinations for each assumed E (B −V )i .Reddenings were tested in the range 0.00≤E(B-V)i ≤0.50with a step of 0.01.Thus,in total,∼260000combinations are tested for each ex-traction,and the number of possible solutions amounts to less than 1%.After probing as above the space of combi-nations,we calculate the solution with finer steps of 5%,2%and finally 1%.We tested the Galactic (Seaton 1979),LMC (Fitzpatrick 1986)and SMC (Pr´e vot et al.1984)reddening laws for the synthesis of each extraction,and concluded that the Galactic law applies in all cases.5.Synthesis resultsThe results of our synthesis are given in Table 8,where we present the percentage contribution of each base elementTable 6.Equivalent widths for the baseMg 2band Fe i 5270Fe i 5335Fe i 5406Fe i 5709Fe i 5782∼0.0∼−0.4∼−1.1Table 7.Continuum points for the baseG 10.970.980.991.011.000.94G 3to the flux at λ5870˚A.The values of E(B −V)i are also given in the table.The G1component ([Z/Z ⊙]∼0.0)dominates the λ5870˚A flux in the central extractions of NGC 5044.In the nucleus,the G1component contributes with ∼42%of the total flux,while in the external regions the contri-bution decreases to ∼8.0%.The G2component ([Z/Z ⊙]∼−0.4)contributes with ∼32%in the central region,and ∼55%in the external re-gions (24.40′′).The G3component ([Z/Z ⊙]∼−1.1)con-tributes with ∼26%in the central region,and ∼37%in the external regions,as can be seen in Table 8.Flux frac-tions and the internal reddening as a function of distance to the center are shown in Fig.7.Notice that the spa-tial distribution of the internal reddening E(B −V)i along the north and south directions (Table 8and panel (d)in Fig.7)does not characterize a gradient.The spectra representing the stellar population of NGC 5044have been constructed using the star cluster templates (Sect.4)combined according to the propor-tions given by the synthesis.We illustrate this procedure in Fig.6in which we show the synthesis for the central extraction (top panel).The resulting pure emission spec-trum,which is obtained after the subtraction of the pop-ulation template,is shown in the bottom panel.The goodness of the above stellar population synthesis method can be assessed by the residuals both in the EWs and continuum points.As can be seen in Table 9,most of the absorption features are reasonably well reproduced by the synthesis method.The residuals are almost equally distributed between positive and negative ones,probably indicating that NGC 5044has the same metallicity than that of the templates.The continuum fit is quite good as well,as can be seen by the residuals in Table 10.5.1.Integrated Colour IndexIn order to put NGC 5044in the context of other elliptical galaxies rich in interestellar medium,we build the colour-colour diagram (J-K)vs.(V-K),using the J,K and V photometric data for a sample of elliptical galaxies from Rembold et al.(2002)and NED.The results are presentedM.G.Rickes et al.:Stellar population and ionized gas in NGC 504475100560061006600λ (A)R e l a t i v e F λ1(obs)Σ = (b) + (c) + (d)(a) (b) (c)Obs. − Synth.Central extraction [(E(B−V) = 0.15]Fig.6.Stellar population synthesis of the central extrac-tion.Top panel:(obs)-observed spectrum corrected for reddening;(a)-G1population template;(b)-G2popu-lation template;(c)-G3population template and ()-synthesized spectrum.Bottom panel:pure emission spec-trum.Spectrum (obs)has been shifted by a constant.Table 8.Synthesis results in terms of flux fractionsFlux fraction at λ5870˚A G1G2G3E (B −V )i0.0023.43±2.0442.29±2.4034.29±0.880.006.10S 23.79±1.7632.46±2.2743.75±1.20.0112.20S 11.13±2.7944.95±3.4043.92±1.450.0218.30S 9.57±2.7558.16±3.1432.27±1.010.0119.09±3.1745.17±3.2535.74±0.740.016.10N 22.69±2.5337.93±3.8939.38±2.130.0112.20N 14.33±1.4984.00±2.581.67±1.490.0018.30N7.83±1.8849.64±2.6942.53±1.200.00Mg 2band Fe i 5270Fe i 5335Fe i 5406Fe i 5709Fe i 57820.48−0.21−0.34−0.73−0.020.023.05S0.850.690.19−0.290.410.389.15S 0.570.47−0.16−0.490.370.0415.25S 0.801.161.19−0.441.670.6624.40S 3.05N 0.67−0.200.30−0.370.150.089.15N 0.79−0.40−0.12−0.41−0.220.0115.25N0.18−0.010.070.030.080.6224.40NTable Notes.Residuals correspond to the observed −synthe-sized values.index,NGC 5044also presents mid-IR (6.7to 15µm )dust emission(Ferrari et al.2002).6.Ionized gasEmission gas has been detected in a large number of elliptical galaxies.However,the origin of this gas and the ionization source are not yet conclusively established.NGC 5044presents conspicuous emission lines throughout8M.G.Rickes et al.:Stellar population and ionized gas in NGC5044 Table10.Continuum residualsR(′′)0.000.040.05−0.020.010.000.01 6.10S0.060.07−0.020.000.00−0.01 12.20S0.080.080.02−0.010.00−0.02 18.30S0.060.070.020.020.010.000.040.04−0.030.000.010.01 6.10N0.050.05−0.010.01−0.010.00 12.20N0.060.060.000.020.000.01 18.30N0.040.04−0.010.010.000.00lines FλFλ(10−16erg s−1cm−2)(˚A)Hα6.80±0.231.0013.62 [NII]λ65847.33±0.251.07±0.0521.27[SII]λ67315.83±0.110.85±0.0323.64Hα4.29±0.110.63±0.0311.82 [NII]λ65842.44±0.060.35±0.0111.21[SII]λ67311.96±0.060.28±0.0111.10Hα3.27±0.140.48±0.0311.78 [NII]λ65841.97±0.080.28±0.0112.24[SII]λ67311.42±0.070.21±0.0110.73Hα2.91±0.110.43±0.0215.08 [NII]λ65841.45±0.050.21±0.0112.19[SII]λ67311.24±0.070.18±0.0112.12Hα2.49±0.090.37±0.0218.32 [NII]λ65840.78±0.030.11±0.0012.59[SII]λ67310.57±0.040.08±0.0011.12Hα3.39±0.200.49±0.0332.46 [NII]λ65840.80±0.050.11±0.0110.30[SII]λ67311.15±0.050.17±0.0112.84Hα3.43±0.130.50±0.0212.55 [NII]λ65841.82±0.070.26±0.0111.88[SII]λ67311.15±0.170.17±0.0210.26Hα4.06±0.230.60±0.0417.73 [NII]λ65841.62±0.090.24±0.0113.16[SII]λ67311.09±0.140.16±0.0212.98[NII]λ65487.84±0.621.15±0.1011.853.05N[SII]λ67172.32±0.450.34±0.0610.73[NII]λ65484.56±0.230.67±0.0412.116.10N[SII]λ67170.96±0.070.14±0.0110.61[NII]λ65483.51±0.190.51±0.0312.809.15N[SII]λ67170.72±0.060.10±0.0111.35[NII]λ65482.65±0.210.39±0.0315.8512.20N[SII]λ67170.50±0.020.07±0.0011.00[NII]λ65482.41±0.120.35±0.0210.3115.25N[SII]λ67170.40±0.090.06±0.0110.89[NII]λ65481.93±0.130.28±0.0211.8818.30N[SII]λ67170.54±0.140.08±0.028.76[NII]λ65484.82±0.270.71±0.0510.7124.40N[SII]λ67171.60±0.130.23±0.0211.87 Table Notes.Column4:Flux normalized to the central region F Hα;Column5:FWHM according to a gaussianfit.region,and the FWHM for the above emission lines.The uncertainty attributed to each measuredflux is based on a gaussian least-squaresfit.Assuming that the emission lines are formed only by recombination,the number of ionizing photons(Q(H))can be calculated asQ(H)=L HααHα(H0,T),(1)where the Hαluminosity is L Hα=4πD2F Hα,αB(H0,T) is the recombination coefficient summed over all energy levels,andαHα(H0,T)is the recombination coefficient at Hα.With a Hubble constant of H0=75km s−1Mpc−1,M.G.Rickes et al.:Stellar population and ionized gas in NGC50449 Table12.Luminosity and ionizing photonsR(′′)L HαQ(H)(×1037erg s−1)(×1050photons s−1)3.05N7.33±0.091.81±0.036.10N5.79±0.041.42±0.019.15N3.22±0.030.78±0.0112.20N1.93±0.010.46±0.0015.25N5.54±0.041.33±0.0118.30N2.04±0.010.51±0.0024.40N6.16±0.041.52±0.01Hα(panel (a)),[S ii]λλ6717,31M⊙Number N Lyα(×1048photons s−1)Table Notes.Column3:Number of stars of each spectral type.In the central region,NGC5044presents[N ii]Hα>1.Notice that the ratio[N ii]Hα>2.However,ac-cording to the ionization models for old stars in elliptical galaxies(Binette et al.1994)the ratio N[ii]Hα.A high ratio N[ii]Hα∼2can be accounted for by post-AGB stars.7.ConclusionsThe stellar population,metallicity distribution and ion-ized gas in NGC5044have been investigated in this pa-per by means of long-slit spectroscopy and stellar popula-tion synthesis.With respect to the spatial distributionof10M.G.Rickes et al.:Stellar population and ionized gas in NGC 5044Diameter (kpc)−50050015002500350045005500F l u xFig.10.Spatial profiles of H αand [NII].Notice that [NII]/H α>1along the galaxy.metal-strength indices (corrected for velocity dispersion),the Mg 2profile increases towards the central region,con-trary to what is observed for the profile of Fe i 5270.This difference in slopes may be accounted for by an enhance-ment of α-elements in general,Mg in particular.The Mg 2gradient slope compared with the mass of NGC 5044in-dicates a monolitic collapse.However,the measure [Fe/H]gradient slope is not characteristic of one monolitic col-lapse.The stellar population synthesis gives that most metal-lic component ([Z/Z ⊙]∼0.0)dominates the λ5870˚A flux in the central region of NGC 5044.In the nucleus,this component contributes with ∼42%of the total flux,while in the external regions the contribution decreases to ∼8.0%.The component with [Z/Z ⊙]∼−0.4contributes with ∼32%in the central region,and ∼55%in the exter-nal regions.The metal-poor component ([Z/Z ⊙]∼−1.1)contributes with ∼26%in the central region,and ∼37%in the external regions.The spatial distribution of the in-ternal reddening E(B −V)i along the north and south di-rections does not characterize a gradient.The large values of the ratio [N ii ]−30−20−100102030R (arcsec)0123E W (A )1234E W (A )0.30.350.40.45m a g n i t u d e−30−20−100102030R (arcsec)0.511.5E W (A )123E W (A )0.511.5E W (A)。

相关文档
最新文档