二次函数的图像和性质第二课时教案
《二次函数的图象(第二课时)》参考教案

26.1.3 二次函数2()y a x h k=-+的图象第一课时教学目标1.知识与技能会作函数y=ax2和y=ax2+c的图象,并能比较它们的异同;理解a,c对二次函数图象的影响.能正确说出两函数图象的开口方向、对称轴和顶点坐标.了解抛物线y=ax2上下平移规律.2.过程与方法经历探索二次函数y=ax2+c的图象的画法和性质的过程,增强对二次函数图象的理解,体会数形结合的思想与方法..3.情感、态度与价值观进一步获得将表格、表达式、图象三者联系起来的经验,体会知识的转化、图象移动的理会,感受到数学数形之间转换的魅力.教学重点难点1.重点作出函数y=ax2和y=ax2+c的图象,比较它们的异同,了解它们的性质.2.难点函数y=ax2+c的图象与性质的理解,掌握抛物线的上下平移规律.教与学互动设计(一)创设情境导入新课导语一回忆二次函数y=ax2的图象与性质.从而导人探求函数y=ax2+c的图象导语二一个长方形的长为x(cm),宽为12x(cm),则这个长方形的面积s(cm2)与它的长x (cm)的关系如何?你能作出它的函数图象吗?这个图象与y=ax2的图象有哪些区别?【答案】y=12x2(x>0)它的图象只是抛物线的一部分,而y=x2的图象是一条抛物线.导语三比较函数y=x2与y=x2+l中的系数有什么异同?猜想它们的图象有何关系?从而引人新课.(二)合作交流解读探究1.二次函数y=ax2+c的图象与性质【做一做】,在同一坐标系中,画出函数y=x2-1和函数y=x2+1的图象.教师在学生做完以后,可提供如下解答过程. 解:先列表x…-3 -2 -1 0 1 2 3 … y=x 2+1 … 10 5 2 1 2 5 10 … y=x 2+1 …83-138…然后描点画图,如图26-1-5【想一想】抛物线y=x 2+1,y=x 2, y=x 2-1有哪些相同点和不同点 相同点:①开口方向相同,它们的开口都向上 ②对称轴相同,它们都关于y 轴对称 ③形状大小相同.不同点:顶点的位置不同,抛物线的位置也不同结合【议一议】三个函数的形状相同,从哪些方向可以看出?①用幻灯片展示,将抛物线y=x 2向上平移1个单位后抛物线y=x 2+1完全重合. ②观察两个图象中各5个点的特殊位置,在①的展示上可以看出这5个点可以通过平移重合情况,从而可推断出抛物线y=x 2与y=x 2+1完全重合③从解析式和表格中数据也可以看出以上平移情况,从而可以肯定抛物线y=x 2,y=x 2+1的形状、大小完全相同.【议一议】抛物线y=ax 2与y=ax 2±c 有何联系?【答案】①抛物线y=ax 2±c 的形状与y=ax 2的形状完全相同,只是位置不同.②抛物线y=ax 2c −−−−→向上平移个单位y=ax 2+c. y=ax 2c −−−−→向下平移个单位y=ax 2-c 【练一练】教科书P7练习 【答案】①它们的图象略 ②见下表③抛物线2y=x 2向上平移k(k>0)个单位后抛物线2y=x 2+k 完全重合.(三)应用迁移巩固提高类型之一函数y=ax 2+c 的图象特征与性质的运用例1 抛物线y=ax 2+c 与y=-5x 2的形状大小,开口方向都相同,且顶点坐标是(0,3),则其表达式为 y=-5x 2+3 ,它是由抛物线y=-5x 2向上平移 3 个单位得到的.【分析】根据两抛物线的形状大小相同,开口方向相同,可确定a 的值,再根据顶点坐标(0,3),可确定c 的值,从而可判断平移方向.解:抛物线y=ax 2+c 与y=-5x 2的形状、大小相同,开口方向也相同,∴a=-5. 又∵其顶点坐标为(0,3). ∴c=3.∴y=-5x 2+3.它是由抛物线y=5x 2向上平移3个单位得到的.【点评】①解这类题,必须根据二次函数y=ax 2+c 的图象与性质来解.a 确定抛物线的形式及开口方向,c 确定顶点的位置.②抛物线平移多少个单位,主要看两顶点相隔的距离,从而确定平移的方向与单位.(有时也可以比较两抛物线上横坐标相同的两点相隔的距离,从而确定平移的方向与单位长)类型之二求二次函数的解析式例2若抛物线y=ax 2+c 经过点(-1,2),(0,4),求该抛物线的解析式【分析】抛物线经过点(-1,2),(0,4),那么这两点坐标满足函数关系式,故列方程组可求.解:由已知条件得22a (1)c 2a 0c 4⎧-+=⎪⎨+=-⎪⎩,解得a 6c 4=⎧⎨=-⎩∴所求解析式为y=6x 2-4.【点评】二次函数y=ax 2+c 中有两个待定系数a 、c ,故通常需至两足对应值或图象上的两个点的坐标,列方程组可求出a 、c 的值例3 已知抛物线y=ax 2+c 向下平移2个单位后,所得抛物线为y=-3x 2+2.试求a 、c 的值【分析】这里a 、c 值可利用抛物线的特征和平移规律来求出.解:根据题意知,a 3c 22=-⎧⎨-=⎩,解得a 3c 4=-⎧⎨=⎩,【点评】可根据规律直接求出a 、c. (四)总结反思拓展升华【总结】本节所学知识是函数y=ax 2+c 的图象与性质以及抛物线y=ax 2上下平移规律. 所学的思想方法图象法、数形结合的思想.【反思】若将抛物线y=2x 2+3绕其顶点旋转1800,所得抛物线的解析式为y=-2x 2+3 【拓展】若抛物线y=ax 2+c 与y=-2x 2+5关于x 轴对称.求a 、c 的值. 【答案】a=2,c= -5.草图如26-1-6【点评】此类题通常画出草图,利用对称关系求出顶点坐标.进而求出a 、c 的值 (五)当堂检测反馈1.抛物线y=-2x 2-5的开口方向向下,对称轴是 y 轴,顶点坐标(0,-5). 【分析】根据抛物线y=ax 2+c 的特征解答即可.2. 抛物线y=ax 2+c 与y=3x 2的形状相同,且其顶点坐标为(0,1),则其表达式 为 y=3x 2+1或y=-3x 2+1.解:∵抛物线y=ax 2+c 与y=3x 2的形状相同,故a=±3, 又∵其顶点坐标为(0,1),∴c=1. ∴所求抛物线y=3x 2+1或y=-3x 2+1【注意】两抛物线的形状相同时,它们的二次项系数的绝对值相等,故有两种情况3. 抛物线y=-212x +7向下平移 10 个单位后得到抛物线y=-212x -34. 下列各组抛物线中能够互相平移而彼此得到对方的是( D )A.y=2x 2与y=3x 2B. y=212x +2与y=2x 2+12C.y=2x 2与y=x 2+2D.y=x 2+2与y=-x 2-2, 【分析】根据a 的值相同判断即可5.在同一直角坐标系中,一次函数y=ax+c 与二次函数y=ax 2+c 的图象大致为(B )解:根据图象知,只有B中两个函数解析式中系数a 和c 的正、负情况保持一致.故选择B6.若抛物线y=ax 2+c 经过点A(-3,2),B(0,1).求该抛物线的解析式解:由已知得222(3)10a c a c ⎧=-+⎪⎨-=+⎪⎩,解得131a c ⎧=⎪⎨⎪=-⎩. ∴所求抛物线的解析式为y=13x 2-1ABD。
二次函数的图象第二课时教案

二次函数的图象第二课时教案一、教学目标1. 知识与技能:(1)理解二次函数图象的开口方向、对称轴和顶点的概念;(2)学会如何通过二次函数的系数判断开口方向和对称轴的位置;(3)能够熟练运用二次函数的性质解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳二次函数图象的性质;(2)利用数形结合的方法,理解二次函数图象与系数的关系。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。
二、教学重点与难点1. 教学重点:(1)二次函数图象的开口方向、对称轴和顶点的判断方法;(2)运用二次函数的性质解决实际问题。
2. 教学难点:(1)开口方向与对称轴的判断;(2)二次函数图象与实际问题的结合。
三、教学过程1. 复习导入:(1)回顾一次函数图象的性质;(2)引导学生思考二次函数图象的特点。
2. 新课讲解:(1)介绍二次函数图象的开口方向、对称轴和顶点的概念;(2)讲解如何通过二次函数的系数判断开口方向和对称轴的位置;(3)举例说明二次函数图象与系数的关系。
3. 课堂练习:(1)让学生绘制几个二次函数的图象,观察开口方向、对称轴和顶点的位置;(2)引导学生分析二次函数图象与系数的关系。
四、课后作业2. 选取几个实际问题,运用二次函数的性质进行解答。
五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对二次函数图象的理解和运用能力。
关注学生在课堂上的参与度和思维发展,激发学生的学习兴趣。
六、课堂实践1. 案例分析:分析实际问题,将其转化为二次函数形式;利用二次函数的性质,解答实际问题。
2. 分组讨论:学生分组,讨论如何将实际问题转化为二次函数;每组选取一个实际问题,展示解题过程和答案。
七、拓展与延伸1. 探讨二次函数图象在其他领域的应用;引导学生思考二次函数在物理学、经济学等领域的应用;举例说明二次函数在其他领域的实际应用。
2. 课堂小结:强调二次函数图象在实际问题中的应用价值。
初中数学_二次函数的图象与性质(2)教学设计学情分析教材分析课后反思

《二次函数的图象和性质》教学设计执教者学情分析一、学生的年龄特点和认知特点初三年级的学生性格比较开朗活泼,对新鲜事物比较敏感,有自己的个人判断,因此,在教学过程中创设问题情景,留给他们动手实践、观察思考、自主探究、合作交流、归纳猜想的时间和空间.让他们经历获取知识的过程.二、学生已具备的基本知识与技能学生在八年级已经初步积累了函数知识和利用函数解决问题的经验.初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识.学生具有也一定的数学分析、理解能力.学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力.因此,在本课中,应多让学生动手实践、自主探究、合作交流,从而更好的体会到二次函数的特征.效果分析这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。
通过充分的过程探究,学生容易得出也是最早得出了图象的性质,借助直观图象的性质而得到二次函数图像的性质。
真正的形成往往来源于真实的自主探究。
只有放手探究,学生的潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。
在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。
首先,要设计适合学生探究的素材。
教材对二次函数的性质是从增减来描述的,我们认为这种对性质的表述是教条化的,对这种学术、文本状态的知识,学生不容易接受。
当然教材强调所呈现内容的逻辑性、严密性与科学性是合理的。
但是能让学生理解和接受的知识才是最好的。
如果牵强的引出来,不一定是好事。
其次,探究教学的过程就是实现学术形态的知识转化为教育形态知识的过程。
探究教学是追求教学过程的探究和探究过程的自然和本真。
只有这样探究才是有价值的,真知才会有生长性。
要表现过程的真实与自然,从建构主义的观点出发,就是要尊重学生各自的经验与思维方式、习惯。
结论是一致的,但过程可以是多元的,教师要善于恰倒好处地优化提炼学生的结论。
关于二次函数的图像与性质的数学教案(9篇)

关于二次函数的图像与性质的数学教案(9篇)二次函数的图像与性质的数学教案篇1【学问与技能】1.会用描点法画函数y=ax2(a>0)的图象,并依据图象熟悉、理解和把握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简洁的实际问题.【过程与方法】经受探究二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象讨论函数的阅历,培育观看、思索、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间沟通争论,到达对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,把握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步熟悉问题 1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么外形呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思索探究,猎取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互沟通、展现,表扬画得比拟标准的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和进展趋势.误区二:并非对称点,存在漏点现象,导致抛物线变形。
误区三:无视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延长,而并非到某些点停顿.二次函数的图像与性质的数学教案篇2一学习目标1、把握二次函数的图象及性质;2、会用二次函数的图象与性质解决问题;学习重点:二次函数的性质;学习难点:二次函数的性质与图像的应用;二学问点回忆:函数的性质函数函数图象a0a0性质三典型例题:例 1:已知是二次函数,求m的值例 2:(1)已知函数在区间上为增函数,求a的范围;(2)知函数的单调区间是,求a;例 3:求二次函数在区间[0,3]上的最大值和最小值;变式:(1)已知在[t,t+1]上的最小值为g(t),求g(t)的表达式。
二次函数的图象第二课时教案

二次函数的图象第二课时教案一、教学目标:1. 让学生理解二次函数的图象特征,掌握二次函数图象的顶点、开口方向等基本概念。
2. 培养学生利用二次函数图象解决实际问题的能力。
3. 引导学生通过观察、分析、归纳等方法,探索二次函数图象的性质。
二、教学重点与难点:1. 教学重点:二次函数的图象特征,如何利用二次函数图象解决实际问题。
2. 教学难点:二次函数图象的顶点、开口方向等概念的理解与应用。
三、教学方法:1. 采用问题驱动法,引导学生自主探究二次函数图象的性质。
2. 利用数形结合法,让学生直观地理解二次函数图象的特点。
3. 采用案例分析法,培养学生运用二次函数图象解决实际问题的能力。
四、教学准备:1. 教师准备二次函数图象的PPT、案例素材等教学资源。
2. 学生准备笔记本、笔等学习用品。
五、教学过程:1. 导入新课:回顾上一课时内容,引出本课时的主题——二次函数的图象。
2. 自主学习:让学生自主探究二次函数图象的性质,引导学生观察、分析、归纳。
3. 课堂讲解:结合PPT,讲解二次函数图象的顶点、开口方向等基本概念,并通过案例进行分析。
4. 练习巩固:布置一些有关二次函数图象的练习题,让学生独立完成,检验学习效果。
5. 课堂小结:总结本节课的主要内容,强调二次函数图象在实际问题中的应用。
6. 课后作业:布置一些有关二次函数图象的课后作业,让学生进一步巩固所学知识。
7. 课后反思:鼓励学生反思本节课的学习过程,总结收获,发现不足,为下一节课做好准备。
六、教学评价:1. 通过课堂讲解、练习巩固等环节,评价学生对二次函数图象的基本概念和性质的掌握程度。
2. 观察学生在解决实际问题时的表现,评价其运用二次函数图象的能力。
3. 结合课后作业,评价学生对课堂所学知识的巩固情况。
七、教学反思:1. 教师在课后对自己的教学进行反思,分析教学过程中的优点和不足,为下一节课的教学做好准备。
2. 学生对自己的学习进行反思,总结在本节课中的收获,发现存在的问题,制定改进措施。
二次函数的图象第二课时教案

二次函数的图象第二课时教案一、教学目标:1. 理解二次函数图象的性质,掌握二次函数图象的开口方向、对称轴、顶点等特征。
2. 学会通过观察二次函数图象来判断函数的单调性、极值等性质。
3. 能够运用二次函数图象解决实际问题,提高解决问题的能力。
二、教学内容:1. 复习一次函数和反比例函数的图象性质。
2. 学习二次函数图象的性质,包括开口方向、对称轴、顶点等。
3. 分析二次函数图象的单调性和极值。
4. 运用二次函数图象解决实际问题。
三、教学重点:1. 二次函数图象的开口方向、对称轴、顶点的确定。
2. 二次函数图象的单调性和极值的判断。
四、教学难点:1. 理解二次函数图象的性质,并能灵活运用。
2. 解决实际问题时,如何正确运用二次函数图象。
五、教学方法:1. 采用直观演示法,通过展示二次函数图象,让学生直观地理解其性质。
2. 运用实例讲解法,结合具体例子,让学生学会分析二次函数图象的性质。
3. 运用问题驱动法,引导学生主动探究二次函数图象的性质,提高解决问题的能力。
4. 小组合作学习,让学生在讨论中互相学习,共同提高。
教案一、导入(5分钟)1. 复习一次函数和反比例函数的图象性质。
2. 提问:同学们,你们认为二次函数的图象会有哪些特殊的性质呢?二、新课讲解(15分钟)1. 讲解二次函数图象的开口方向、对称轴、顶点等性质。
2. 分析二次函数图象的单调性和极值。
3. 通过实例,讲解如何运用二次函数图象解决实际问题。
三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 教师选取部分学生的练习题,进行讲解和分析。
四、课堂小结(5分钟)1. 总结本节课所学内容,强调二次函数图象的性质及其运用。
2. 提醒学生在解决实际问题时,注意灵活运用二次函数图象。
五、课后作业(课后自主完成)1. 完成课后练习题,巩固二次函数图象的知识。
2. 结合生活实际,寻找一个可以用二次函数图象解决的问题,并尝试解决。
教学反思:在课后,教师应认真反思本节课的教学效果,针对学生的掌握情况,调整教学策略,以提高学生对二次函数图象的理解和运用能力。
22.1二次函数的图像和性质第二课时教案

22.1 二次函数(第二课时)教学目标:1.会用描点法画出形如y = ax 2 的二次函数图象,了解抛物线的有关概念;2.通过观察图象,能说出二次函数y = ax 2 的图象特征和性质;3.在类比探究二次函数y = ax 2 的图象和性质的过程中,进一步体会研究函数图象和性质的基本方法和数形结合的思想教学重点:会用描点法画出二次函数y=ax2的图象,观察图象,得出二次函数y = ax 2 的图象特征和性质。
教学难点:抛物线的图像特征。
教学过程:一、问题引新1,同学们可以回想一下,一次函数的性质是什么?2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?3.一次函数的图象是什么?二次函数的图象是什么?二、学习新知1、例1、画二次函数y=2x2与y=2x2的图象。
(有学生自己完成)解:(1)列表:在x的取值范围内列出函数对应值表:找一名学生板演画图提问:观察这个函数的图象,它有什么特点? (让学生观察,思考、讨论、交流,)2、归纳:抛物线概念:像这样的曲线通常叫做抛物线。
抛物线与它的对称轴的交点叫做抛物线的顶点.顶点坐标(0,0)3、运用新知(1).观察并比较两个图象,你发现有什么共同点?又有什么区别?(2).课件出示:在同一直角坐标系中,y=2x2与y=-2x2的图象,观察并比较(3).将所画的四个函数的图象作比较,你又能发现什么?(课件出示)让学生观察y=x2、y=2x2的图象,填空;当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。
当X<0时,函数值y随着x的增大而______,当X>O时,函数值y随X的增大而______;当X=______时,函数值y=ax2 (a>0)取得最小值,最小值y=______三、课堂练习:1.(1)函数232x y =的开口 ,对称轴是 ,顶点坐标是 ;(2)函数241x y -=的开口 ,对称轴是 ,顶点坐标是 . 2. 抛物线 y=--x 2/16,其对称轴左侧,y 随 x 的增大而 ;在对称轴的右侧,y 随 x 的增大而 。
人教版九年级数学上册《二次函数的图象和性质(第2课时)》示范教学设计

二次函数的图象和性质(第2课时)教学目标1.能够利用描点法画形如y=ax2(a≠0)的二次函数图象.2.通过观察图象能够说出二次函数y=ax2(a≠0)的图象特征和性质.3.在由具体的二次函数图象归纳总结二次函数y=ax2(a≠0)的图象和性质的过程中,进一步体会由特殊到一般和数形结合的思想.教学重点会用描点法画具体的形如y=ax2(a≠0)的二次函数图象,并由具体图象归纳总结出二次函数y=ax2(a≠0)的图象和性质.教学难点通过对a的取值分类讨论,总结出二次函数y=ax2(a≠0)的图象和性质,特别是|a|的大小对抛物线开口大小的影响.教学过程知识回顾1.一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.2.画出一次函数y=x+1的图象.【答案】(1)列表:(2)描点、连线.3.一次函数的图象是一条直线,当k>0时,y随x的增大而增大;当k<0时,y随x 的增大而减小.【设计意图】通过复习已经学过的有关函数的知识,为引出“二次函数y=ax2(a≠0)的图象和性质”作铺垫.新知探究一、探究学习【思考】二次函数y=ax2+bx+c(a≠0)的图象又是什么样的呢?【师生活动】教师提示:结合图象讨论性质是数形结合地研究函数的重要方法.我们将从最简单的二次函数y=x2开始,逐步深入地讨论一般二次函数的图象和性质.【问题】仿照前面的画法,画出二次函数y=x2的图象.【师生活动】教师提示:可以用描点法画出二次函数y=x2的图象.学生根据提示独立思考,并作图.解:(1)在y=x2中,自变量x可以是任意实数,列表表示几组对应值:(2)描点:根据表中x,y的数值在坐标平面中描点(x,y).(3)连线:用平滑曲线顺次连接各点,就得到y=x2的图象.教师提问:1.观察所画图象,你能说一下它的形状特征吗?学生分小组讨论,并派代表发言.教师分析:从图象可以看出,二次函数y=x2的图象是一条曲线,它的形状类似于投篮时或掷铅球时球在空中所经过的路线,只是这条曲线开口向上.这条曲线叫做抛物线y=x2.教师总结:二次函数的图象都是抛物线,它们的开口或者向上或者向下.二次函数y=ax2+bx+c的图象叫做抛物线y=ax2+bx+c.教师提问:2.在所画出的抛物线y=x2上分别取点(2,4),(3,9),并找到它们关于y 轴的对称点,你发现了什么?学生思考并回答:点(2,4),(3,9)关于y轴的对称点(-2,4),(-3,9)也在抛物线y =x 2上.教师追问:在所画出的抛物线y =x 2上任取一点(m ,m 2),它关于y 轴的对称点(-m ,m 2)也在抛物线y =x 2上吗?学生分小组讨论,并派代表发言.教师总结:在抛物线y =x 2上任取一点(m ,m 2),因为它关于y 轴的对称点(-m ,m 2)也在抛物线y =x 2上,所以抛物线y =x 2关于y 轴对称.抛物线y =x 2与它的对称轴的交点(0,0)叫做抛物线y =x 2的顶点,它是抛物线y =x 2的最低点.每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点.顶点是抛物线的最低点或最高点.教师提问:3.观察所画出的二次函数y =x 2的图象,在对称轴的左右两侧,抛物线有什么特点?学生思考并回答:在对称轴的左侧,抛物线从左到右下降;在对称轴的右侧,抛物线从左到右上升.教师总结:二次函数y =x 2的图象:当x <0时,y 随x 的增大而减小;当x >0时,y 随x 的增大而增大.【设计意图】通过提出问题“二次函数y =ax 2+bx +c (a ≠0)的图象又是什么样的”,激发学生的求知欲,引导学生利用数形结合的方法研究函数的图象和性质.进而让学生利用已学过的描点法画出二次函数y =x 2的图象,通过小组交流让学生充分发表意见,总结自己观察出的图象的特征和函数性质,为讨论一般二次函数y =ax 2(a ≠0)的图象和性质作铺垫.二、典例精讲【例题】在同一直角坐标系中,画出函数212y x =,y =2x 2的图象.【师生活动】教师提出问题,学生独立思考并作图. 【答案】解:分别列表,再画出它们的图象.【设计意图】通过例题的练习与讲解,巩固学生对描点法画函数图象的应用,为探究二次函数y =ax 2(a >0)的图象和性质作铺垫.三、探究学习【思考】(1)函数212y x =,y =2x 2的图象与函数y =x 2(图中的虚线图形)的图象相比,有什么相同点和不同点?【师生活动】教师提出问题,学生观察所作图象思考并尝试回答.教师总结:相同点:(1)抛物线的开口向上;(2)对称轴是y 轴;(3)顶点是原点,顶点是抛物线的最低点;(4)当x >0时,y 随x 的增大而增大;当x <0时,y 随x 的增大而减小.不同点:开口大小不同,a 越大,抛物线的开口越小.【思考】(2)当a >0时,二次函数y =ax 2的图象有什么特点? 【师生活动】教师提示,学生尝试总结归纳. 【答案】二次函数y =ax 2(a >0)的图象与性质如下.【探究】(1)在同一直角坐标系中,画出函数y =-x 2,212y x =-,y =-2x 2的图象,并考虑这些抛物线有什么相同点和不同点.【师生活动】教师提示:可以参照讨论“函数212y x =,y =2x 2,y =x 2的图象的相同点和不同点”的方法来思考.学生按照提示先在同一直角坐标系中,画出函数图象,再分小组讨论,并派代表回答.教师总结:相同点:(1)抛物线的开口向下;(2)对称轴是y 轴;(3)顶点是原点,顶点是抛物线的最高点;(4)当x >0时,y 随x 的增大而减小;当x <0时,y 随x 的增大而增大.不同点:开口大小不同,a 越小,抛物线的开口越小.【探究】(2)当a <0时,二次函数y =ax 2的图象有什么特点? 【师生活动】教师提出问题,学生大胆思考并尝试回答.【答案】二次函数y =ax 2(a <0)的图象与性质如下.【归纳】一般地,抛物线y =ax 2的对称轴是y 轴,顶点是原点.当a >0时,抛物线y =ax 2的开口向上,顶点是抛物线的最低点;当a <0时,抛物线y =ax 2的开口向下,顶点是抛物线的最高点.对于抛物线y =ax 2,|a |越大,抛物线的开口越小.二次函数y =ax 2(a ≠0)的图象与性质【设计意图】通过对a 的取值分类讨论,总结出二次函数y =ax 2(a ≠0)的图象和性质,在由具体的二次函数图象归纳总结出二次函数y =ax 2(a ≠0)的图象和性质的过程中,让学生进一步体会由特殊到一般和数形结合的思想.课堂小结板书设计一、二次函数y=ax2(a>0)的图象与性质二、二次函数y=ax2(a<0)的图象与性质三、二次函数y=ax2(a≠0)的图象与性质课后任务完成教材第32页练习.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.1 二次函数(第二课时)
教学目标:
1.会用描点法画出形如y = ax 2 的二次函数图象,了解抛物线的有关概念;
2.通过观察图象,能说出二次函数y = ax 2 的图象特征和性质;
3.在类比探究二次函数y = ax 2 的图象和性质的过程中,进一步体会研究函数图象和性质的基本方法和数形结合的思想
教学重点:会用描点法画出二次函数y=ax2的图象,观察图象,得出二次函数y = ax 2 的图
象特征和性质。
教学难点:抛物线的图像特征。
教学过程:
一、问题引新
1,同学们可以回想一下,一次函数的性质是什么?
2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?
3.一次函数的图象是什么?二次函数的图象是什么?
二、学习新知
1、例1、画二次函数y=2x2与y=2x2的图象。
(有学生自己完成)
解:(1)列表:在x的取值范围内列出函数对应值表:
找一名学生板演画图
提问:观察这个函数的图象,它有什么特点? (让学生观察,思考、讨论、交流,)
2、归纳:
抛物线概念:像这样的曲线通常叫做抛物线。
抛物线与它的对称轴的交点叫做抛物线的
顶点.顶点坐标(0,0)
3、运用新知
(1).观察并比较两个图象,你发现有什么共同点?又有什么区别?
(2).课件出示:在同一直角坐标系中,y=2x2与y=-2x2的图象,观察并比较
(3).将所画的四个函数的图象作比较,你又能发现什么?(课件出示)
让学生观察y=x2、y=2x2的图象,填空;
当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。
当X<0时,函数值y随着x的增大而______,当X>O时,函数值y随X的增大而______;当X=______时,函数值y=ax2 (a>0)取得最小值,最小值y=______
三、课堂练习:1.(1)函数23
2x y =的开口 ,对称轴是 ,顶点坐标是 ;
(2)函数24
1x y -=的开口 ,对称轴是 ,顶点坐标是 . 2. 抛物线 y=--x 2/16,其对称轴左侧,y 随 x 的增大而 ;在对称轴的右侧,y 随 x 的增大而 。
3.若抛物线y= 6x 2上点P 的坐标为(2,-24),则抛物线上点P 的对称点P ’的坐标是( )。
4. 若抛物线 y=(n-1) x n2-n , 的开口向下,求n 的值?
5. 已知二次函数y=ax 2 的图形经过点(-2,-3)。
(1)求a 的值,并写出函数解析式;
(2)说出函数图象的顶点坐标、对称轴、开口方向和图象的位置;
四、小结:
(1) 本节课学了哪些主要内容?
(2)函数y=ax 2的图象有哪些特征?
五、作业:
教科书习题 22.1 第 3,4 题.
六:课后练习:
A 组
1.在同一直角坐标系中,画出下列函数的图象.
(1)24x y -= (2)24
1x y = 2.填空:
(1)抛物线25x y -=,当x= 时,y 有最 值,是 .
(2)当m= 时,抛物线m m
x m y --=2)1(开口向下. (3)已知函数1222)(--+=k k x
k k y 是二次函数,它的图象开口 ,当x 时,y 随x 的增大而增大.
3.已知抛物线102-+=k k kx y 中,当0>x 时,y 随x 的增大而增大.
(1)求k 的值; (2)作出函数的图象(草图).
4.已知抛物线2ax y =经过点(1,3),求当y=9时,x 的值.
B 组
5.底面是边长为x 的正方形,高为0.5cm 的长方体的体积为ycm 3.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)根据图象,求出y=8 cm3时底面边长x 的值;(4)根据图象,求出x 取何值时,y ≥4.5 cm 3.
6.二次函数2ax y =与直线32-=x y 交于点P (1,b ).
(1)求a 、b 的值;
(2)写出二次函数的关系式,并指出x 取何值时,该函数的y 随x 的增大而减小.
1.一个函数的图象是以原点为顶点,y 轴为对称轴的抛物线,且过M (-2,2).
(1)求出这个函数的关系式并画出函数图象;
(2)写出抛物线上与点M 关于y 轴对称的点N 的坐标,并求出⊿MON 的面积.。