等离子体刻蚀
等离子刻蚀-培训教程

2.2 刻蚀机构 射频电源辉光放电
等离子刻蚀基本原理
射频电源
辉光放电是由大量中等能量(<15eV)的电子激发中性原子,电子返回基态 时释放的光辐射。
2.2 刻蚀方程式
等离子刻蚀基本原理
为何处在等离子体环境下进行刻蚀
在我们的工艺中,是用CF4和O2来刻蚀扩散后的硅片,其刻蚀原理如下:
3.1 工艺参数
等离子刻蚀基本原理
时间参数 预抽 主抽 送气
ห้องสมุดไป่ตู้工艺参数 工艺压力 氧气流量
压力偏差设置 压力偏差
120 Sec 180 Sec 150 Sec
15 Pa 50 SCCM
20 Pa
辉光 清洗 充气
540 Sec 60 Sec 30 Sec
辉光功率 CF4流量
600 W 300 SCCM
CF4 = CFx* + (4-x) F* (x≤3) Si + 4 F* = SiF4 ↑ SiO2 + 4 F* = SiF4 + O2↑
反应的实质,打破C-F、Si-Si键,形成挥发性的Si-F硅卤化物。
CΘF +Si ΘSi = Si-F + 17kcal/mol
反应需要一个净正能量,CF4本身不会直接刻蚀硅。等离子体高能量 的电子碰撞会使CF4分子分裂生产自由的氟原子和分子团,使得形成 SiF是能量有利的。
2.2 氧气的作用
等离子刻蚀基本原理
在CF4进气中加入少量氧气会提高硅和二 氧化硅的刻蚀速率。人们认为氧气与碳原 子反应生成CO2,这样从等离子体中去掉 一些碳,从而增加F的浓度,这些成为富氟 等离子体。往CF4等离子体中每增加12% 的氧气,F浓度会增加一个数量级,对硅的 刻蚀速率增加一个数量级。
等离子刻蚀工艺-培训教程

等离子刻蚀工艺-培训教程等离子刻蚀工艺是一种用于光刻工艺的常见技术。
在集成电路制造过程中,等离子刻蚀被广泛应用于半导体器件的精确细节刻蚀,以及薄膜材料的去除和表面处理。
本文将为您介绍等离子刻蚀工艺的基本原理、设备和操作步骤。
等离子刻蚀工艺基本原理:等离子刻蚀是利用稀有气体放电产生的等离子体来刻蚀材料的一种技术。
该过程通过在放电区域内施加强电场和磁场,使气体分子电离产生电子和离子。
在电离的过程中,离子会获得足够的能量以克服材料的结合能,从而实现刻蚀材料的目的。
等离子刻蚀设备:等离子刻蚀设备主要由真空室、气体供应系统、高频功率源、加热装置、控制系统等组成。
真空室用于创建真空环境,并通过降低气压来避免气体碰撞。
气体供应系统用于提供刻蚀所需的气体混合物。
高频功率源产生高频电场,使气体电离。
加热装置用于加热待刻蚀的样品,以改善刻蚀效果。
控制系统负责设定和监测刻蚀过程的参数,如气体流量、功率、压力等。
1.准备工作:将待刻蚀的样品清洗干净,并确保真空室内部没有杂质和积尘。
2.真空抽气:将真空室的气压降低,以便创建理想的真空环境。
3.气体供应:根据刻蚀需要选择合适的气体混合物,并将其引入真空室。
4.加热样品:将待刻蚀的样品放置在加热装置上,并根据刻蚀需求设定合适的温度。
5.施加高频功率:开启高频功率源,并将其输出连接到真空室中的电极。
高频电场将气体电离,产生等离子体。
6.控制刻蚀参数:根据刻蚀需求,调节气体流量、功率以及压力等参数,以实现所需的刻蚀效果。
7.刻蚀过程:打开真空室的闸门,使等离子体进入刻蚀区域,并开始刻蚀样品表面。
在刻蚀过程中,可以根据需要监测刻蚀深度和速率。
8.刻蚀结束:根据刻蚀要求,适时关闭高频功率源,终止刻蚀过程。
然后恢复大气压力,打开真空室,取出刻蚀完毕的样品。
总结:等离子刻蚀工艺是一种重要的微纳加工技术,广泛应用于集成电路制造和其他微纳加工领域。
通过了解等离子刻蚀的基本原理和操作步骤,可以更好地掌握该技术,提高刻蚀效果和工艺稳定性。
等离子体刻蚀工作原理

等离子体刻蚀工作原理等离子体刻蚀是一种常见的微纳加工技术,广泛应用于集成电路制造、纳米材料制备等领域。
本文将介绍等离子体刻蚀的工作原理,帮助读者更好地了解这一技术。
一、简介等离子体刻蚀是通过将气体激发成等离子体状态,利用高能离子或自由基的化学反应以及物理轰击来去除材料表面的一种技术。
它具有高精度、高速率和高选择性等特点,是制备微结构和纳米结构的重要手段。
二、等离子体刻蚀过程等离子体刻蚀过程主要分为物理刻蚀和化学刻蚀两个阶段。
1. 物理刻蚀:当气体被加热并加高电压或电磁场时,气体中的原子和分子受到激发,形成等离子体。
等离子体中的离子和自由基具有高能量,它们会以高速运动并撞击目标表面。
这种物理轰击会破坏表面原子的结构,使材料从表面脱落。
2. 化学刻蚀:等离子体中的气体离子和自由基还能与目标表面发生化学反应。
例如,在氟化氢等离子体刻蚀工艺中,氟离子会与目标材料表面的金属或氧化物发生反应,形成易溶于气体的化合物。
这种化学反应能够加速材料去除的速度。
三、刻蚀选择性控制在等离子体刻蚀中,选择性控制是非常重要的。
选择性控制指的是在多层结构中只刻蚀特定层或材料,而不会对其他层或材料产生明显影响。
以下几种机制可以实现选择性控制:1. 材料本身的选择性:不同材料在等离子体刻蚀过程中会有不同的反应速率,这是由材料的化学性质和结构特征决定的。
利用材料本身的选择性,我们可以控制特定材料的刻蚀速率,实现选择性刻蚀。
2. 掩膜层:在需要保护的区域上覆盖一层掩膜,掩膜层可以阻挡离子和自由基的轰击,从而实现对底层材料的保护。
掩膜层通常采用高耐腐蚀性和高厚度的材料。
3. 循环刻蚀:在刻蚀过程中,通过循环切换刻蚀和保护气体,可以控制刻蚀速率和选择性。
例如,在两个不同材料的刻蚀中交替使用两种不同刻蚀气体,可以实现对这两种材料的选择性刻蚀。
四、应用领域和发展趋势等离子体刻蚀技术在集成电路制造中起着至关重要的作用。
它被用于去除、修复、改变芯片表面的材料,以实现电子器件的制备和功能优化。
等离子刻蚀原理

等离子刻蚀原理
等离子刻蚀是一种常用的微纳加工技术,用于在半导体制造中去除杂质、形成纳米结构以及精确地刻蚀表面。
其原理基于等离子体(即带正电荷的高能离子和自由电子)与被刻蚀材料表面发生相互作用。
在等离子刻蚀过程中,首先需要产生等离子体。
这通常是通过将高纯度的气体(如氯气、氟气、苦味气等)引入到封闭的真空室中,并在高能电场和电弧场下对气体进行激发。
这种激发将气体分解成离子和电子,并形成带电的等离子体。
然后,这些带电的等离子体会被加速,并通过电场和磁场的调控,使其定向地撞击到待刻蚀材料表面。
撞击过程中,离子会传递给待刻蚀材料表面一部分能量,并激发该材料表面原子或分子的束缚电子。
这些激发的表面原子或分子可能会离开其原子或分子固定位置,形成反应产物,然后通过扩散和抛射的方式迁移到其他位置。
与此同时,撞击后的原子或分子释放出来的电子也会在等离子体中传递,并参与到一系列的电子和离子反应中。
这些反应将控制刻蚀速度、形状、深度和表面粗糙度等参数。
此外,通过调节激发条件、等离子体密度、控制气体的种类和流量等因素,可以对刻蚀过程进行精确控制,实现不同的刻蚀效果和图形。
总的来说,等离子刻蚀原理是利用带电的等离子体与待刻蚀材料表面相互作用,通过离子和电子的传递和相互反应,实现对
材料表面的精确刻蚀。
这种技术在半导体制造、光学器件制造和微纳加工领域具有广泛的应用。
等离子体刻蚀技术的操作指南与优化要点

等离子体刻蚀技术的操作指南与优化要点介绍:等离子体刻蚀技术是一种常用于半导体制造过程中的重要技术,可以高精度地刻蚀材料表面,用于制作微观结构。
本文将为读者提供一份操作指南与优化要点,帮助他们掌握这一技术的使用方法和参数调节。
一、等离子体刻蚀技术的基本原理等离子体刻蚀技术是通过产生等离子体来刻蚀材料表面。
其中,等离子体由电离的气体分子或原子组成,通过加热或电离方式生成。
刻蚀过程中,高能的等离子体与材料表面的原子或分子发生碰撞,使其脱离表面并被抽走,从而实现刻蚀有序结构的目的。
二、操作指南1. 设定刻蚀参数:在进行等离子体刻蚀前,首先需要设定适当的刻蚀参数。
参数包括刻蚀气体的种类和流量、放电功率、刻蚀时间等。
不同材料和要刻蚀的结构形状需要不同的参数设置,因此需根据实际需要进行调整。
2. 样品处理:在刻蚀之前,样品表面需要进行预处理,例如清洗和除去氧化层等。
这样可以增加刻蚀的精度和均匀性。
3. 选择合适的刻蚀气体:刻蚀气体的选择对刻蚀效果有很大影响。
常用的刻蚀气体有氟化氢、氟气、氧气等。
不同气体对不同材料有不同的作用,应根据材料类型和所需刻蚀效果选择合适的刻蚀气体。
4. 控制刻蚀速率:刻蚀速率对于刻蚀的深度和均匀性有重要影响。
可以通过调整刻蚀时间和刻蚀功率来控制刻蚀速率。
需要注意的是,刻蚀速率过高可能导致刻蚀深度不均匀,而过低则可能无法满足刻蚀需求。
5. 监控刻蚀过程:在刻蚀过程中,应定期监控刻蚀深度和均匀性。
可以使用显微镜、扫描电镜等工具进行观察和测量,以调整刻蚀参数和纠正不均匀的情况。
6. 发现问题时的处理方法:在刻蚀过程中可能会出现一些问题,如表面残留物、刻蚀不均匀等。
处理方法可以是更换刻蚀气体、调整刻蚀参数或对样品进行再处理。
三、优化要点1. 材料选择:材料的选择直接影响刻蚀效果和刻蚀速率。
应根据具体需求选择合适的材料,例如对于硅基材料,可以选择氟化氢作为刻蚀气体。
2. 气体流量控制:气体流量对刻蚀效果和材料去除速率有直接影响。
等离子体刻蚀

等离子体刻蚀I I并联电阻偏小V 正常曲线V预抽和主抽反1应腔内的气压达到工艺要求以实现低气压,下以步送气即输送CF4气体.在这样的条件下辉光使CF4等离子态,辉光是整个刻蚀过程的关键步骤.主要工艺参数是:辉光功率,反射功率,辉光时间.控制好这三个参数,基本整个刻蚀过程就自动按要求完成.辉光功率过大,时间过长的话,会使硅片被刻蚀过度,等离子体中高能电子会轰击硅原子,造成缺陷,影响电池质量,而影响整个硅片的转换效率.刻蚀功率过小时间过长也不好,会使刻蚀不完全,漏电流增大.因此功率过大,过小,时间过长过短都会影响电池的性能.所以必须找到每台机器功率和辉光时间之间平衡点,使刻蚀完全,又不会对电池造成损伤.目前的设备功率设定在500W,辉光时间设定为820S.这是比较合适的一组选择,经过长期实践证明是可行的.当然,在以后的工作要求下,该参数可能被更改,但是有一条原则是在不损伤硅片的情况下使硅片刻蚀完全. 目前的设备情况有几台机器不是很稳定,有时辉光功率显示值与设定值偏差太大,反射功率也很大,这就需要工艺人员在现场时刻关注着,保证功率在工艺要求的范围内.等离子刻蚀工艺段在操作方面要注意的是装片时尽量将硅片的边缘对齐,因为在等离子体中,电子速度要远大于原子速度,因此在界面处,进入界面的电子要多于原子,这样就会在界面处形成电势,在这个电势的影响下,等离子体活化的CF4不能与硅反应而造成刻蚀不足.凸出来的片子,表面N 型层受到损伤,而凹进去的片子边缘刻蚀不到.另外每次一起刻蚀的片子和玻璃夹具接触的一片要求反放以保护正面的N型层,和夹片玻璃一起用弹簧夹具夹起来.弹簧夹具的松 2 紧也很重要,如果太松,会使硅片脱落,即使不脱落,由于缝隙的存在,硅片的表面会受到损伤.太紧有可能夹裂硅片,在以后的工艺流程中,可能会造成硅片的碎裂.以上的各种操作方法都是为了使硅片刻蚀完全,而又不受到损伤,操作工人们应该严格按照规程操作.下一道工序便是清洗了.经过磷扩散的硅片表面有一层含磷的二氧化硅层.它是不导电的,所以必须将其清除,清洗用到的化学反应方程式为: P2O5+Si==SiO2+P (磷硅玻璃生成的化学方程式)SiO2+HF==SiF4+H2O (去处磷硅玻璃的化学方程式,用的是5%浓度的HF 溶液)硅片再HF中浸泡几分钟后放到热水中清洗.清洗不干净的硅片,在干3 燥以后表面会有水痕,PECVD结束后,能在其表面看到很明显的白斑,这影响了电池的外观.水痕控制也就是延长清洗时间,但现在基本都使用甩干机甩干,与烘干相比,水纹片要少痕多,根据当月的产量要求可以稍微减少清洗时间.二PECVDPECVD全称是,既该工段的目的和任务是在硅片表面镀上以成SixNx减反射膜,利用光的干涉原理,将照射在硅片上的光线尽量少的反射出去,以提高电池的转换效率,对于多晶硅来说还起到以种钝化的效果,即产生的H原子与硅片表面的硅原子结合形成共价键,中和硅片的电性,提高电子在电池中的存在时间,即提高少子寿命.有关化学方程式是: 高温,低气压)本设备采用的是德国SINA.PECVD镀膜机,分为进料腔,加热腔,工艺腔,冷却腔,出料腔.首先在石墨框上放上硅片,注意要正面朝下,进料腔充氮气,压强达到和外界一致是,1号门打开,石墨框进入进料腔,关闭1号门,进料腔抽真空,当压强达到与工艺腔一致时开2号门,石墨框进入加热腔,按照设定的带速慢慢驶向工艺腔,镀膜结束,打开3号门,石墨框进入出料腔,关3号门,出料腔充氮气,打开4号门,石墨框进入下料台,由操作工人将硅片用真空吸嘴小心取下.整个工艺自动完成.PECVD主要工艺参数就是8个微波源的发射功率和传送带带速.这两个参数是影响镀膜质量的主要方面.其他一些参数是最基本的参 4 数,一般不会改动.PECVD段在生产中主要出现的问题有如下几个方面:1 镀膜不均.这也分好几种不均匀,要针对不同的情况,采取不同的措施.有:同一框片子,左红(膜太薄)右白(膜太厚)或者左白右红,这时就需要调节两边微波源的功率,以均匀等离子体场.还有的情况就是两边红,中间白,这是就需要同时提高两边微波源的功率,然后在稍微提高传送带的带速就可以.还有就是整框的发红或者发白,这是只需要调节带速就可以.2 卡盘掉片的问题.出现这样的问题首先要看看是不是石墨框的问题,因为石墨框使用时间过长的话,整体变形会很严重,中间都会凹下去,和传送滚轮接触部分磨损也很严重.这就可能与机器发生摩擦阻挡,进而卡住石墨框,使片子掉落.倘若在工艺腔里面掉片子,阻挡了等离子体在硅片表面的沉积,会影响好几框的片子都会镀膜不均.因此,卡盘掉片情况一定要尽量不发生.出现了就立刻检查原因,是石墨框的问题要立即停用,或更换挂钩.3 石英管更换问题由于石英管工作是在其表面会沉积很多的SixNx固体,时间长了变的厚了就会阻挡微波,影响了镀膜的质量.一般国产的石英管工作极限时间是40小时.超过30小时的根据镀膜质量判断是否需要更换.更换石英管时首先要等到加热腔温度降到200度才可以打开工艺腔,因为工艺腔和加热腔时连在一起的.打开以后将石英管取出,用盖子挡住和微波源相连的部分,防止有杂物进入.清理干净U型槽,通好气孔.石英管必须用胶带裹严实,不能有露在外面的.因为 5在工作的时候,会有大量的SixNx沉积在石英管上,若没有用胶带保护,由于石英管的延展性不好很容易破裂.微波天线要擦干净并且要和石英管的铜管连接好.各项工作都按要求完成了才能关盖,开工艺生产.一般每次更换石英管后都要进行测片,其流程如下:首先在石墨框托盘中间放置一片正片(从清洗工艺流下来的清洁硅片)其周围放置假片,淀积氮化硅减反膜.看反射膜颜色是否满足工艺要求(沉积在有绒面的硅片的减反射膜颜色从正面看为深蓝色,侧面看为蓝色)若发白,说明太厚,加快带速.若发红,说明太薄,放慢带速.然后在石墨框托盘一侧放一行正片,其外一侧放置假片,淀积氮化硅减反膜.观察片与片之间的颜色是否一致,如果一侧的硅片膜偏厚,则减少那一侧微波功率,反之增加微波功率.如果中间硅片的颜色有变化,则需同时改变两侧的微波功率,每次调整幅度为100W为宜.且根据系统说明不可超过其取值范围.在整个工段要求操作严格按照操作规程来进行,不按操作规程操作,会造成硅片的损失,污染,不满足工艺要求,进而造成损失. 6。
等离子体蚀刻技术

等离子体蚀刻技术等离子体蚀刻技术是一种常用的微纳加工技术,广泛应用于半导体、光电子、微电子等领域。
本文将从等离子体蚀刻技术的基本原理、设备和工艺参数的选择以及应用领域等方面进行介绍。
一、等离子体蚀刻技术的基本原理等离子体蚀刻技术是利用高能粒子或分子束对材料表面进行刻蚀的一种方法。
其基本原理是通过在低压气体环境中产生等离子体,利用等离子体中的离子轰击材料表面,使其发生化学反应或物理过程,从而实现对材料表面的刻蚀。
等离子体蚀刻技术具有高精度、高选择性和高均匀性等优点,能够实现微纳米级的加工。
二、等离子体蚀刻设备等离子体蚀刻设备主要由气体供给系统、真空系统、射频功率源、电极系统以及控制系统等组成。
其中,气体供给系统用于提供刻蚀气体,真空系统用于提供蚀刻环境,射频功率源用于产生等离子体,电极系统用于加速和聚焦离子束,控制系统用于控制蚀刻过程的参数。
三、等离子体蚀刻工艺参数的选择等离子体蚀刻工艺参数的选择对于实现理想的加工效果至关重要。
其中,气体种类和流量、工作压力、射频功率和电极系统的设计等是需要考虑的关键因素。
不同材料的刻蚀速率和选择性不同,需要根据具体材料的特性和加工要求进行合理选择。
四、等离子体蚀刻的应用领域等离子体蚀刻技术在半导体、光电子、微电子等领域具有广泛的应用。
在半导体行业中,等离子体蚀刻技术常用于制备集成电路和光刻掩膜等工艺步骤。
在光电子领域,等离子体蚀刻技术可以用于制备光波导器件和微结构等。
在微电子领域,等离子体蚀刻技术可以用于制备微机械系统(MEMS)和纳米加工等。
等离子体蚀刻技术是一种重要的微纳加工技术,具有广泛的应用前景。
通过合理选择蚀刻工艺参数和设备设计,可以实现高精度、高选择性和高均匀性的加工效果。
随着科技的不断进步,相信等离子体蚀刻技术将在微纳加工领域发挥更加重要的作用。
等离子体刻蚀

6 电极材料 电极包括阴极和阳极。要求阴极材料是化学惰性的,否则 被刻蚀,消耗反应物质,影响样品的刻蚀速率。 阳极与侧壁在离子的溅射下不会形成挥发性产物,而是将 溅射产物再沉积到其他表面, 包括样品材料表面, 影响 样品的进一步刻蚀。 即使材料本身是化学惰性的,样品材料在刻蚀过程中也会 因物理溅射,尤其是掩膜材料的溅射,将溅射物沉积到阳 极或反应室腔体内部。把这种环境带给下一次实验,“记 忆效应”。 为了尽量减少这种“交叉污染”,应尽量避免同一刻蚀系 统刻蚀多种不同材料,或者要求在每一次新的刻蚀前对反 应室腔体进行等离子体 “清洁”,即在未放样品前用氧 气或氩气对腔室体预刻蚀一段时间。
根据产生等离子体的方式又分为 ICP感性耦合等 离子体(inductively coupled plasma), CCP 容性耦合等离子体 (capacitively coupled plasma), ECR微波电子回旋共振等离子体 (microwave electron cyclotron resonance)。
物理加化学的过程 离子的溅射和解吸附的物理特性加上化学 反应特性,刻蚀速度大于单一的任何的单 一过程。
4)具体的仪器原理介绍(RIE、 ICP和ECR)
等离子放电刻蚀技术分类
根据使用离子的物理和化学的作用,可分为 反应离子刻蚀(reactive ion etch)(物理和化 学作用)、离子溅射刻蚀(物理作用)。
等离子体刻蚀
潘华勇 1)介绍等离子体刻蚀在刻蚀方法中的位置 2)刻蚀参数 3)刻蚀的微观机理 4)具体的仪器原理介绍(RIE、ICP和ECR) 5)具体实验参数对刻蚀的影响 6)本实验室刻蚀仪器的介绍(TRION TECHNOLOGY MINILOCK IIIICP) (1)外观,结构,实验参数,一些材料的刻蚀工艺参数, 厂家提供的一些刻蚀材料的情况;(2)实验步骤; 7)作业 8) 参考文献
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1990末期 200 to 300
2009
450
原因:提高效率,降低成本
微细化
1997 1999 2001 2003 2006 2009
0.25 0.18 0.15 0.13 0.1 0.07
2012 0.05
亚微米, 深亚微米
铜线工艺 多层互连 1997,6层----- > 2002, 9层 低损伤
(b)各向同性 (c)耗水量大(why) (d)环境污染
预腐蚀区域 抗腐蚀掩膜
实际腐蚀区
随着特征尺寸的下降,湿法工艺不能满足要求,寻求新的工艺----> 等离子体干法刻蚀,在1969引入半导体加工,在70年代开始广泛应 用。
等离子体刻蚀工艺流程 (a)涂 敷 光 胶 掩 膜 , 干 化
(b)光 胶 掩 膜 曝 光
鞘层
( 4)反 应 粒 子 在 刻 蚀 槽 孔 内 输 运 、反 应
例:CF4的分解、电离过程
刻蚀三个阶段 (1) 刻蚀物质的吸附、反应 (2) 挥发性产物的形成; (3) 产物的脱附,
氯等离子体刻蚀硅反应过程
Cl2→ Cl+Cl Si(表面)+2Cl→ SiCl2 SiCl2 + 2Cl →SiCl4(why)
刻蚀速率、自偏压随磁场强度的变化
问题及解决: 基片旋转
磁场旋转(类似电动机工作方式)
(3)换代型低气压、高密度刻蚀源 ECR ICP Helicon SWP
国际半导体刻蚀设备市场的主流机型:ICP
微波等离子技术的历史(1949年)早于rfCCP 1950年有DC磁场增强微波放电的报道 Hittorf 1184 研究 rf感性放电, 被公认为最早。1929年大气压rf inductive 放电成为使用工具 加热壁.
(2) 机理过程复杂,技术难度高 (3) 器件损伤大
等离子体刻蚀技术 ☼刻蚀指标要求
片间、片内均匀性---各向异性-----图形高保真 高刻蚀速率----
线宽损失 高选择比----- 刻蚀速率比 低损伤
☼刻蚀技术的趋势:
单片工艺
大片化
(为什么要大片化?)
1980 早期 100 to 150
1980 晚期 150 to 200
原因:♦单位时间到达单位刻蚀面的反应粒子数量大于反应所需要的 粒子 刻蚀速率由刻蚀反应速度决定
刻蚀面积增加 ♦单位时间到达单位刻蚀面的反应粒子数量小于反应所需要的
粒子 刻蚀速率由反应粒子通量决定
----- >反应粒子数量不足 解决方法: (2)微观负载效应(micro-loading effect)
ARDE(Aspect Ratio Dependent Effect)效应 ♦ARDE与气压的关系
♦ARDE与气体种类的关系
可以分析得到造成ARDE的原因: (a) 中性粒子遮蔽 (b) 离子遮蔽
------ > 线宽减小,粒子在微槽孔中输运效率降低
解决方法:降低气压, 提高离子流方向性(提高偏置电压)
少,Si,SiNx的刻蚀速率高。 装置壁温度随放电进行升高后,壁上的薄膜沉积减少,基片上的沉
积增加,Si,SiNx的刻蚀速率下降。 SiO2刻蚀受薄膜沉积的影响小,刻蚀速率受装置壁温度的影响小。 (8)放电气压对旁刻速率的影响
(9)基片偏置对各向异性刻蚀的影响 偏置大小
400W
500W
600W
700W
(c)去 除 被 曝 光 掩 膜 ( 显 影 )
(d)等 离 子 体 刻 蚀
p lasma
(e)去 除 光 胶 ( 灰 化 )
等离子体刻蚀过程、原理:
能量馈入
刻蚀反应粒子的产生、输运
( 1) 产 生 化 学 活 性 的 带 电 粒 子 、 中 性自由基 ( 2) 反 应 粒 子 输 运 ( 3) 带 电 粒 子 穿 越 鞘 层 加 速
一番,特征尺寸下降一半。 集成度随时间的增长:
特征长度随时间的下降:
集成电路制造与等离子体刻蚀 集成电路本质:微小晶体管,MOS场效应管的集成 微小晶体管,MOS场的制作:硅片上微结构制作----槽、孔 早期工艺:化学液体腐蚀----湿法工艺
5微米以上 缺点: (a)腐蚀性残液----->降低器件稳定性、寿命
脉冲放电电荷积累、notching的影响
铜线工艺 电路特征长度增加的结果: (a)互连线导线电阻R增加(原因?) (b)导线间杂散电容C增大(原因?) -------互连线的延迟时间RC增加
解决方法: (1)降低R----- >采用高电导率金属材料----- >铜取代铝 (2) 降低C ----- >采用低k绝缘介质材料----- >SiOFx取代SiO2
( 2)反 应 气体 在 侧壁沉积形成抗刻
蚀钝化层
C 4F 8 ⎯ 离⎯⎯解 → C xF y ⎯ 表⎯面⎯聚⎯合 → (C xF y)n-----> 钝 化 层
等离子体刻蚀的特点、优点 (1) 污染小,刻蚀残存物少 (2) 可以实现各向异性刻蚀 (3) 工艺兼容性好:刻蚀、沉积、掺杂
缺点: (1) 成本高
CF4等离子体刻蚀SiO2反应过程
离子轰击作用 三种主要作用
(1)化学增强物理溅射(Chemical en2hanced physical sputtering) 例如,含氟的等离子体在硅表面形成的SiFx 基与元素 Si 相比,其键合能比较低,因而在离子轰击时具有较高 的溅射几率,
(2)晶格损伤诱导化学反应(damage - induced chemical reaction) 离子轰击产生的晶格损伤使基片表面与气体物质的反 应速率增大
(10)刻蚀反应过程中尘埃影响 等离子体刻蚀机拍摄尘埃实验安排
尘埃照片图
不同放电条件的单片细节图
通常的尘埃空间分布图
基片的降落尘埃的SEM照片
刻蚀等离子体尘埃的集结
(11)脉冲放电对刻蚀的影响 脉冲放电的等离子体参数时间演化
On
Off
Plasma Potential
T( μ s )
脉冲放电对刻蚀速率的影响 ---->提高poly Si对SiO2刻蚀选择率的方法
当等离子体中的F ∶C 比率较高(≥4) 时,刻蚀Si的速 率就比刻蚀SiO2 的速率快,
当等离子体中的F∶C 比率较低(< 4) 时, 就会取得较高
的SiO 2/Si刻蚀选择比 ----- >如选用CHF3、C2F6 和C3F8
指导结论(2: 利用改变C/F比控制SiO2Si的刻蚀选择比
(b)不含碳气体---Cl2,NF3,SF6 刻蚀Si的速率就比刻蚀SiO2 的速率快。
☼刻蚀等离子体源的发展趋势 低气压----------大片化 高密度---------高速率 ------> 大面积均匀--脉冲-----
ECR,ICP, HELICON, SWP
☼各类材料/结构刻蚀 微电子
硅---------- mono, poly, doped , undoped 介质刻蚀--- 氧化物刻蚀, 氮氧化物 金属刻蚀---- 铝,钨,钼 光胶掩膜---
(3)化学溅射(chemical sputtering) 活性离子轰击引起一种化学反应,使其先形成弱束缚的 分子,然后从表面脱附。
其他作用 ☼加速反应物的脱附 ---> 提高刻蚀反应速度 ☼控制附加沉积物---> 提高刻蚀的各向异性
☼损伤 等离子体各向异性的实现
等离子体区
鞘层
( 1 )带 电 粒 子 通 过 鞘层加速被准直
偏置频率 频率对自偏压大小的影响
frequency
DCself bias
偏置频率对刻蚀速率的影响
原因:(1)低频时,能量用于加速的比例高,用于电离的少。 (2)低频偏置的自偏压小,波形接近正负对称。在正偏 置时,负离子也可以进入鞘层轰击刻蚀表面。 高频偏置时,负离子不能得到利用。
偏置频率对ARDE的影响
光电子 II-VI, III-V半导体材料,石英光波导 激光器腔面、光栅、镜面 (对于刻蚀表面的光滑度、形状控制要求较高)
微机电 硅 高刻蚀速率 刻蚀形状
☼等离子体刻蚀中的各种效应、影响 (1)宏观负载效应(macro-loading effect)
刻蚀速率(nm/s)
刻 蚀 面 积 ( cm2)
(3)微结构电荷积累(charge built-up)效应
♦电荷积累损伤?
刻 蚀 面 积( cm2) ♦微区差分带电效应----Local notching
(4) 不同刻蚀气体的影响 (a)CF4 ,C2F6,C3F8,C4F10
CF4 ,C2F6,C3F8,C4F10 气体分子中C的含量依次增加,刻蚀 过程中固体表面的C量依次增多。刻蚀速率依次下降。 C量的增加对SiO2,Si刻蚀速率的抑制作用不同。
氩提高电子密度,提高 n ion ---n CF 2
(原因?)
氦主要提高反应气体离解率,离解程度。(原因?)
(6)基片温度对刻蚀的影响 对刻蚀速率(Si)的影响
对侧壁刻蚀速率的影响
对沉积速率的影响
图片例子:基片温度—00C (SF6刻蚀Si)
基片温度— -1000C (SF6刻蚀Si)
附:两类刻蚀
铜线工艺带来的新问题: 低温下,CuClx , CuF的挥发率低,虽然在高于200 oC的温度
下可以取得满意的挥发率,但高温工艺带来许多缺点。
解决方法:大马士革镶嵌法(流程图)
(传统工艺:沉积铝膜,然后刻蚀)
刻蚀等离子体源的发展
(1)简单RFCCP刻蚀源 上世纪70年代,集成电路的快速发展需要干法刻蚀工艺 1973年 美国人Reinberg1 申请射频平板装置专利 射频平板装置盛行了10年
原因:(化学键能)
反应(刻蚀)速率 (5)不同添加刻蚀气体的作用 ♦ CF4中加O2的作用 CF4 等离子体中掺入O2后能提高Si和SiO2的刻蚀速率 原因: O2促进刻蚀反应粒子的产生