2013枣庄中考数学解析
(中考数学复习)第8讲 一元二次方程 课件 解析

(1)证明:∵一元二次方程为x2-(2k+1)x+k2+k=0,
Δ=[-(2k+1)]2-4(k2+k)=1>0,∴此方程有两个不相等的
实数根.
(2)解:∵△ABC的两边AB、AC的长是这个方程的两个实数
根,由(1)知,AB≠AC,△ABC第三边BC的长为5,且
△ABC是等腰三角形,
基础知识 · 自主学习 题组分类 · 深度剖
=2 014.
3.(2013·日照)已知一元二次方程x2-x-3=0的较小根为x1,
则下面对x1的估计正确的是
( A )
A.-2<x1<-1
B.-3<x1<-2
C.2<x1<3
D.-1<x1<0
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
题组三 利用根的判别式解决问题
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 10
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
1.(2013·温州)方程x2-2x-1=0的根是____________. 2.(2013·聊城)若x1=-1是关于x的方程x2+mx-5=0的一个
根,则方程的另一个根x2=___5__.
6
A.x-6=-4 C.x+6=4
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
=x1·(x1+2 013)+2 013x2+x2-2 013 =(x1+2 013)+2 013x1+2 013x2+x2-2 013 =x1+x2+2 013(x1+x2)+2 013-2 013 =1+2 013
山东各市2013年中考数学试题分类解析汇编

山东各市2012年中考数学试题分类解析汇编专题12:押轴题一、选择题1. (2012山东滨州3分)求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S ﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为【 】A .52012﹣1B .52013﹣1 C .2013514- D .2012514-2. (2012山东德州3分)如图,两个反比例函数1y=x 和2y=x-的图象分别是l 1和l 2.设点P 在l 1上,PC ⊥x 轴,垂足为C ,交l 2于点A ,PD ⊥y 轴,垂足为D ,交l 2于点B ,则三角形PAB 的面积为【 】 A .3 B .4 C .92D .5 3. (2012山东东营3分)如图,一次函数y=x+3的图象与x 轴,y 轴交于A ,B 两点,与反比例函数4y=x的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①△CEF 与△DEF 的面积相等;②△AOB ∽△FOE ;③△DCE ≌△CDF ;④AC=BD .其中正确的结论是【 】A .①②B . ①②③C .①②③④D . ②③④6. (2012山东济宁3分)如图,将矩形ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,EH=12厘米,EF=16厘米,则边AD 的长是【 】 A .12厘米 B .16厘米 C .20厘米 D .28厘米7. (2012山东莱芜3分)如图,在梯形ABCD 中,AD ∥BC ,∠BCD =90º,BC =2AD ,F 、E 分别是BA 、 BC 的中点,则下列结论不正确...的是【 】 A .△ABC 是等腰三角形 B .四边形EFAM 是菱形C .S △BEF =12S △ACD D .DE 平分∠CDF8. (2012山东聊城3分)如图,在直角坐标系中,以原点O 为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x 和y=﹣x 分别交于A 1,A 2,A 3,A 4…,则点A 30的坐标是【 】A .(30,30)B .(﹣,)C .(﹣,)D .(,﹣) 10. (2012山东青岛3分)点A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3)都在反比例函数3y=x-的图象上,且 x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系是【 】A .y 3<y 1<y 2B .y 1<y 2<y 3C .y 3<y 2<y 1D .y 2<y 1<y 311. (2012山东日照4分)如图,在斜边长为1的等腰直角三角形OAB 中,作内接正方形A 1B 1C 1D 1;在等腰直角三角形OA 1B 1中,作内接正方形A 2B 2C 2D 2;在等腰直角三角形OA 2B 2中,作内接正方形A 3B 3C 3D 3;……;依次作下去,则第n 个正方形A n B n C n D n 的边长是【 】(A )n 113- (B )n13(C )n 113+ (D )n 213+13. (2012山东威海3分)向一个图案如下图所示的正六边形靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为【 】1- B. 16 C. 1- D. 1514. (2012山东潍坊3分)下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为【 】.A .32B .126C .135D .14415. (2012山东烟台3分)如图,矩形ABCD中,P为CD中点,点Q为AB上的动点(不与A,B重合).过Q作QM⊥PA于M,QN⊥PB于N.设AQ的长度为x,QM与QN的长度和为y.则能表示y与x之间的函数关系的图象大致是【】A.B.C.D.16. (2012山东枣庄3分)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为【】A、14B、16C、20D、28填空题2. (2012山东德州4分)如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2012的坐标为▲ .3. (2012山东东营4分) 在平面直角坐标系xOy 中,点A 1,A 2,A 3,···和B 1,B 2,B 3,···分别在直线y=kx+b和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 1(1,1),A 27322⎛⎫ ⎪⎝⎭,,那么点n A 的纵坐标是 .4. (山东菏泽4分)一个自然数的立方,可以分裂成若干个连续奇数的和.例如:32,33和34分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即3235=+;337911=++;3413151719=+++;……;若36也按照此规律来进行“分裂”,则36“分裂”出的奇数中,最大的奇数是 ▲ .7. (2012山东莱芜4分)将正方形ABCD 的各边按如图所示延长,从射线AB开始,分别在各射线上标记点A 1、A 2、A 3、…,按此规律,点A 2012在射线 ▲ 上.8. (2012山东聊城3分)如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数ky x=(k >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 ▲ .9. (2012山东临沂3分)读一读:式子“1+2+3+4+···+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为1001n n =∑,这里“∑”是求和符号通过对以上材料的阅读,计算()2012111n n n =+∑= ▲ .10. (2012山东青岛3分)如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为 cm .12. (2012山东泰安3分)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为 ▲ .13. (2012山东威海3分)如图,在平面直角坐标系中,线段OA 1=1,OA 1与x 轴的夹角为300。
山东省17市2013年中考数学试题分类解析汇编 专题09 三角形

山东17市2013年中考数学试题分类解析汇编专题09 三角形一、选择题1. (2013年山东东营3分)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值【】A. 只有1个B. 可以有2个C. 可以有3个D. 有无数个2. (2013年山东莱芜3分)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y 关于x的函数图象大致为【】【答案】B。
【考点】动点问题的函数图象, 等边三角形的性质。
【分析】分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:3. (2013年山东聊城3分)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:AB的长为【】A.12米B. C. D.4. (2013年山东聊城3分)如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为【】A.a B.1a2C.1a3D.2a3【答案】C。
【考点】相似三角形的判定和性质。
【分析】∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA。
5. (2013年山东临沂3分)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是【】A.AB=AD B.AC平分∠BCD C.AB=BD D,△BEC≌△DEC6. (2013年山东青岛3分)如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′,A′、B′均在图中格点上,若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为【】A、mn2⎛⎫⎪⎝⎭, B、(m,n) C、nm2⎛⎫⎪⎝⎭, D、m n22⎛⎫⎪⎝⎭,7. (2013年山东日照3分)四个命题:①三角形的一条中线能将三角形分成面积相等的两部分;②有两边和其中一边的对角对应相等的两个三角形全等;③点P(1,2)关于原点的对称点坐标为(-1,-2);④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1<d<7其中正确的是【】A. ①②B.①③C.②③D.③④8. (2013年山东威海3分)如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是【】A. ∠C=2∠AB. BD平分∠ABCC. S△BCD=S△BODD. 点D为线段AC 的黄金分割点∴BD是∠ABC的角平分线,正确,故本选项错误。
2013年中考数学真题试题(解析版)

2013年中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.=9 =﹣2(2.(3分)(2013•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称3.(3分)(2013•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.34.(3分)(2013•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()5.(3分)(2013•济南)图中三视图所对应的直观图是()6.(3分)(2013•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是(),9.(3分)(2013•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过n次抛掷所出现的点数之和大于n=.10.(3分)(2013•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()=,=×(OB×OA=,=11.(3分)(2013•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()12.(3分)(2013•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(2013•济南)cos30°的值是.cos30°==.故答案为:14.(4分)(2013•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.15.(4分)(2013•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.=)﹣)的平均数为[﹣﹣16.(4分)(2013•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2 .先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到然后变形+得=xy=+==17.(4分)(2013•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F 分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).∴CE=CF=﹣a==2+=2+三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(2013•济南)先化简,再求值:÷,其中a=﹣1.﹣••﹣19.(8分)(2013•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5正正11192(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?1913220.(8分)(2013•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.AD=121.(10分)(2013•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?y=y=(2≤x≤3)22.(10分)(2013•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表1和与每列的各数之和均为非负整数,求整数a的值表2.列≤a23.(10分)(2013•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD 和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.∴BD=100BD=100=100米.24.(12分)(2013•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.=3.=,,y=,t+1t+1+2 =PM•CM+PN•OM﹣(),﹣的最大值为。
【精品】2013年山东省17地市中考数学真题全套解析

行, 内错角相等; ( 3 ) 两直线平行, 同旁内角互补. 5 .A ㊀【 解析】 A B C D √
2 2 2 ˑ 2 4 ( a )= a = a 2 a + a = ( 1+ 1 ) a = 2 a ≠a 2 2 2 - 2 0 2 3 a ː a = ( 3ː 1 ) ( a )= 3 a = 3 a ≠2 4 2 4 + 2 6 8 a ·a = a = a ≠a
参考答案及解析·数学
试题亮点展示 亮点 题号 内容描述 “ 以十八大以来, 2 0 1 3年第一季度国内生产总值” 新信息 3 为背景考查科学记数法 m n n m 易错题 5 混淆( a )和a ·a 的运算法则, 导致出错 第2 7题难点在于点的存在性问题的探究, 要考虑 图形存在的各种情况, 进行分类讨论, 是解题 的 难点; 较难题 2 7 、 2 8 第2 8题是二次函数与圆结合的综合题, 其中( 3 ) 问中涉及动点问题, 如何正确作出变化中的图形, D P Q的 周 长 是 解 题 的 利用函数表示出 四边 形 C 难点 1 . 将选择题中的一道统计题放到了填空题中, 选择题中增 加了对解直角三角形的应用、 代数式求值的考查, 减少了 1 2年的概率计算在选择 真命题和必然事件两道判断题, 新变化 题中、 1 3年在解答题中考查. 2 . 第2 2题、 2 5题都呈现间隔式的考查, 1 2年的解不等式 和分式化简换成了实数的运算和解分式方程, 1 2年的统 计换成了概率, 考查方式注重基础 1 .D ㊀【 解析】 根据相反数的概念: 如果两个数只有符号不同, 那么称 其中一个数为另一个数的相反数, 可以得出求一个数的相反数, 只 即: a的相反数是 -a ( 特 要改变该数的符号即可, 数字保持不变. 别的: 0的相 反 数 是 0 ) , 所 以 有 -6的 相 反 数 是 -(-6 )=6 . 概念引申 解答此题, 关键是掌握相反数的概念及性质. 概念 性质 常用解题方法 1 .a 的相反数是 - a ; 2 .若 a 、 b 互为 相反 数, 只有符号不同 则 a + b = 0 ; 相反数 的 两 个 数 互 为 3 .在数 轴上, 表 示 互为 概念及性质 1 相反数 0除外) 的两个 相反数( 点位 于 原 点 两 侧, 且关 于原点对称 2 .A ㊀【 解析】 主视图即从正面看到的图形, 从正面看, 可以看到 3个 小正方形, 分两层, 下面一层有两个小正方形, 上面一层靠右边有 一个小正方形, 故选 A . 概念引申 要解答此类问题, 需要理解三视图的概念和画法. 名称 概念 特征 在正面内得到的由前向后 主视 图 与 俯 视 图 表 示 同 主视图 观察物体的视图 一物体的长, 主视图与左 在水平面内由上向下观察 视图表示同一物体的高, 俯视图 左视 图 与 俯 视 图 表 示 同 物体得到的视图 一物 体 的 宽, 因此要“ 长 在侧面内由左向右观察物 左视图 对正, 高平齐, 宽相等” 体得到的视图 3 .B ㊀【 解析】 根据科学记数法的概念: 一般地, 一个大于 1 0的数可以 n ˑ 1 0 的形式, 其中, 1 1 0 , n是正整数, 可以得出, 将 表示成 a ≤ a< 一个大数表示成科学记数法, 需满足 1 < 1 0 , 可得 a = 1 . 1 8 9 ; 且 ≤a
2024年山东省枣庄市中考 数学试题(枣庄聊城临沂菏泽)(解析版)

2024年枣庄市初中学业水平考试数学本试卷共8页.满分120分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号和座号填写在答题卡规定的位置上,并在本页上方空白处写上姓名和准考证号.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1. 下列实数中,平方最大的数是()A. 3B. 12C. 1−D. 2−【答案】A【解析】【分析】本题考查的是实数的大小比较,乘方运算,先分别计算各数的乘方,再比较大小即可.【详解】解:∵239=,21124=,()211−=,()224−=,而1149 4<<<,∴平方最大的数是3;故选A2. 用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形的是()A.B. C. D.【答案】D【解析】 【分析】本题考查的是中心对称图形与轴对称图形的概念,常见的中心对称图形有平行四边形、圆形、正方形、长方形等等.常见的轴对称图形有等腰三角形,矩形,正方形,等腰梯形,圆等等.根据中心对称图形与轴对称图形的概念,进行判断即可.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A .该图形是轴对称图形,不是中心对称图形,故此选项不合题意;B .该图形是轴对称图形,不是中心对称图形,故此选项不合题意;C .该图形是轴对称图形,不是中心对称图形,故此选项不合题意;D .该图形既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D .3. 2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为( )A. 30.61910×B. 461.910×C. 56.1910×D. 66.1910× 【答案】C【解析】【分析】本题考查用科学记数法的表示方法,一般形式为10n a ×,其中110a ≤<,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的值与小数点移动位数相同,确定a 与n 的值是解题关键.【详解】解:61.9万5619000 6.1910=×,故选:C .4. 下列几何体中,主视图是如图的是( )A B. C. D. .【答案】D【解析】【分析】本题考查了几何体的三视图,从前面看到的图形是主视图,从上面看到的图形是俯视图,从左边看到的图形是左视图.能看到的线画实线,看不到的线画虚线.根据主视图是从正面看到的图形分析即可.【详解】解:A .主视图是等腰三角形,不符合题意;B .主视图是共底边的两个等腰三角形,故不符合题意;C .主视图是上面三角形,下面半圆,故不符合题意;D .主视图是上面等腰三角形,下面矩形,故符合题意;故选:D .5. 下列运算正确的是( )A. 437a a a +=B. ()2211a a −=−C. ()2332a b a b =D. ()2212a a a a +=+ 【答案】D【解析】【分析】本题考查合并同类项,幂的乘方运算,完全平方公式,单项式乘以多项式,掌握其运算法则是解决此题的关键.按照运算规律进行计算即可.【详解】解:A .式子中两项不是同类项,不能合并,故A 不符合题意;B . ()22121a a a −=−+,故B 不符合题意;C . ()2362a b a b =,故C 不符合题意;D . ()2212a a a a +=+,故D 符合题意.故选D .6. 为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( )A. 200B. 300C. 400D. 500【答案】B【解析】【分析】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.设改造后每天生产的产品件数为x ,则改造前每天生产的产品件数为()100x −,根据“改造后生产600件的时间与改造前生产400件的时间相同”列出分式方程,解方程即可.【详解】解:设改造后每天生产的产品件数为x ,则改造前每天生产的产品件数为()100x −, 根据题意,得:600400100x x =−, 解得:300x =,经检验300x =是分式方程的解,且符合题意,答:改造后每天生产产品件数300.故选:B .7. 如图,已知AB ,BC ,CD 是正n 边形的三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN .若120ABN ∠=°,则n 的值为( )A. 12B. 10C. 8D. 6【答案】A【解析】 【分析】本题考查的是正多边形的性质,正多边形的外角和,先求解正多边形的1个内角度数,得到正多边形的1个外角度数,再结合外角和可得答案.【详解】解:∵正方形BCMN ,∴90NBC ∠=°,∵120ABN ∠=°,∴36090120150ABC ∠=°−°−°=°,∴正n 边形的一个外角为18015030°−°=°,∴n 的值为3601230°=°; 故选A8. 某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( ) A. 19 B. 29 C. 13 D. 23【答案】C【解析】的【分析】本题考查了用列表法或画树状图法求概率.首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及甲与乙恰好选择同一项活动的情况,再利用概率公式求解即可求得答案.【详解】解:设跳绳、踢毽子、韵律操分别为A 、B 、C ,画树状图如下,共有9种等可能的结果,甲、乙恰好选择同一项活动的有3种情况, 故他们选择同一项活动的概率是3193=, 故选:C .9. 如图,点E 为ABCD 的对角线AC 上一点,5AC =,1CE =,连接DE 并延长至点F ,使得EF DE =,连接BF ,则BF 为( )A. 52B. 3C. 72D. 4【答案】B【解析】【分析】本题考查了平行四边形的性质,平行线分线段成比例定理,平行证明相似等知识点,正确作辅助线是解题关键.作辅助线如图,由平行正相似先证DEC GAE ∽,再证BGF AGE ∽,即可求得结果.【详解】解:延长DF 和AB ,交于G 点,∵四边形ABCD 是平行四边形,∴DC AB ∥,DC AB =即DC AG ∥,∴DEC GAE ∽∴CEDE DC AE GE AG==, ∵5AC =,1CE =,∴514AE AC CE =−=−=, ∴14CE DE DC AE GE AG ===, 又∵EF DE =,14DE DE GE EF FG ==+, ∴13EF FG =, ∵14DC DC AG AB BG ==+,DC AB =, ∴13DC BG =, ∴13EF DC FG BG ==, ∴34BG FG AG EG == ∴AE BF ∥,∴BGF AGE ∽, ∴34BFFG AE EG == ∵4AE =,∴3BF =.故选:B .10. 根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ;②1班学生的最低身高小于150cm ;③2班学生的最高身高大于或等于170cm .上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③【答案】D【解析】 【分析】本题考查了二元一次方程、不等式的应用,设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b ,根据1班班长的对话,得180x ≤,350x a +=,然后利用不等式性质可求出170a ≥,即可判断①,③;根据2班班长的对话,得140b >,290y b +=,然后利用不等式性质可求出150y <,即可判断②.【详解】解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b ,根据1班班长的对话,得180x ≤,350x a +=,∴350x a =−∴350180a −≤,解得170a ≥,故①,③正确;根据2班班长的对话,得140b >,290y b +=, ∴290b y =−, ∴290140y −>,∴150y <,故②正确,故选:D .二、填空题:本题共6小题,每小题3分,共18分.11. 因式分解:22x y xy +=________. 【答案】()2xy x +【解析】分析】本题考查了因式分解,直接提取公因式xy 即可.【详解】解:原式()2xy x +,故答案为: ()2xy x +.【12. 写出满足不等式组21215x x +≥ −<的一个整数解________. 【答案】1−(答案不唯一)【解析】【分析】本题考查一元一次不等式组的解法,解题的关键是正确掌握解一元一次不等式组的步骤.先解出一元一次不等式组的解集为13x −≤<,然后即可得出整数解.【详解】解:21215x x +≥ −< ①②,由①得:1x ≥−,由②得:3x <,∴不等式组的解集为:13x −≤<,∴不等式组的一个整数解为:1−;故答案为:1−(答案不唯一).13. 若关于x 的方程2420x x m −+=有两个相等的实数根,则m 的值为________. 【答案】14##0.25 【解析】“当Δ0=时,方程有两个相等的实数根”是解题的关键. 根据方程的系数结合根的判别式,即可得出2242440b ac m ∆=−=−××=,解之即可得出结论.【详解】解:∵关于x 的方程2420x x m −+=有两个相等的实数根,∴2242444160b ac m m ∆=−=−××=−=, 解得:14m =. 故答案为:14. 14. 如图,ABC 是O 的内接三角形,若OA CB ∥,25ACB ∠=°,则CAB ∠=________.【答案】40°##40度【解析】【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理等知识,利用圆周角定理求出AOB ∠的度数,利用等边对等角、三角形内角和定理求出OAB ∠的度数,利用平行线的性质求出OAC ∠的度数,即可求解.【详解】解∶连接OB ,∵25ACB ∠=°,∴250AOB ACB ∠=∠=°,∵OA OB =, ∴()1180652OAB OBA AOB ∠=∠=°−∠=°, ∵OA CB ∥,∴25A OAC CB ∠=°∠=,∴40CAB OAB OAC ∠=∠−∠=°,故答案为:40°.15. 如图,已知MAN ∠,以点A 为圆心,以适当长为半径作弧,分别与AM 、AN 相交于点B ,C ;分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧在MAN ∠内部相交于点P ,作射线AP .分别以A ,B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点D ,E ,作直线DE 分别与AB ,AP 相交于点F ,Q .若4AB =,67.5PQE ∠=°,则F 到AN 的距离为________.【解析】【分析】如图,过F 作FH AC ⊥于H ,证明BAP CAP ∠=∠,DE AB ⊥,122AFBF AB ===,再证明45FAH ∠=°,再结合勾股定理可得答案.【详解】解:如图,过F 作FH AC ⊥于H ,由作图可得:BAP CAP ∠=∠,DE AB ⊥,122AFBF AB ===, ∵67.5PQE ∠=°,∴67.5AQF ∠=°,∴9067.522.5BAP CAP ∠=∠=°−°=°,∴45FAH ∠=°,∴AH FH AF ===,∴F 到AN ;【点睛】本题考查了作图−复杂作图:基本作图,三角形的内角和定理的应用,勾股定理的应用,等腰三角形的判定,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质,逐步操作. 16. 任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy 中,将点(),x y 中的x ,y 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x ,y 均为正整数.例如,点()6,3经过第1次运算得到点()3,10,经过第2次运算得到点()10,5,以此类推.则点()1,4经过2024次运算后得到点________.【答案】()2,1【解析】【分析】本题考查了新定义,点的规律,根据新定义依次计算出各点的坐标,然后找出规律,最后应用规律求解即可.【详解】解:点()1,4经过1次运算后得到点为()131,42×+÷,即为()4,2,经过2次运算后得到点为()42,21÷÷,即为()2,1,经过3次运算后得到点为()22,131÷×+,即为()1,4,……,发现规律:点()1,4经过3次运算后还是()1,4,∵202436742÷= ,∴点()1,4经过2024次运算后得到点()2,1,故答案为:()2,1.三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.17. (11122− +−−; (2)先化简,再求值:212139a a a +−÷ +− ,其中1a =. 【答案】(1)3 (2)3a − 2−【解析】【分析】本题主要考查实数的运算、分式的运算:(1)根据求算术平方根和负整数指数幂、有理数的减法的运算法则计算即可;(2)先通分,然后求解即可.【详解】(1)原式112+322=+= (2)原式()()3123333a a a a a a ++ −÷ +++− ()()332·32a a a a a +−+=++ 3a =−将1a =代入,得原式132=−=−18. 【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=°,64PBA ∠=°.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90°≈,sin790.98°≈,cos790.19°≈,sin370.60°≈,tan370.75°≈)【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案:如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号)①解直角三角形 ②三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.【答案】(1)A ,P 两点间的距离为89.8米;(2)② 【解析】【分析】本题考查的是全等三角形的判定与性质的应用,解直角三角形的应用,灵活应用知识点是解本题的关键;(1)如图,过B 作BH AP ⊥于H ,先求解cos79600.1911.4AH AB =⋅°≈×=,sin79600.9858.8BH AB =⋅°≈×=,再求解37APB ∠=°及PH 即可;(2)由全等三角形的判定方法可得()ASA ADP EDF ≌,可得AP EF =,从而可得答案.【详解】解:如图,过B 作BH AP ⊥于H ,∵60AB =米,79PAB ∠=°,sin790.98°≈,cos790.19°≈,∴cos79600.1911.4AH AB =⋅°≈×=,sin79600.9858.8BH AB =⋅°≈×=,∵79PAB ∠=°,64PBA ∠=°, ∴180796437APB ∠=°−°−°=°, ∴tan tan 370.75BH APBPH ∠=°=≈, ∴58.878.40.75PH ≈=, ∴11.478.489.8AP AH PH =+=+=(米); 即A ,P 两点间的距离为89.8米;(2)∵AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,∴ADP EDF ∠=∠,∴()ASA ADP EFD ≌,∴AP EF =,∴只需测量EF 即可得到AP 长度;∴乙小组的方案用到了②;19. 某学校开展了“校园科技节”活动,活动包含模型设计、科技小论文两个项目.为了解学生的模型设计水平,从全校学生的模型设计成绩中随机抽取部分学生的模型设计成绩(成绩为百分制,用x 表示),并将其分成如下四组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤.下面给出了部分信息:8090x ≤<的成绩为:81,81,82,82,83,83,84,84,84,85,86,86,86,87,88,88,88,89,89,89.根据以上信息解决下列问题:(1)请补全频数分布直方图;(2)所抽取学生的模型设计成绩的中位数是________分;(3)请估计全校100080分的人数;(4)根据活动要求,学校将模型设计成绩、科技小论文成绩按3:2的比例确定这次活动各人的综合成绩.某班甲、乙两位学生的模型设计成绩与科技小论文成绩(单位:分)如下:模型设计 科技小论文甲的成绩9490 乙的成绩9095 通过计算,甲、乙哪位学生的综合成绩更高?【答案】(1)画图见解析(2)83(3)600人(4)甲的综合成绩比乙高.【解析】【分析】(1)先求解总人数,再求解7080x ≤<的人数,再补全图形即可;(2)根据中位数的含义确定第25个,第26个数据的平均数即可得到中位数;(3)由总人数乘以80分含80以上的人数百分比即可得到答案;(4)根据加权平均数公式分别计算甲,乙二人成绩,再比较即可【小问1详解】解:∵510%50÷=,而8090x ≤<有20人,∴7080x ≤<有502051015−−−=,补全图形如下:。
2023年山东省枣庄市中考数学真题(答案解析)

2023年枣庄市初中学业水平考试数学一、选择题1.【答案】A【解析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.2.【答案】C 【解析】解:由题意,得:“卯”的主视图为:故选C .3.【答案】A【解析】解:159万61590000 1.5910==⨯;故选A .4.【答案】D【解析】解:设快马x 天可以追上慢马,依题意,得:240x -150x =150×12.故选:D .5.【答案】C【解析】解:A 选项,4442x x x +=,选项计算错误,不符合题意;B 选项,()32628x x -=-,选项计算错误,不符合题意;C 选项,633x x x ÷=,选项计算正确,符合题意;D 选项,235x x x ×=,选项计算错误,不符合题意;故选C .6.【答案】D【解析】解:中位数为第15个和第16个的平均数为:9992+=,众数为9.故选:D .7.【答案】A【解析】解:48A D A ∠=∠∠=︒ ,,48D ∴∠=︒,80APD APD B D ∠=︒∠=∠+∠ ,,804832B APD D ∴∠=∠-∠=︒-︒=︒,故选:A .8.【答案】B 【解析】解:如图:∵正六边形的一个外角的度数为:360606︒=︒,∴正六边形的一个内角的度数为:18060120︒-︒=︒,即:460,25120∠=︒∠+∠=︒,∵一束太阳光线平行照射在放置于地面的正六边形上,144∠=︒,∴3144∠=∠=︒,∴534104∠=∠+∠=︒,∴2120516∠=︒-∠=︒;故选B .9.【答案】D【解析】解:由题意得:AB AD =,AP 为BAC ∠的平分线,90ABC ∠=︒ ,30C ∠=︒,60BAC ∴∠=︒,ABD ∴ 为等边三角形,AP ∴为BD 的垂直平分线,BE DE ∴=,故A 的结论正确;ABD 为等边三角形,60ABD ∴∠=︒,60ADB ∠=︒,30DBE ∴∠=︒,BE DE = ,30EDB EBD ∴∠=∠=︒,90ADE ADB EDB ∴∠=∠+∠=︒,DE AC ∴⊥.90ABC ∠=︒ ,30C ∠=︒,2AC AB ∴=,AB AD = ,AD CD ∴=,DE ∴垂直平分线段AC ,AE CE ∴=,故B 的结论正确;Rt CDE 中,30C ∠=︒,2CE DE ∴=,BE DE = ,2CE BE ∴=,故C 的结论正确.90EDC ABC ∠=∠=︒ ,C C ∠=∠,CDE CBA ∴ ∽,∴2()CDE CBA S DE S AB∆∆=,= AD AB ,∴3tan tan 303DE DE DAE AB AD ==∠=︒=,∴21()3CDE CBA S DE S AB ∆∆==,故D 的结论错误;故选:D .10.【答案】C 【解析】解:∵抛物线开口向上,对称轴为直线12b x a=-=,与y 轴交于负半轴,∴0,20,0a b a c >=-<<,∴0abc >;故①错误;由图可知,抛物线与x 轴的一个交点的横坐标的取值范围为:10x -<<,∵抛物线关于直线1x =对称,∴抛物线与x 轴的一个交点的横坐标的取值范围为:23x <<,∴方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3;故②正确;∵0a >,∴抛物线上的点离对称轴的距离越远,函数值越大,∵()1230,,,2y y ⎛⎫ ⎪⎝⎭是抛物线上的两点,且30112->-,∴12y y >;故③错误;∵0,2a b a>=-∴()112522252a c a a b c a a b c +=+-+=+-+,由图象知:=1x -,0y a b c =-+>,∴()112520a c a a b c +=+-+>;故④正确;∵0a >,对称轴为直线1x =,∴当1x =时,函数值最小为:a b c ++,∴对于任意实数m ,都有2am bm c a b c ++≥++,即:2am bm a b +≥+,∴()m am b a b +≥+;故⑤正确;综上:正确的有3个;故选C .二、填空题11.【答案】3【解析】解:)10112-⎛⎫+ ⎪⎝⎭12=+3=故答案为:3.12.【答案】2019【解析】解:∵3x =是关x 的方程26ax bx -=的解,∴2336a b ⋅-=,即:32a b -=,∴202362a b-+()202323a b =--202322=-⨯20234=-2019=;故答案为:2019.13.【答案】()3,1-【解析】解:∵B ,C 的坐标分别为(3,2),(4,3)-,∴坐标系的位置如图所示:∴点A 的坐标为:()1,3--,连接OA ,将OA 绕点O 顺时针旋转90︒后,如图,叶柄上点A 对应点的坐标为()3,1-;故答案为:()3,1-14.【答案】(3+##)3+【解析】解:过点B 作BD EF ⊥于点D ,过点A 作AC BD ⊥交BD 于点C ,交OM 于点N ,∵OM EF ⊥,∴OM BC ∥,∴AN OM ⊥,∴四边形MDCN 为矩形,∴MN CD =,∵6AB =,:2:1AO OB =,∴243AO AB ==,在Rt ANO 中,4AO =,45AOM ∠=︒,∴2cos 4542ON OA =⋅︒=⨯=∴3CD MN OM ON ==-=-在Rt ACB △中,6AB =,45AOM ∠=︒,∴2cos 4562BC AB =⋅︒=⨯=;∴33BD BC CD =+=-+;故答案为:3.15.【答案】172【解析】解:7,CE CEF = 的周长为32,32725CF EF ∴+=-=.F 为DE 的中点,DF EF ∴=.90BCD ∠=︒ ,12CF DE ∴=,112.52EF CF DE ∴===,225DE EF ∴==,24CD ∴=.四边形ABCD 是正方形,24BC CD ∴==,O 为BD 的中点,OF ∴是BDE 的中位线,1117()(247)222OF BC CE ∴=-=-=.故答案为:172.16.【答案】2023253【解析】当1x =时,1P 的纵坐标为8,当2x =时,2P 的纵坐标为4,当3x =时,3P 的纵坐标为83,当4x =时,4P 的纵坐标为2,当5x =时,5P 的纵坐标为85,…则11(84)84S =⨯-=-;2881(4)433S =⨯-=-;3881(2)233S =⨯-=-;481(22558S =⨯-=-;…881n S n n =-+;1238888888844228335111n n S S S S n n n n +++⋯+=-+-+-+-+-=-+++ ,∴12320238202320242532023S S S S ⨯+++⋯+==.故答案为:2023253.三、解答题17.【答案】21a a a--,12【解析】解:原式222223111a a a a a a a ⎛⎫=-÷ ⎪-⎝⎭---()2222111a a aa a a =⋅----21a aa =--;∵220,10a a ≠-≠,∴0,1a a ≠≠±,23=<<=,∴1a -<<的整数解有:0,1,2,∵0,1a a ≠≠±,∴2a =,原式2122221--==.18.【答案】(1)观察发现四个图形都是轴对称图形,且面积相等;(2)见解析【解析】解:(1)观察发现四个图形都是轴对称图形,且面积相等;故答案为:观察发现四个图形都是轴对称图形,且面积相等;(2)如图:19.【答案】(1)1;2;(2)1x =,【解析】(1)4⨯ <32,434361∴=+-=※,()132--⨯ >(1)(3)1(3)2∴--=---=※;故答案为:1;2;(2)若322(1)x x +≥-时,即4x ≥-时,则(32)(1)5x x +--=,解得:1x =,若322(1)x x +-<时,即4x -<时,则(32)(1)65x x ++--=,解得:52x =,不合题意,舍去,1x ∴=,20.【答案】(1)20,2,1(2)图见解析(3)35【解析】(1)解:()1215%20+÷=(人),∴一共调查了20人;∴C 组人数为:2025%5⨯=(人),∴C 组女生有:532-=(人);由扇形统计图可知:D 组的百分比为115%25%50%10%---=,∴D 组人数为:2010%2⨯=(人),∴D 组男生有:211-=(人);故答案为:20,2,1(2)补全图形如下:(3)用,,A B C 表示3名男生,用,D E 表示两名女生,列表如下:AB C D E A(),A B (),A C (),A D (),A E B(),B A (),B C (),B D (),B E C (),C A (),C B (),C D (),C ED(),D A (),D B (),D C (),D E E (),E A (),E B (),E C (),E D 共有20种等可能的结果,其中所选的学生恰好是一名男生和一名女生的结果有12种,∴123205P ==.21.【答案】(1)112y x =-,图见解析(2)<2x -或04x <<(3)30,2P ⎛⎫ ⎪⎝⎭或70,2P ⎛-⎫ ⎪⎝⎭【解析】(1)解:∵一次函数(0)y kx b k =+≠的图象与反比例函数4y x=的图象交于(,1),(2,)A m B n -两点,∴24m n =-=,∴4,2m n ==-,∴(4,1),(2,2)A B --,∴4122k b k b +=⎧⎨-+=-⎩,解得:121k b ⎧=⎪⎨⎪=-⎩,∴112y x =-,图象如图所示:(2)解:由图象可知:不等式4kx b x+<的解集为<2x -或04x <<;(3)解:当点P 在y 轴正半轴上时:设直线AB 与y 轴交于点D ,∵112y x =-,当0x =时,1y =-,当0y =时,2x =,∴()()2,0,0,1C D -,∴1PD a =+,∴()()1151412222APC APD PCD S S S a a =-=⨯+⨯-+⨯= ,解得:32a =;∴30,2P ⎛⎫ ⎪⎝⎭;当点P 在y 轴负半轴上时:1PD a =--,∴1151412222APC APD PCD S S S a a =-=⨯--⨯-⨯--⨯= 解得:72a =-或32a =(不合题意,舍去);∴70,2P ⎛-⎫ ⎪⎝⎭.综上:30,2P ⎛⎫⎪⎝⎭或70,2P ⎛-⎫ ⎪⎝⎭.22.【答案】(1)见解析;(2)3BC =;(3)23π【解析】(1)证明:连接OC ,∵点C 是 AD 的中点,,∴ AC DC=,∴ABC EBC ∠=∠,∵OC OB =,∴ABC OCB ∠=∠,∴EBC OCB ∠=∠,∴OC BE ∥,∵BE CE ⊥,∴半径OC CE ⊥,∴CE 是O 切线;(2)连接AC ,∵AB 是O 的直径,∴90ACB ∠=︒,∴90ACB CEB ∠=∠=︒,∵ABC EBC ∠=∠,∴ACB CEB ∽,∴AB BC BC BE =,∴43BC BC =,∴BC =;(3)连接OD CD ,,∵4AB =,∴2OC OB ==,∵在Rt BCE △中,3BC BE ==,∴3cos2BE CBE BC ∠===,∴30CBE ∠=︒,∴60COD ∠=︒,∴60AOC ∠=︒,∵OC OD =,∴COD △是等边三角形,∴60CDO ∠=︒,∴CDO AOC ∠=∠,∴CD AB ∥,∴COD CBD S S = ,∴COD S S =阴扇形260223603ππ⨯==,23.【答案】(1)223y x x =-++(2(3)存在,()1,3Q 或()1,1Q 或()1,5Q 【解析】(1)解:∵抛物线2y x bx c =-++经过(1,0),(0,3)A C -两点,∴103b c c --+=⎧⎨=⎩,解得:23b c =⎧⎨=⎩,∴223y x x =-++;(2)∵()222314y x x x =-++=--+,∴()1,4M ,设直线)0:(A y k M x m k =+≠,则:04k m k m -+=⎧⎨+=⎩,解得:22k m =⎧⎨=⎩,∴22:A y M x =+,当0x =时,2y =,∴()0,2D ;作点D 关于x 轴的对称点D ¢,连接D M ',则:()0,2D '-,MH DH MH D H D M ''+=+≥,∴当,,M H D '三点共线时,MH DH +有最小值为D M '的长,∵()0,2D '-,()1,4M ,∴D M '==,即:MH DH +;(3)解:存在;∵()222314y x x x =-++=--+,∴对称轴为直线1x =,设(),P p t ,()1,Q n ,当以D ,M ,P ,Q 为顶点的四边形是平行四边形时:①DM 为对角线时:10142p t n +=+⎧⎨+=+⎩,∴06p t n =⎧⎨+=⎩,当0p =时,3t =,∴3n =,∴()1,3Q ;②当DP 为对角线时:01124p t n +=+⎧⎨+=+⎩,∴224p t n =⎧⎨+=+⎩,当2p =时,222233t =-+⨯+=,∴1n =,∴()1,1Q ;③当MP 为对角线时:10142p t n +=+⎧⎨+=+⎩,∴02p n t =⎧⎨-=⎩,当0p =时,3t =,∴3n =,∴()1,5Q ;综上:当以D ,M ,P ,Q 为顶点的四边形是平行四边形时,()1,3Q 或()1,1Q 或()1,5Q .24.【答案】(1)四边形AEDG 是菱形,理由见解析(2)30【解析】(1)解:四边形AEDG 是菱形,理由如下:∵在ABC 中,AB AC =,AD 是BC 边上的中线,∴1,2AD BC BD CD BC ⊥==,∵将ABC 的两个顶点B ,C 分别沿,EF GH 折叠后均与点D 重合,∴11,,,,,22EF BC GH BC BE DE CG CD BF FD BD CH DH CD ⊥⊥======,∴EF AD ∥,∴1BF BE FD AE ==,∴12BE AE AB ==,同法可得:12CG AG AC ==,∴,AE DE AG DG ==,∵AB AC =,∴AE DE DG AG ===,∴四边形AEDG 是菱形;(2)解:∵折叠,∴,GDC C MHB B ∠=∠∠=∠,∵AB AC =,∴B C ∠=∠,∴,GDC B MHB C ∠=∠∠=∠,∴,MH AC DG AB ∥∥,∴四边形AMKG 为平行四边形,∵1730AB AC BC ===,,由(1)知:1151522BD CD BC DH CH =====,,11722DG AG AB ===,∴4GH =,过点H 作HE CG ⊥于点E ,∵1122CHG S CH HG HE =⋅=⋅ ,∴154302CG HE ⋅=⨯=,∵四边形MKGA 的面积AG HE =⋅,AG CG =,∴四边形MKGA 的面积30CG HE =⋅=.。
2024年山东省枣庄市中考数学真题试题及答案

2024年枣庄市中考数学真题试卷一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求. 1. 下列实数中,平方最大的数是( )A. 3B. 12C. 1-D. 2- 2. 用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D. 3. 2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为( )A. 30.61910⨯B. 461.910⨯C. 56.1910⨯D. 66.1910⨯ 4. 下列几何体中,主视图是如图的是( )A. B. C. D. 5. 下列运算正确的是( )A. 437a a a +=B. ()2211a a -=-C. ()2332a b a b =D. ()2212a a a a +=+ 6. 为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( )A. 200B. 300C. 400D. 5007. 如图,已知AB ,BC ,CD 是正n 边形的三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN .若120ABN ∠=︒,则n 的值为( )A. 12B. 10C. 8D. 68. 某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( ) A. 19 B. 29 C. 13 D. 239. 如图,点E 为ABCD 的对角线AC 上一点,5AC =,1CE =,连接DE 并延长至点F ,使得EF DE =,连接BF ,则BF 为( )A. 52B. 3C. 72D. 410. 根据以下对话给出下列三个结论①1班学生的最高身高为180cm①1班学生的最低身高小于150cm①2班学生的最高身高大于或等于170cm .上述结论中,所有正确结论的序号是( )A. ①①B. ①①C. ①①D. ①①①二、填空题:本题共6小题,每小题3分,共18分.11. 因式分解:22x y xy +=________.12. 写出满足不等式组21215x x +≥⎧⎨-<⎩的一个整数解________. 13. 若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为________.14. 如图,ABC ∆是O 的内接三角形,若OA CB ∥,25ACB ∠=︒,则CAB ∠=________.15. 如图,已知MAN ∠,以点A 为圆心,以适当长为半径作弧,分别与AM ,AN 相交于点B ,C ;分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧在MAN ∠内部相交于点P ,作射线AP .分别以A ,B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点D ,E ,作直线DE 分别与AB ,AP 相交于点F ,Q .若4AB =,67.5PQE ∠=︒,则F 到AN 的距离为________.16. 任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy 中,将点(),x y 中的x ,y 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x ,y 均为正整数.例如,点()6,3经过第1次运算得到点()3,10,经过第2次运算得到点()10,5,以此类推.则点()1,4经过2024次运算后得到点________.三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.17. (11122-⎛⎫-- ⎪⎝⎭(2)先化简,再求值:212139a a a +⎛⎫-÷ ⎪+-⎝⎭,其中1a =. 18. 【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=︒,64PBA ∠=︒.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90︒≈,sin790.98︒≈,cos790.19︒≈,sin370.60︒≈,tan370.75︒≈)【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号)①解直角三角形 ①三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案. 19. 某学校开展了“校园科技节”活动,活动包含模型设计、科技小论文两个项目.为了解学生的模型设计水平,从全校学生的模型设计成绩中随机抽取部分学生的模型设计成绩(成绩为百分制,用x 表示),并将其分成如下四组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤.下面给出了部分信息8090x ≤<的成绩为:81,81,82,82,83,83,84,84,84,85,86,86,86,87,88,88,88,89,89,89.根据以上信息解决下列问题(1)请补全频数分布直方图(2)所抽取学生的模型设计成绩的中位数是________分(3)请估计全校1000名学生的模型设计成绩不低于80分的人数(4)根据活动要求,学校将模型设计成绩、科技小论文成绩按3:2的比例确定这次活动各人的综合成绩. 某班甲、乙两位学生的模型设计成绩与科技小论文成绩(单位:分)如下通过计算,甲、乙哪位学生的综合成绩更高?20. 列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与k y x=部分自变量与函数值的对应关系(1)求a ,b 的值,并补全表格(2)结合表格,当2y x b =+的图像在k y x=的图像上方时,直接写出x 的取值范围. 21. 如图,在四边形ABCD 中,AD BC ∥,60DAB ∠=︒,22AB BC AD ===.以点A 为圆心,以AD 为半径作DE 交AB 于点E ,以点B 为圆心,以BE 为半径作EF 所交BC 于点F ,连接FD 交EF 于另一点G ,连接CG .(1)求证:CG 为EF 所在圆的切线(2)求图中阴影部分面积.(结果保留π)22. 一副三角板分别记作ABC 和DEF ,其中90ABC DEF ∠=∠=︒,45BAC ∠=︒,30EDF ∠=︒,AC DE =.作BM AC ⊥于点M ,EN DF ⊥于点N ,如图1.(1)求证:BM EN =(2)在同一平面内,将图1中的两个三角形按如图2所示的方式放置,点C 与点E 重合记为C ,点A 与点D 重合,将图2中的DCF 绕C 按顺时针方向旋转α后,延长BM 交直线DF 于点P .①当30α=︒时,如图3,求证:四边形CNPM 为正方形①当3060α︒<<︒时,写出线段MP ,DP ,CD 的数量关系,并证明;当60120α︒<<︒时,直接写出线段MP ,DP ,CD 的数量关系.23. 在平面直角坐标系xOy 中,点()2,3P -在二次函数()230y ax bx a =+->的图像上,记该二次函数图像的对称轴为直线x m =.(1)求m 的值(2)若点(),4Q m -在23y ax bx =+-的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ≤≤时,求新的二次函数的最大值与最小值的和(3)设23y ax bx =+-的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <-<,求a 的取值范围.2024年枣庄市中考数学真题试卷答案一、选择题.1.【答案】A2. 【答案】D3. 【答案】C4. 【答案】D5. 【答案】D6. 【答案】B7. 【答案】A8. 【答案】C9. 【答案】B【解析】解:延长DF 和AB ,交于G 点①四边形ABCD 是平行四边形①DC AB ∥,DC AB =即DC AG ∥ ①DEC GAE ∽ ①CE DE DC AE GE AG== ①5AC =,1CE =①514AE AC CE =-=-=①14CE DE DC AE GE AG === 又①EF DE =,14DE DE GE EF FG ==+ ①13EF FG = ①14DC DC AG AB BG ==+,DC AB = ①13DC BG = ①13EF DC FG BG == ①34BG FG AG EG == ①AE BF ∥①BGF AGE ∽ ①34BF FG AE EG == ①4AE =①3BF =.故选:B .10. 【答案】D【解析】解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b根据1班班长的对话,得180x ≤,350x a += ①350x a =-①350180a -≤解得170a ≥故①,①正确根据2班班长的对话,得140b >,290y b +=①290b y =-①290140y ->①150y <故①正确故选:D .二、填空题.11. 【答案】()2xy x +12. 【答案】1-(答案不唯一)【解析】解:21215x x +≥⎧⎨-<⎩①② 由①得:1x ≥-由①得:3x <①不等式组的解集为:13x -≤<①不等式组的一个整数解为:1-故答案为:1-(答案不唯一).13. 【答案】14【解析】解:①关于x 的方程2420x x m -+=有两个相等的实数根①2242444160b ac m m ∆=-=-⨯⨯=-= 解得:14m =.故答案为:14. 14. 【答案】40︒【解析】解①连接OB①25ACB ∠=︒①250AOB ACB ∠=∠=︒①OA OB = ①()1180652OAB OBA AOB ∠=∠=︒-∠=︒ ①OA CB ∥①25A OAC CB ∠=︒∠=①40CAB OAB OAC ∠=∠-∠=︒故答案为:40︒.15.【解析】解:如图,过F 作FH AC ⊥于H由作图可得:BAP CAP ∠=∠,DE AB ⊥,122AF BF AB === ①67.5PQE ∠=︒①67.5AQF ∠=︒①9067.522.5BAP CAP ∠=∠=︒-︒=︒①45FAH ∠=︒①AH FH AF ===①F 到AN16. 【答案】()2,1【解析】解:点()1,4经过1次运算后得到点为()131,42⨯+÷,即为()4,2 经过2次运算后得到点为()42,21÷÷,即为()2,1经过3次运算后得到点为()22,131÷⨯+,即为()1,4……发现规律:点()1,4经过3次运算后还是()1,4①202436742÷=①点()1,4经过2024次运算后得到点()2,1故答案为:()2,1.三、解答题.17. 【答案】(1)3 (2)3a - 2-18. 【答案】(1)A ,P 两点间的距离为89.8米;(2)①19. 【答案】(1)画图见解析(2)83(3)600人(4)甲的综合成绩比乙高.【小问1详解】解:①510%50÷=,而8090x ≤<有20人①7080x ≤<有502051015---=补全图形如下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密☆启用前试卷类型:A二○一三年枣庄市2013年初中学业考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 第Ⅱ卷必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一 个均计零分.1.下列计算,正确的是A.33--=-B.030=C.133-=-3=± 答案:A解析:因为30=1,3-1=133,所以,B 、C 、D 都错,选A 。
2.如图,AB //CD ,∠CDE =140︒,则∠A 的度数为 A.140︒ B.60︒ C.50︒ D.40︒ 答案:D解析:∠CDA =180°-140°=40°,由两直线平行,内错角相等,得:∠A =∠CDA =40°,选D 。
31的值在A. 2到3之间B.3到4之间C.4到5之间D.5到6之间 答案:B解析<23,所以,31<4,选B 。
第2题图4.化简xxx x -+-112的结果是 A.x +1 B.1x - C.x - D.x 答案:D解析:原式=2(1)111x x x x x x x x --==---,故选D 。
5.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为A.240元B.250元C.280元D.300元 答案:A解析:设进价为x 元,则3300.810%xx⨯-=,解得:x =240,故选A >6.如图,ABC △中,AB =AC =10,BC =8,AD 平分BAC ∠交BC 于点D ,点E 为AC 的中点,连接DE ,则CDE △的周长为A.20B.18C.14D.13 答案:C解析:因为AB =AC ,AD 平分∠BAC ,所以,D 为BC 中点,又E 为AC 中点,所以,DE =12AB =5,DC =4,EC =5,故所求周长为5+5+4=14。
7.若关于x 的一元二次方程220x x m -+=有两个不相等的实数根,则m 的取 值范围是A. 1m <-B. 1m <C. 1m >-D. 1m > 答案:B解析:△=4-4m >0,解得:m <1,选B 。
8. 对于非零实数a b 、,规定11a b b a⊕=-,若2(21)1x ⊕-=,则x 的值为 A.56 B.54 C.32 D.16- 答案:A解析:依题意,有:111212x -=-,解得:x =56第6题9.图(1)是一个长为2 a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称 轴)剪开,把它分成四块形状和大小都一样的小长 方形,然后按图(2)那样拼成一个正方形,则中 间空的部分的面积是A. abB.2()a b + C.2()a b - D. a 2-b 2 答案:C解析:大正方形面积为:(2)a b +,矩形面积为:4ab ,所以,中间空的部分的面积为:2222()42()a b ab a ab b a b +-=-+=-,选C 。
10.如图,已知线段OA 交⊙O 于点B ,且OB =AB ,点P 是⊙O 上的一个动点,那么∠OAP 的最大值是A.90°B.60°C.45°D.30° 答案:D解析:当OP 与圆O 相切时,∠OAP 取得最大值,此时OP ⊥AP ,OP =12OA , ∠OAP =30°,选D >11. 将抛物线23y x =向左平移2个单位,再向下平移1个单位,所得抛物线为( )A. ()2321y x =-- B.()2321y x =-+ C. ()2321y x =+- D.()2321y x =++ 答案:C解析:抛物线23y x =向左平移2个单位得到23(2)y x =+,再向下平移1个单位,得:()2321y x =+-第10题图OAPB(1)(2)第9题图12.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME MC=,以DE为边作正方形DEFG,点G在边CD上,则DG的长为1B.31 +1 -答案:D解析:ME=MCMD=1,所以,DG=DE1,选D。
第Ⅱ卷(非选择题共84分)二、填空题:本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分.13.若2211 63a b a b-=-=,,则a b+的值为.答案:1 2解析:因为1()()6a b a b+-=,又13a b-=,所以,a b+=1214.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是.答案:②解析:中心对称图形就是图形绕着对称中心旋转180度后与原来的图形完全重合,在②处涂黑,刚好可以做到。
15. 从1、2、3、4中任取一个数作为十位上的数字,再从2、3、4中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是.答案:1 3解析:共有12个数字,其中3的倍数有:12、24、33、42,共4个,故所求的概率为:41123=第14题图B第12题图16.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为 . 答案:24解析:这个零件的表面积与原正方体的表面积相同,为4×6=24。
17. 已知正比例函数2y x =-与反比例函数ky x=的图象的一个交点坐标为(-1,2),则另一个交点的坐标为 .答案:()12-,解析:反比例函数的图象关于原点对称,点(-1,2)关于原点对称的点为(1,-2),故填(1,-2)。
18.已知矩形ABCD 中,1AB =,在BC 上取一点E ,沿AE 将ABE △向上折叠,使B 点落在AD 上的F 点.若四边形EFDC 与矩形ABCD 相似,则AD = .答案解析:(FD +12)2=54,得FDAD =AD +FD ,AF =1 AD =1=第16题图第18题图三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分8分) 先化简,再求值:2352362m m m m m -⎛⎫÷+- ⎪--⎝⎭,其中m 是方程0132=++x x 的根. 解析:解:原式=()239322m m m m m --÷-- ()()()323233m m m m m m --=∙-+-()133m m =+.∵m 是方程0132=++x x 的根,∴ 0132=++m m . ∴132-=+m m ,即(3)1m m +=-. ∴原式=)1(31-⨯=31-.20.(本题满分8分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A 和点B 在小正方形的顶点上.(1)在图1中画出ABC △,使ABC △为直角三角形(点C 在小正方形的顶点上,画出一个即可); (2)在图2中画出ABD △,使ABD △为等腰三角形(点D 在小正方形的顶点上,画出一个即可).(1) (2)第20题图解析:20.(本题满分8分)(1)正确画图(参考图1-图4) (2)正确画图(参考图5-图8)21.(本题满分8分)“六·一”前夕,质检部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品.以下是根据抽查结果绘制出的不完整的统计表和扇形图:请根据上述统计表和扇形图提供的信息,完成下列问题:(1)补全上述统计表和扇形图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少? 解析:21.(本题满分8分)解:(1)第21题图 90童装童车 儿童玩具 类 别 儿童玩具 %25%童车 %童装 抽查件数90抽查件数童装 童车儿童玩具类 别儿童玩具% 25%童车 %童装 7513545 30(每空1分) ………………………………………………4分 (2)85.0300%80135%8875%9090=⨯+⨯+⨯.答:从该超市这三类儿童用品中随机购买一件买到合格品的概率是0.85 22.(本题满分8分)交通安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道上确定点D ,使CD 与垂直,测得CD 的长等于21米,在上点D 的同侧取点A 、B ,使30CAD ∠=°,60CBD ∠=°.(1)求AB 的长(精确到0.1173=.141=.);(2)已知本路段对汽车限速为40千米/小时,若测得某辆汽车从A 到B 用时为2秒,这辆汽车是否超速?说明理由.解析:22.(本题满分8分) 解:(1)在Rt ADC △中,CD =21,30CAD ∠=°,∴3633tan 30CD AD ====.°;……………………………2分在Rt BDC △中,CD =21,60CBD ∠=°,∴1211tan 60CD BD ====.°. …………………………4分所以363312112422242AB AD BD =-=-=...≈.(米).…………5分(2)汽车从A 到B 用时2秒,所以速度为2422121÷=..(米/秒).又因为 121360043.561000⨯=.. 所以该汽车速度为4356.千米/小时,大于40千米/小时, 故此汽车在AB 路段超速. ……………………………………………………8分23.(本题满分8分)如图,在平面直角坐标中,直角梯形OABC 的边OC OA 、分别在x 轴、y 轴上,9045AB OC AOC BCO BC ===∥,∠°,∠°,C 的坐标为()180.-,(1)求点B 的坐标;(2)若直线DE 交梯形对角线42OE OD BD ==,,求直线DE解析:23.(本题满分8分)解:(1)过点B 作BF x ⊥轴于F .在Rt BCF △中,∠BCO =45°,BC =212, ∴ CF =BF =12. …………………1分∵点C 的坐标为()180-,, ∴AB =OF =18-12=6.∴点B 的坐标为()612-,. (2)过点D 作DG y ⊥轴于点G .∵AB DG ∥,∴ODG OBA △∽△.∴23DG OG OD AB OA OB ===. ∵AB=6,OA=12,∴48DG OG ==,.∴()()4804D E -,,,. 设直线DE 的解析式为()0y kx b k =+≠,将()()4804D E -,,,代入,得 48,4.k b b -+=⎧⎨=⎩ 解之,得 1,4.k b =-⎧⎨=⎩第23题图第23题图∴直线DE 解析式为4y x =-+.24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是弦,直线EF 经过点C ,AD EF ⊥于点D ,.DAC BAC =∠∠(1)求证:EF 是⊙O 的切线;(2)求证:AB AD AC ⋅=2;(3)若⊙O 的半径为2,30ACD =∠°解析:(1)证明:连接.OC∵OC OA =,∴.OCA OAC =∠∠∵∠DAC =∠BAC ,∴.OCA DAC =∠∠∴.OC AD ∥ …………………………1分又∵AD EF ⊥,∴.OC EF ⊥∴EF 是⊙O 的切线. ……………………3分(2)证明:连接.BC∵AB 是⊙O 的直径,∴90ACB =∠°. ∴90.ACB ADC ==∠∠° 又∵BAC DAC =∠∠, ∴.ABC ACD △∽△∴ACABAD AC =, 即AB AD AC ⋅=2. ……………6分 (3)解:∵30ACD =∠°,∴60OCA OAC ==∠∠°.∴OAC △是等边三角形.∴60AOC =∠°, 2.AC OC ==在Rt ADC △中,AC =2,∠ACD =30°,∴AD =1,CD =3. …………………………………………………………8分第24题图∴()()111222ADCO S AD OC CD =+=+=梯形 6023603OAC S 2π⨯2π==扇形,∴2.ADCO OAC S S S π=-=3阴影梯形扇形 ………………………………10分25. (本题满分10分)如图,在平面直角坐标系中,二次函数2=++y x bx c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点(03)C -,,点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP C '.是否存在点P ,使四边形POP C '为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积.解析:解:(1)将B 、C 两点的坐标代入2=++y x bx c ,得93=0,= 3.b c c ++⎧⎨-⎩解之,得=2,= 3.b c -⎧⎨-⎩所以二次函数的解析式为2=23y x x --. ………………………………… 3分(2)如图1,假设抛物线上存在点P ,使四边形POP C '为菱形,连接PP '交CO 于点E . ∵四边形POP C '为菱形, ∴PC=PO ,且PE ⊥CO .∴OE=EC=32,即P 点的纵坐标为32-.……5分 由223x x --=32-,得12x x 所以存在这样的点,此时P32-). …………7分(3)如图2,连接PO ,作PM ⊥x 于M ,PN ⊥y 于N .设P 点坐标为(x ,223x x --),由223x x --=0,得点A 坐标为(-1,0). ∴AO=1,OC=3, OB=3,P M=223x x -++,PN =x . ∴S 四边形ABPC =AOC S ∆+POB S ∆+POC S ∆ =12AO·OC +12OB·PM +12OC·PN =12×1×3+12×3×(223x x -++)+12×3×x=239622x x -++=23375()228x --+. ………………………8分易知,当x=32时,四边形ABPC 的面积最大.此时P 点坐标为(32,154-),四边形ABPC的最大面积为758. ………………………………………………………………10分P。