二次函数图像教案5篇

合集下载

二次函数的图像教案

二次函数的图像教案

二次函数的图像教案教案标题:二次函数的图像教案教案目标:1. 了解二次函数的基本概念和性质。

2. 掌握二次函数的图像特征和变化规律。

3. 能够绘制和分析二次函数的图像。

4. 运用二次函数的图像解决实际问题。

教案步骤:引入(5分钟):1. 引导学生回顾一次函数的图像特征和变化规律。

2. 提问学生是否了解二次函数,以及二次函数与一次函数的区别。

概念讲解(15分钟):1. 解释二次函数的定义:f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

2. 介绍二次函数的顶点、对称轴和开口方向的概念。

3. 讲解二次函数的图像特征:顶点坐标、对称轴方程、开口方向等。

图像绘制(20分钟):1. 指导学生通过变化a、b、c的值,绘制不同二次函数的图像。

2. 强调学生观察图像的变化规律,如a的正负值对开口方向的影响,a的绝对值对图像的瘦胖程度的影响等。

图像分析(15分钟):1. 引导学生分析二次函数图像的对称性,即对称轴和顶点的关系。

2. 指导学生根据图像特征,判断二次函数的各项系数的正负情况。

实际问题应用(20分钟):1. 提供一些实际问题,如抛物线运动、最值问题等,要求学生运用二次函数的图像解决问题。

2. 引导学生将问题转化为二次函数的形式,并绘制相应的图像进行分析。

总结与拓展(10分钟):1. 总结二次函数的图像特征和变化规律。

2. 提出一些拓展问题,如图像的平移、伸缩等,鼓励学生进一步探究。

教案评估:1. 课堂练习:要求学生绘制指定二次函数的图像,并分析其特征。

2. 解决实际问题:要求学生运用二次函数的图像解决给定的实际问题。

教案延伸:1. 引导学生研究二次函数的标准形式和顶点形式,并比较它们在图像绘制和分析中的优劣。

2. 引导学生探究二次函数与其他函数的关系,如线性函数、指数函数等。

教案资源:1. 教材或教辅资料中有关二次函数图像的知识点和例题。

2. 计算器或电脑绘图软件,用于绘制二次函数的图像。

y=x^2的图像和性质教案

y=x^2的图像和性质教案

y=x 的图像和性质教案篇一:26.2.3y=a(x-h)2的图象和性质(教案)26.2.2二次函数y=a(x-h)2的图象与性质【教学目标】1.知道二次函数y?a(x?h)2与y?ax2的图象之间的关系;2.能说出二次函数y?a(x?h)2的开口方向、对称轴和顶点坐标,理解其增减性;【教学重点】掌握二次函数y?a(x?h)2的图象特点及其性质。

【教学难点】灵活运用y?a(x?h)2类型函数的性质解决问题。

【多媒体准备】课件【教学过程】篇二:二次函数的图像和性质教案教学过程一、课堂导入同学首先在演算本上画出一次函数y=x+1的图像,利用列表、描点、连线的方式,然后使用同样的方法画出y=2x2的图像,并根据图像谈论他的性质.二、复习预习二次函数是中考的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.中考命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查.三、知识讲解考点1形如:y=ax2+bx+c(a、b、c是常数,a≠0)那么y叫做x的二次函数,它常用的三种基本形式。

一般式:y=ax2+bx+c(a≠0)顶点式:y=a(x-h)2+k(a≠0)交点式:y=a(x-x1)(x-x2)(a≠0,x1、x2是图象与x轴交点的横坐标)考点2二次函数的图象与性质二次函数y=ax2+bx+c(a≠0)的图象是以(?b4ac?b2b,)为顶点,以直线y=?为对称轴的抛物线。

2a2a4abb时,y随x的增大而减小;在对称轴的右侧,即当x>?2a2a在a >0时,抛物线开口向上,在对称轴的左侧,即x<?时,y随着x的增大而增大。

在a<0时,抛物线开口向下,在对称轴的左侧,即x<?>?b时,y随着x的增大而减小。

2ab时,y随着x的增大而增大。

在对称轴的右侧,即当x2a篇三:《二次函数y=ax 的图象和性质》参考教案22.1.2二次函数y?ax2的图象和性质教学目标1.知识与技能能够用描点法作出函数y=ax2的图象,并根据图象认识和理解其性质2.过程与方法经历探索二次函数y=ax2的图象和性质的过程,体会数形结合的思想和方法.3.情感、态度与价值观在初步建立二次函数表达式与图象之间的联系中,体会数形结合与转化,体会数学内在的美感.教学重点难点1.重点函数y=ax2的图象的画法,了解抛物线的含义,理解函数y=ax2的图象与性质.2.难点用描点的方法准确地画出函数y=ax2的图象,掌握其性质特征.教与学互动设计(一)创设情境导入新课导语一回忆一次函数和反比例函数的定义,图象特征,思考二次函数的图象又有何特征呢?导语二展示(用课件或幻灯片)具有抛物线的实例让大家欣赏,议一议这与二次函数有何联系呢?导语三用红色的乒乓球作投篮动作,观察乒乓球的运动路线,思考运动路线有何规律?怎样用数学规律来描述呢?(二)合作交流解读探究1.函数y=ax2的图象画法及相关名称【探究l】画y=x2的图象学生动手实践、尝试画y=x2的图象教师分析,画图像的一般步骤:列表→描点→连线教师在学生完成图象后,在黑板上示范性画出y=x2的图象,如图22-1-1.【共同探究】次函数图像有何特征?特征如下:①形状是开口向上的抛物线②图象关于y轴对称③由最低点,没有最高点.结合图象介绍下列名称:①顶点;②对称轴;③开口及开口方向.图22-1-1图22-1-22.函数y=ax2的图象特征及其性质【探究2】在同一坐标系中,画出y=12x,y=2x2的图象.2学生自己完成此题.教师做个别指导,在学生(大部分)完成后,教师可示范性地画出两函数的图象.如图22-1-2比较图中三个抛物线的异同.相同点:①顶点相同,其坐标都为(0,0).②对称轴相同,都为y 轴③开口方向相同,它们的开口方向都向上.不同点:开口大小不同.【练一练】画函数y=-x2,y=-施过程)比较函数y=-x2,y=-12x,y=-2x2的图象.找出它们的异同点.212x,y=-2x2的图象.(分析:仿照探究1的实2相同点:①形状都是抛物线.②顶点相同,其坐标都为(0,0).③对称轴相同,都为y轴④开口方向相同,它们的开口方向都向下.不同点:开口大小不同.【归纳】y=ax2的图象特征:(1)二次函数y=ax2的图象是一条抛物线(2)抛物线y=ax2的对称轴是y轴.顶点时原点.a>0时,抛物线开口向上,顶点时抛物形的最低点.a(3)|a|越大,抛物线y==ax2的开口越小(三)应用迁移巩固提高类型之一如何画好二次函数的图象【点拨】画二次函数图象一般是按以下三个步骤进行.①列表、取值;②描点;③连线但初学者对三个步骤,易犯下列错误,注意避免. 【易错点1】表格中,取值过多或过少.画函数y=ax2图象,取对应值时,一般5组或7组有代表性的对应值即可....【易错点2】连线不是光滑曲线,有的用折线,有的画的过渡不自然,不象抛物线.例1下图是甲、乙、丙三人画得二次函数y=2x2的图象.请你帮助修改.解:图甲中有两个错误的地方.①连线不能用直尺作线段,图象中相邻两点时用光滑曲线连接.②抛物线开口应向上无限延伸,不能到两端点为止.修改见图甲中虚线.图乙中有一个错误,其中有一个点(1,-2)的位置画错.(或表格中对应值算错)修改见图乙中虚线.图丙种错误是x的值都是非负数,没有负数,导致出现其图象只是抛物线的一半,没有对称性.修改见图丙中虚线.【点评】此三类错误是初学者应注意的三个方面,以后的练习中,应提醒大家注意.类型之二函数y=ax2的图象特征的应用例2(1)填空:函数y?()2的图象是,顶点坐标是,对称轴是,开口方向是. 1(2)函数y=x2,y=x2,y=-2x2图象如图所示,请指出三条抛物线的名称.2解:(1)y?()2可化为y=2x2.它的图象是抛物线,顶点坐标为(0,0),对称轴为y轴,开口方向向上.【点评】解析式需化为一般式,再根据图象特征解答,避免发生错误.(2)根据抛物线y=ax2中,a的值的作用来判断,最上面的抛物线为y=x2,中间的为y=12x,x轴下方的为y=-2x22【点评】抛物线y=ax2中a>0时,开口向上.a(四)总结反思拓展升华【总结】1.本节所学知识:①二次函数y=ax2的图象的画法.②二次函数y=ax2的图象特征及其性质.2.本节所用的方法:实践比较法【反思】函数y=ax2与y=-ax2的图象之间有何关系?(它们关于x 轴对称)【拓展】已知函数y=ax2经过(1,2).(1)求a的值.(2)当x(2)根据函数y=2x2知x【点评】①通常用待定系数法函数y=ax2中只有一个待定系数a,故知道其图象上一点坐标或x,y的一组对应值就可求出解析式.②结合图象知:x(五)当堂检测反馈1.抛物线y=4x2中的开口方向是向上,顶点坐标是(0,0),对称轴是y轴.抛物线y=-对称轴是y轴.2.二次函数y=ax2与y=2x2,开口大小,形状一样,开口方向相反,则a=2.【分析】a与-2互为相反数13.在同一坐标系中:①y=x2,②y=-x2,③y=2x2这三个函数图象开口最大212x的开口方向是向下,顶点坐标是(0,0),4的是①y?12x2,开口向下的是②y=-x21解:∵||2∵函数y=-x2中,二次项系数为-114.二次函数y=2x2,y=-2x2,y=x22点(0,0);②对称轴相同,都是y轴.5.已知抛物线的顶点在原点,对称轴是y轴,且经过(-3,2).求此抛物线的解析式,并指出x>0时,y随x的变化情况.解:设此抛物线的解析式为y=ax2,∵此抛物线过点(-3,2),∴2=a·(-3)2,即a=22,.∴y=x2,∴当x>0时,y随x的增大而增大.99篇四:《二次函数y=ax 的图象和性质》教学设计《二次函数y=ax2的图象与性质》教学设计一、教学分析(一)教学内容分析本节课为沪科版九年级数学第22章第二节的内容,学习二次函数y=ax2的图象与性质.这是学习一次函数的延续,是对函数内容的再认识,也是学生理解二次函数定义,建立二次函数模型的后续学习.它既是前面函数学习的一次升华,又是后续的y=ax2+bx+c的性质和二次函数应用学习顺利进行的保证,还是学生升入高一级学校学习函数的基础,具有承上启下的作用,因此该内容在教材中的地位十分重要. (二)教学对象分析学生在八年级上学期已经学习了函数及一次函数等内容,对函数已经有了初步的认识.学生通过从特殊到一般的数学研究方法,先学习y?ax2这一最简单的二次函数图象与性质,再进一步研究y?ax2?bx?c(a?0)的图象与性质,可以进一步领悟函数的概念并积累研究函数性质的方法.由于学生在认知方式、动手能力、语言表达和思维方式等方面存在差异,教师要及时了解并尊重学生的个体差异.教学中要多鼓励学生,对学有困难的学生要及时给予帮助和指导,让他们敢于发表自己的见解,丰富教学活动的经验,发展数学能力. (三)教学环境分析充分利用优质的教学资源,尽量采用现代教育技术手段,用计算机展示函数的图象,形象显示图形的变化与联系,提高教学效果与质量.二、教学目标(一)知识与技能1.能够利用描点法作出二次函数y=x2的图象,并能根据图象总结和理解二次函数y=x2的性质;12.能作出y=-x2,y??x2和y=2x2的图象,并比较它们与y=x2的图象的异同,初步体2会二次函数关系式与图象之间的联系;3.能根据二次函数y=x2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标).(二)过程与方法1.经历探索二次函数y=x2的图象和性质的过程,获得用图象研究函数性质的经验;2.由二次函数y=x2的图象及性质类比地学习二次函数y=-x2的图象及性质,并能比较它们的异同点,培养类比学习能力,渗透数形结合的数学思想方法,发展学生的求同求异思维.(三)情感态度与价值观1.通过探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解;2.在利用图象讨论二次函数的性质时,尽可能多地合作交流,以便能够从多个角度看问题,进而比较准确地理解二次函数的性质.三、教学重点难点(一)教学重点作出二次函数y?ax2的图象,并根据图象观察分析出二次函数y?ax2的性质.(二)教学难点经历探索二次函数y=x2的图象的作法与性质的过程,获得利用图象研究函数性质的经验.并把这种经验运用于研究二次函数y?ax2的图象与性质方面,实现“探索―经验―运用”的思维过程.四、教学过程篇五:22.1.2二次函数y=ax2图像与性质教案21竭诚为您提供优质文档/双击可除23。

二次函数的图像和性质教案市公开课一等奖省优质课获奖课件

二次函数的图像和性质教案市公开课一等奖省优质课获奖课件

关系?
-6 -5 -4 -3 -2 -1 o 1 2 3 4 5 x
第3页
5.2 二次函数图像和性质(4)
函数y=x2+2x+3 图像也是抛物线吗?
y =x2+2x+3 =x2+2x+1+2 = (x+1)2+2.
由活动一可知:函数y= (x+1)2+2图像能 够看成y=x2平移得到,即y =x2+2x+3是函数y =x2先向左平移一个单位,再向上平移2个单位 得到.
5.2 二次函数图像和性质(4)
函数y=x2+2图像与y=x2图像有什么关系?函 数y= (x+3)2图像和y=x2图像有什么关系?
y=x2+2能够 看成是y=x2向上 平移两个单位长 度.
y= (x+3)2能够 看成是y=x2向左 平移三个单位长 度.
那么y= (x+3)2+2图像与y=x2图像有什么关系?
第2页
5.2 二次函数图像和性质(4)
(1)应用结论.
y = x2 向左移 3个单位
y= (x+3)2
向上移 2个单位
y= (x+3)2 +2
(2)观察图像:
y 10
y=x2
函数y= (x+3)2 +2
y= (x+3)2+289
7
有哪些性质?
6
变式:
5 4
二次函数y= (x-1)2 - 6
3
2
图像和y=x2图像位置有什么 y= (x+3)2 1
4a
第7页
5.2 二次函数图像和性质(4)
这一节课我们一起学习了哪些知识和方法? 你还有什么疑问吗? 你认为还有继续探索问题吗?
第8页
第9页
第6页
5.2 二次函数图像和性, 质(4)
二次函数y=ax2+bx+c 图像是一条抛物线,

二次函数教案(全)

二次函数教案(全)

二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。

2. 学会如何列写二次函数的一般形式。

3. 掌握二次函数的图像特点。

教学重点:1. 二次函数的定义和一般形式。

2. 二次函数的图像特点。

教学难点:1. 理解二次函数的图像特点。

2. 掌握如何求解二次函数的零点。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。

2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。

2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。

3. 举例说明如何列写二次函数的一般形式。

4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。

三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。

2. 讲解练习题的答案,解析解题思路。

四、课堂小结(5分钟)2. 强调二次函数的图像特点。

教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。

在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。

在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。

二次函数教案(二)教学目标:1. 学会如何求解二次方程。

2. 理解二次函数的零点与二次方程的关系。

3. 掌握二次函数的图像与x轴的交点。

教学重点:1. 求解二次方程的方法。

2. 二次函数的零点与图像的关系。

教学难点:1. 理解二次方程的解法。

2. 掌握二次函数的图像与x轴的交点。

1. 教学课件或黑板。

2. 练习题。

教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。

2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。

2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。

二次函数数学活动教案(热门16篇)

二次函数数学活动教案(热门16篇)

二次函数数学活动教案(热门16篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!二次函数数学活动教案(热门16篇)教学工作计划能够确保教学活动有条不紊地进行,提高教师的教学效率。

新苏科版九年级数学下册《5章二次函数5.2二次函数的图像和性质y=ax^2+k、y=a(x+m)^2的图像》教案_17

新苏科版九年级数学下册《5章二次函数5.2二次函数的图像和性质y=ax^2+k、y=a(x+m)^2的图像》教案_17

3. 函数 y = x 2+ 1 是由 y= x2- 2 向 _____平移 _____单位得到的。
4. 函数
1 y=3
x
2- 4
是由
1 y=3
x
2+
5

_____平移
_____ 单位得到的。
5.
函数
2
y=ax -a

y= a (a
0) 在同一直角坐标系中的图像可能是
x
()
6. 抛物线 y ax2 c 的顶点坐标为( 0, -2 ),形状及开口方向与 y 3 x2 1 相同,求 a 与 c 的值。
。将
抛物线 y=-5x 2+1 向下平移 5 个单位 , 所得的抛物线的函数式是

观察上面的函数图像,你能总结函数 填写下列表格:
y=ax2+c 的性质 吗?
y=ax2+c (a ≠ 0)
a>0
a<0
开口方向
顶点坐标
对称轴
增减性
最值
2
2
抛物线 y=ax +c (a ≠ 0) 的图像可由 y=ax 的图像通过 ________得到 .
2
可由 y=4x 的图像向
平移 个单位得到。
(2) 、将函数 y=-3x 2+4 的图像向
平移
个单位可得 y=-3x 2的图像;将 y=2x 2-7 的图
像向
平移
个单位得到可由 y=2x 2 的图像。 将 y=x 2-7 的图像向
平移 个单
位可得到 y=x 2+2 的图像。
(3)将抛物线 y=4x2 向上平移 3 个单位, 所得的抛物线的函数式是
检测 反馈

二次函数及其图像教案

二次函数及其图像教案

二次函数及其图像教案教学目标:1. 理解二次函数的概念和一般形式;2. 学会求解二次方程;3. 能够绘制二次函数的图像并理解其性质;4. 能够应用二次函数解决实际问题。

教学内容:第一章:二次函数的概念1.1 引入二次函数的概念1.2 二次函数的一般形式1.3 二次函数的图像特点第二章:求解二次方程2.1 引入二次方程的概念2.2 求解二次方程的公式2.3 求解二次方程的步骤第三章:绘制二次函数的图像3.1 绘制二次函数图像的方法3.2 二次函数图像的性质3.3 特殊情况下二次函数图像的特点第四章:二次函数的顶点4.1 顶点的概念4.2 顶点的求解方法4.3 顶点对二次函数图像的影响第五章:二次函数的单调性5.1 单调性的概念5.2 判断二次函数单调性的方法5.3 单调性对二次函数图像的影响教学方法:1. 采用讲授法,讲解二次函数的概念、一般形式、图像特点等内容;2. 采用案例分析法,通过具体例子讲解求解二次方程的步骤和方法;3. 采用实践操作法,引导学生动手绘制二次函数的图像,观察其性质;4. 采用小组讨论法,让学生分组讨论二次函数的顶点和单调性,并进行交流分享。

教学评价:1. 课堂问答:通过提问的方式检查学生对二次函数概念的理解程度;2. 练习题:布置相关的练习题,检查学生对二次方程求解方法的掌握情况;3. 图像绘制:让学生独立绘制二次函数的图像,并分析其性质,检查学生对图像特点的理解程度;4. 小组讨论:评价学生在小组讨论中的表现,检查学生对二次函数顶点和单调性的理解程度。

教学资源:1. 教学PPT:展示二次函数的概念、一般形式、图像特点等内容;2. 练习题:提供相关的练习题供学生练习;3. 图像绘制工具:如几何画板等,用于学生绘制二次函数的图像;4. 小组讨论材料:提供相关材料供学生在小组讨论中参考。

教学步骤:第一章:1.1 引入二次函数的概念:通过举例说明二次函数的定义;1.2 二次函数的一般形式:介绍一般形式的表达式;1.3 二次函数的图像特点:分析二次函数图像的开口方向、顶点位置等特点。

二次函数y=ax2的图像和性质教案

二次函数y=ax2的图像和性质教案

二次函数y=ax2的图像和性质教案篇一:22.1.2二次函数y=ax2图像与性质教案2123篇二:《二次函数y=ax 的图象和性质》参考教案22.1.2二次函数y?ax2的图象和性质教学目标1.知识与技能能够用描点法作出函数y=ax2的图象,并根据图象认识和理解其性质2.过程与方法经历探索二次函数y=ax2的图象和性质的过程,体会数形结合的思想和方法.3.情感、态度与价值观在初步建立二次函数表达式与图象之间的联系中,体会数形结合与转化,体会数学内在的美感.教学重点难点1.重点函数y=ax2的图象的画法,了解抛物线的含义,理解函数y=ax2的图象与性质.2.难点用描点的方法准确地画出函数y=ax2的图象,掌握其性质特征.教与学互动设计(一)创设情境导入新课导语一回忆一次函数和反比例函数的定义,图象特征,思考二次函数的图象又有何特征呢?导语二展示(用课件或幻灯片)具有抛物线的实例让大家欣赏,议一议这与二次函数有何联系呢?导语三用红色的乒乓球作投篮动作,观察乒乓球的运动路线,思考运动路线有何规律?怎样用数学规律来描述呢?(二)合作交流解读探究1.函数y=ax2的图象画法及相关名称【探究l】画y=x2的图象学生动手实践、尝试画y=x2的图象教师分析,画图像的一般步骤:列表→描点→连线教师在学生完成图象后,在黑板上示范性画出y=x2的图象,如图22-1-1.【共同探究】次函数图像有何特征?特征如下:①形状是开口向上的抛物线②图象关于y轴对称③由最低点,没有最高点.结合图象介绍下列名称:①顶点;②对称轴;③开口及开口方向.图22-1-1图22-1-22.函数y=ax2的图象特征及其性质【探究2】在同一坐标系中,画出y=12x,y=2x2的图象.2学生自己完成此题.教师做个别指导,在学生(大部分)完成后,教师可示范性地画出两函数的图象.如图22-1-2比较图中三个抛物线的异同.相同点:①顶点相同,其坐标都为(0,0).②对称轴相同,都为y 轴③开口方向相同,它们的开口方向都向上.不同点:开口大小不同.【练一练】画函数y=-x2,y=-施过程)比较函数y=-x2,y=-12x,y=-2x2的图象.找出它们的异同点.212x,y=-2x2的图象.(分析:仿照探究1的实2相同点:①形状都是抛物线.②顶点相同,其坐标都为(0,0).③对称轴相同,都为y轴④开口方向相同,它们的开口方向都向下.不同点:开口大小不同.【归纳】y=ax2的图象特征:(1)二次函数y=ax2的图象是一条抛物线(2)抛物线y=ax2的对称轴是y轴.顶点时原点.a>0时,抛物线开口向上,顶点时抛物形的最低点.a(3)|a|越大,抛物线y==ax2的开口越小(三)应用迁移巩固提高类型之一如何画好二次函数的图象【点拨】画二次函数图象一般是按以下三个步骤进行.①列表、取值;②描点;③连线但初学者对三个步骤,易犯下列错误,注意避免. 【易错点1】表格中,取值过多或过少.画函数y=ax2图象,取对应值时,一般5组或7组有代表性的对应值即可....【易错点2】连线不是光滑曲线,有的用折线,有的画的过渡不自然,不象抛物线.例1下图是甲、乙、丙三人画得二次函数y=2x2的图象.请你帮助修改.解:图甲中有两个错误的地方.①连线不能用直尺作线段,图象中相邻两点时用光滑曲线连接.②抛物线开口应向上无限延伸,不能到两端点为止.修改见图甲中虚线.图乙中有一个错误,其中有一个点(1,-2)的位置画错.(或表格中对应值算错)修改见图乙中虚线.图丙种错误是x的值都是非负数,没有负数,导致出现其图象只是抛物线的一半,没有对称性.修改见图丙中虚线.【点评】此三类错误是初学者应注意的三个方面,以后的练习中,应提醒大家注意.类型之二函数y=ax2的图象特征的应用例2(1)填空:函数y?()2的图象是,顶点坐标是,对称轴是,开口方向是. 1(2)函数y=x2,y=x2,y=-2x2图象如图所示,请指出三条抛物线的名称.2解:(1)y?()2可化为y=2x2.它的图象是抛物线,顶点坐标为(0,0),对称轴为y轴,开口方向向上.【点评】解析式需化为一般式,再根据图象特征解答,避免发生错误.(2)根据抛物线y=ax2中,a的值的作用来判断,最上面的抛物线为y=x2,中间的为y=12x,x轴下方的为y=-2x22【点评】抛物线y=ax2中a>0时,开口向上.a(四)总结反思拓展升华【总结】1.本节所学知识:①二次函数y=ax2的图象的画法.②二次函数y=ax2的图象特征及其性质.2.本节所用的方法:实践比较法【反思】函数y=ax2与y=-ax2的图象之间有何关系?(它们关于x 轴对称)【拓展】已知函数y=ax2经过(1,2).(1)求a的值.(2)当x(2)根据函数y=2x2知x【点评】①通常用待定系数法函数y=ax2中只有一个待定系数a,故知道其图象上一点坐标或x,y的一组对应值就可求出解析式.②结合图象知:x(五)当堂检测反馈1.抛物线y=4x2中的开口方向是向上,顶点坐标是(0,0),对称轴是y轴.抛物线y=-对称轴是y轴.2.二次函数y=ax2与y=2x2,开口大小,形状一样,开口方向相反,则a=2.【分析】a与-2互为相反数13.在同一坐标系中:①y=x2,②y=-x2,③y=2x2这三个函数图象开口最大212x的开口方向是向下,顶点坐标是(0,0),4的是①y?12x2,开口向下的是②y=-x21解:∵||2∵函数y=-x2中,二次项系数为-114.二次函数y=2x2,y=-2x2,y=x22点(0,0);②对称轴相同,都是y轴.5.已知抛物线的顶点在原点,对称轴是y轴,且经过(-3,2).求此抛物线的解析式,并指出x>0时,y随x的变化情况.解:设此抛物线的解析式为y=ax2,∵此抛物线过点(-3,2),∴2=a·(-3)2,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数图像教案5篇
二次函数图像教案篇一
二次函数的图像
略阳天津高级中学杨娜
课型:新授课课时安排: 1课时教学目标:
1、理解二次函数中a,b,c,h,k对其图像的影响。

2、领悟二次函数图像平移的讨论方法,并能迁移到其他函数图像的讨论,而提高识图和用图力量。

3、培育学生数形结合的思想意识。

重点难点: 1.教学重点:二次函数图像平移变换规律及应用
2.教学难点:理解平移对解析式的影响及如何利用平移变换规律求解析式,并能把平移变换规律迁移到一般函数.教学过程:
一、导入新课
在初中我们已经学过二次函数,知道其图像为抛物线,并了解其图像的开口方向,对称轴,顶点等特征,本节课将进一步讨论一般的二次函数的性质。

二、讲授新课
提出问题1 二次函数y ax(a0)的图像与二次函数y x的图像之间有什么关系? 1.我们先画出y x 的图像,并在此根底上画出y
2x的图像。

学生阅读课本41页并在练习本上作图(教师用几何画板演示)2.学生阅读课本41页,并动手实践。

3、概括:二次函数y ax(a0)的图像可以由y x的图像个点的纵坐标变为原来的a倍得到。

4.用几何画板演示a对开口大小得影响。

5.抽象概括
二次函数y=ax2(a≠0)的图像可由的y=x2图像各点纵坐标变为原来的a倍得到。

a打算了图像的开口方向:a>o开口向上,a0 交点在y轴上半轴,c0时,抛物线的开口向上,顶点是抛物线上的最低点。

当a0时,抛物线的开口向上,顶点是抛物线上的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点。

相关文档
最新文档