2013枣庄中考数学试题word版
山东省17市2013年中考数学试题分类解析汇编 专题09 三角形

山东17市2013年中考数学试题分类解析汇编专题09 三角形一、选择题1. (2013年山东东营3分)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值【】A. 只有1个B. 可以有2个C. 可以有3个D. 有无数个2. (2013年山东莱芜3分)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y 关于x的函数图象大致为【】【答案】B。
【考点】动点问题的函数图象, 等边三角形的性质。
【分析】分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:3. (2013年山东聊城3分)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:AB的长为【】A.12米B. C. D.4. (2013年山东聊城3分)如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为【】A.a B.1a2C.1a3D.2a3【答案】C。
【考点】相似三角形的判定和性质。
【分析】∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA。
5. (2013年山东临沂3分)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是【】A.AB=AD B.AC平分∠BCD C.AB=BD D,△BEC≌△DEC6. (2013年山东青岛3分)如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′,A′、B′均在图中格点上,若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为【】A、mn2⎛⎫⎪⎝⎭, B、(m,n) C、nm2⎛⎫⎪⎝⎭, D、m n22⎛⎫⎪⎝⎭,7. (2013年山东日照3分)四个命题:①三角形的一条中线能将三角形分成面积相等的两部分;②有两边和其中一边的对角对应相等的两个三角形全等;③点P(1,2)关于原点的对称点坐标为(-1,-2);④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1<d<7其中正确的是【】A. ①②B.①③C.②③D.③④8. (2013年山东威海3分)如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是【】A. ∠C=2∠AB. BD平分∠ABCC. S△BCD=S△BODD. 点D为线段AC 的黄金分割点∴BD是∠ABC的角平分线,正确,故本选项错误。
山东省17市2013年中考数学试题分类解析汇编 专题07 统计与概率

山东17市2013年中考数学试题分类解析汇编专题07 统计与概率一、选择题1. (2013年山东滨州3分)若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为【】A.12B.34C.13D.142. (2013年山东东营3分)2013年“五·一”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家抽到同一景点的概率是【】A. 13B.16C.19D.14湖、龙悦湖),其中抽到同一景点的有三种,∴两家抽到同一景点的概率是3193。
故选A。
3. (2013年山东菏泽3分)在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是【】A.1.70,1.65 B.1.70,1.70 C.1.65,1.70 D.3,44. (2013年山东济南、德州3分)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于54n2,则算过关;否则不算过关,则能过第二关的概率是【】A.1318B.518C.14D.19【答案】A。
【考点】列表法或树状图法,概率。
【分析】∵在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,n次抛掷所出现的点数之和大于54n2,则算过关,∴能过第二关的抛掷所出现的点数之和需要大于5。
,列表得:6 7 8 9 10 11 12 5 6 7 8 9 10 11 4 5 6 7 8 9 10 3 4 5 6 7 8 9 2 3 4 5 6 7 8 1 2 3 4 5 6 71 2 3 4 5 65. (2013年山东济宁3分)下列说法正确的是【 】 A .中位数就是一组数据中最中间的一个数 B .8,9,9,10,10,11这组数据的众数是9C .如果x 1,x 2,x 3,…,x n 的平均数是x ,那么()()()12n x x x x x x 0-+-+⋅⋅⋅+-= D .一组数据的方差是这组数据的极差的平方6. (2013年山东莱芜3分)一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是【 】A .10,10B .10,12.5C .11,12.5D .11,107. (2013年山东聊城3分)下列事件:①在足球赛中,弱队战胜强队.②抛掷1枚硬币,硬币落地时正面朝上.③任取两个正整数,其和大于1④长为3cm,5cm,9cm的三条线段能围成一个三角形.其中确定事件有【】A.1个B.2个 C.3个 D.4个8. (2013年山东聊城3分)某校七年级共320名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有【】A.50人B.64人 C.90人 D.96人【答案】D。
山东省17市2013年中考数学试题分类解析汇编 专题03 方程(组)和不等式(组)

山东17市2013年中考数学试题分类解析汇编 专题03 方程(组)和不等式(组)一、选择题1. (2013年山东滨州3分)对于任意实数k ,关于x 的方程()22x 2k 1x k 2k 10-+-+-=的根的情况为【 】A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定2. (2013年山东滨州3分)若把不等式组2x 3x 12-≥-⎧⎨-≥-⎩的解集在数轴上表示出来,则其对应的图形为【 】A .长方形B .线段C .射线D .直线不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线3. (2013年山东东营3分)已知1O ⊙的半径1r =2,2O ⊙的半径2r 是方程32x x 1=-的根,1O ⊙与1O ⊙的圆心距为1,那么两圆的位置关系为【 】A .内含B .内切C .相交D .外切4. (2013年山东东营3分)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是【 】A. 5个B. 6个C. 7个D. 8个5. (2013年山东济宁3分)已知ab=4,若﹣2≤b≤-1,则a 的取值范围是【 】A .a≥-4B .a≥-2C .-4≤a≤-1D .-4≤a ≤-26. (2013年山东济宁3分)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多【 】A .60元B .80元C .120元D .180元7. (2013年山东莱芜3分)方程2x 40x 2-=-的解为【 】 A .2- B .2 C .2± D .12-8. (2013年山东聊城3分)不等式组3x 1>242x 0-⎧⎨-≥⎩的解集在数轴上表示为【 】A .B .C .D .10. (2013年山东临沂3分)不等式组x2>0x1x32-⎧⎪⎨+≥-⎪⎩的解集是【】A.x≥8 B.x>2 C.0<x<2 D.2<x≤811. (2013年山东青岛3分)一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有【 】个A 、45B 、48C 、50D 、5512. (2013年山东日照3分)已知一元二次方程2x x 30--=的较小根为x 1,则下面对x 1的估计正确的是【 】A.12<x <1--B. 13<x <2--C. 12<x <3D. 11<x <0-13. (2013年山东日照4分) 甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是【 】A.8B.7C.6D.5【答案】A 。
2013-2014学年度山东省第枣庄市枣庄九中一学期九年级期末考试数学试题

2013-2014学年度山东省第枣庄市枣庄九中一学期九年级期末考试数学试题(时间:120分钟 卷面:120分)一、选择题(每小题3分,共30分)1.式子x 的取值范围是( )A .x ≥3,B .x ≤3,C .x >3,D .x <32.在平面直角坐标系中,点A (2O13,2014)关于原点O 对称的点A′的坐标为( )A .(-2013,2014)B .(2013,-2014)C .(2014,2013)D .(-2014,-2013) 3.下列函数中,当x >0时,y 的值随x 的值增大而增大的是( )A .y =-x 2B .y =x -1C .y =-x +1D .y =x14.下列说法正确的是( )A .要了解一批灯泡的使用寿命,应采用普查的方式B .若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C .甲、乙两组数据的样本容量与平均数分别相同,若方差 2=0.1S 甲,2=0.2S 乙,则甲组数据比乙组数据稳定D .“掷一枚硬币,正面朝上”是必然事件5.若关于x 的一元二次方程x 2+2x+k=0有两个不相等的实数根,则k 的取值范围是( )A .k <1,B .k >1,C .k=1,D .k ≥0 6.将等腰Rt △ABC 绕点A 逆时针旋转15°得到△AB′C′,若AC =1,则图中阴影部分面积为( )A .33B .63C .3D .337.如图,直线AB 、AD 分别与⊙O 相切于点B 、D ,C 为⊙O 上一点,且∠BCD =140°,则∠A 的度数是( )A .70°B .105°C .100°D .110°8.已知21,x x 是方程0152=+-x x 的两根,则2221x x +的值为( ) A .3 B .5 C .7D .59.如图,在⊙O 内有折线OABC ,点B 、C 在圆上,点A 在⊙O 内,其中OA =4cm ,BC =10cm ,∠A =∠B =60°,则AB 的长为( )A .5cmB .6cmC .7cmD .8cm10.已知二次函数y =ax 2+bx +c 的图象如图,其对称轴x =-1,给出下列结果:①b 2>4ac ;②abc >0;③2a +b =0;④a +b +c >0;⑤a -b +c <0;则正确的结论是( )A .①②③④B .②④⑤C .②③④D .①④⑤二、填空题(每小题3分,共18分) 11.计算=÷6482 .12.一个扇形的弧长是20πcm ,面积是240πcm 2,则扇形的圆心角是 .13.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是 .14.已知整数k <5,若△ABC 的边长均满足关于x 的方程2380x k x -+=,则△ABC 的周长是 . 15.如图,直线434+-=x y 与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO′B′,则点B′的坐标是 .16.如图,在平面直角坐标系中,抛物线y =221x 经过平移得到抛物线y =x x 2212-,其对称轴与两段抛物线所围成的阴影部分的面积为 .三、解答题(共72分) 17.(9分)先化简,再求值 (b a +1-b a -1)÷222bab -a b +,其中a =1-2,b =1+2.18.(8分)已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2. (1)求k 的取值范围;(4分)(2)若|x 1+x 2|=x 1x 2-1,求k 的值.(4分)19.(8分)如图,在四边形ABCD 中,∠BAD =∠C =90°,AB =AD ,AE ⊥BC 于E ,AF ⊥DF 于F ,△BEA 旋转后能与△DFA 重叠.(1)△BEA 绕_______点________时针方向旋转_______度能与△DFA 重合;(4分) (2)若AE =6cm ,求四边形AECF 的面积.(4分)20.(9分)为丰富学生的学习生活,某校九年级1班组织学生参加春游活动,所联系的旅行社收费标准如下:春游活动结束后,该班共支付给该旅行社活动费用2800元,请问该班共有多少人参加这次春游活动? 21.(9分)已知甲同学手中藏有三张分别标有数字21,41,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片的外形相同,现从甲、乙两人手中各任取一张卡片,并将它们的数字分别记为a 、b . (1)请你用树形图或列表法列出所有可能的结果;(4分)(2)现制订这样一个游戏规则,若所选出的a 、b 能使ax 2+bx +1=0有两个不相等的实数根,则称甲胜;否则乙胜,请问这样的游戏规则公平吗?请你用概率知识解释.(5分)22.(9分)如图,AB 为⊙O 的直径,AD 与⊙O 相切于一点A ,DE 与⊙O 相切于点E ,点C 为DE 延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(4分)(2)若5AB,AD=2,求线段BC的长.(5分)2=23.(10分)某工厂生产一种合金薄板(其厚度忽略不计)这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据,薄板的边长(cm)20 30出厂价(元/张)50 70(1)求一张薄板的出厂价与边长之间满足的函数关系式;(4分)(2)已知出厂一张边长为40cm的薄板,获得利润是26元(利润=出厂价-成本价).①求一张薄板的利润与边长这之间满足的函数关系式.②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?(6分)24.(10分)如图,在平面直角坐标系中,二次函数c+=2的图象与x轴交于A、B两点,A点在原点xbxy+的左则,B点的坐标为(3,0),与y轴交于C(0,―3)点,点P是直线BC下方的抛物线上一动点。
2013-2014学年度山东省第枣庄市枣庄九中一学期九年级期末考试数学试题

2013-2014学年度山东省第枣庄市枣庄九中一学期九年级期末考试数学试题(时间:120分钟 卷面:120分)一、选择题(每小题3分,共30分) 1.式子3x -x 的取值范围是( )A .x ≥3,B .x ≤3,C .x >3,D .x <32.在平面直角坐标系中,点A (2O13,2014)关于原点O 对称的点A′的坐标为( )A .(-2013,2014)B .(2013,-2014)C .(2014,2013)D .(-2014,-2013) 3.下列函数中,当x >0时,y 的值随x 的值增大而增大的是( )A .y =-x 2B .y =x -1C .y =-x +1D .y =x14.下列说法正确的是( )A .要了解一批灯泡的使用寿命,应采用普查的方式B .若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C .甲、乙两组数据的样本容量与平均数分别相同,若方差 2=0.1S 甲,2=0.2S 乙,则甲组数据比乙组数据稳定D .“掷一枚硬币,正面朝上”是必然事件5.若关于x 的一元二次方程x 2+2x+k=0有两个不相等的实数根,则k 的取值范围是( )A .k <1,B .k >1,C .k=1,D .k ≥0 6.将等腰Rt △ABC 绕点A 逆时针旋转15°得到△AB′C′,若AC =1,则图中阴影部分面积为( )A .33B .63C .3D .337.如图,直线AB 、AD 分别与⊙O 相切于点B 、D ,C 为⊙O 上一点,且∠BCD =140°,则∠A 的度数是( )A .70°B .105°C .100°D .110°8.已知21,x x 是方程0152=+-x x 的两根,则2221x x +的值为( ) A .3 B .5 C .7D .59.如图,在⊙O 内有折线OABC ,点B 、C 在圆上,点A 在⊙O 内,其中OA =4cm ,BC =10cm ,∠A =∠B =60°,则AB 的长为( )A .5cmB .6cmC .7cmD .8cm10.已知二次函数y =ax 2+bx +c 的图象如图,其对称轴x =-1,给出下列结果:①b 2>4ac ;②abc >0;③2a +b =0;④a +b +c >0;⑤a -b +c <0;则正确的结论是( )A .①②③④B .②④⑤C .②③④D .①④⑤二、填空题(每小题3分,共18分) 11.计算=÷6482 .12.一个扇形的弧长是20πcm ,面积是240πcm 2,则扇形的圆心角是 .13.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是 .14.已知整数k <5,若△ABC 的边长均满足关于x 的方程2380x k x -+=,则△ABC 的周长是 . 15.如图,直线434+-=x y 与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO′B′,则点B′的坐标是 .16.如图,在平面直角坐标系中,抛物线y =221x 经过平移得到抛物线y =x x 2212-,其对称轴与两段抛物线所围成的阴影部分的面积为 .三、解答题(共72分) 17.(9分)先化简,再求值 (b a +1-b a -1)÷222bab -a b +,其中a =1-2,b =1+2.18.(8分)已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2. (1)求k 的取值范围;(4分)(2)若|x 1+x 2|=x 1x 2-1,求k 的值.(4分)19.(8分)如图,在四边形ABCD 中,∠BAD =∠C =90°,AB =AD ,AE ⊥BC 于E ,AF ⊥DF 于F ,△BEA 旋转后能与△DFA 重叠.(1)△BEA 绕_______点________时针方向旋转_______度能与△DFA 重合;(4分) (2)若AE =6cm ,求四边形AECF 的面积.(4分)20.(9分)为丰富学生的学习生活,某校九年级1班组织学生参加春游活动,所联系的旅行社收费标准如下:春游活动结束后,该班共支付给该旅行社活动费用2800元,请问该班共有多少人参加这次春游活动? 21.(9分)已知甲同学手中藏有三张分别标有数字21,41,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片的外形相同,现从甲、乙两人手中各任取一张卡片,并将它们的数字分别记为a 、b . (1)请你用树形图或列表法列出所有可能的结果;(4分)(2)现制订这样一个游戏规则,若所选出的a 、b 能使ax 2+bx +1=0有两个不相等的实数根,则称甲胜;否则乙胜,请问这样的游戏规则公平吗?请你用概率知识解释.(5分)22.(9分)如图,AB为⊙O的直径,AD与⊙O相切于一点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(4分)(2)若5=AB,AD=2,求线段BC的长.(5分)223.(10分)某工厂生产一种合金薄板(其厚度忽略不计)这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据,薄板的边长(cm)20 30出厂价(元/张)50 70(1)求一张薄板的出厂价与边长之间满足的函数关系式;(4分)(2)已知出厂一张边长为40cm的薄板,获得利润是26元(利润=出厂价-成本价).①求一张薄板的利润与边长这之间满足的函数关系式.②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?(6分)24.(10分)如图,在平面直角坐标系中,二次函数cy+=2的图象与x轴交于A、B两点,A点在原+xbx点的左则,B点的坐标为(3,0),与y轴交于C(0,―3)点,点P是直线BC下方的抛物线上一动点。
2013-2014学年度山东省第枣庄市枣庄九中一学期九年级期末考试数学试题

2013-2014学年度山东省第枣庄市枣庄九中一学期九年级期末考试数学试题(时间:120分钟 卷面:120分)一、选择题(每小题3分,共30分)1.式子x 的取值范围是( )A .x ≥3,B .x ≤3,C .x >3,D .x <32.在平面直角坐标系中,点A (2O13,2014)关于原点O 对称的点A′的坐标为( )A .(-2013,2014)B .(2013,-2014)C .(2014,2013)D .(-2014,-2013) 3.下列函数中,当x >0时,y 的值随x 的值增大而增大的是( )A .y =-x 2B .y =x -1C .y =-x +1D .y =x14.下列说法正确的是( )A .要了解一批灯泡的使用寿命,应采用普查的方式B .若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C .甲、乙两组数据的样本容量与平均数分别相同,若方差 2=0.1S 甲,2=0.2S 乙,则甲组数据比乙组数据稳定D .“掷一枚硬币,正面朝上”是必然事件5.若关于x 的一元二次方程x 2+2x+k=0有两个不相等的实数根,则k 的取值范围是( )A .k <1,B .k >1,C .k=1,D .k ≥0 6.将等腰Rt △ABC 绕点A 逆时针旋转15°得到△AB′C′,若AC =1,则图中阴影部分面积为( )A .33B .63C .3D .337.如图,直线AB 、AD 分别与⊙O 相切于点B 、D ,C 为⊙O 上一点,且∠BCD =140°,则∠A 的度数是( )A .70°B .105°C .100°D .110°8.已知21,x x 是方程0152=+-x x 的两根,则2221x x +的值为( )A .3B .5C .7D .59.如图,在⊙O 内有折线OABC ,点B 、C 在圆上,点A 在⊙O 内,其中OA =4cm ,BC =10cm ,∠A =∠B =60°,则AB 的长为( )A .5cmB .6cmC .7cmD .8cm10.已知二次函数y =ax 2+bx +c 的图象如图,其对称轴x =-1,给出下列结果:①b 2>4ac ;②abc >0;③2a +b =0;④a +b +c >0;⑤a -b +c <0;则正确的结论是( )A .①②③④B .②④⑤C .②③④D .①④⑤二、填空题(每小题3分,共18分) 11.计算=÷6482 .12.一个扇形的弧长是20πcm ,面积是240πcm 2,则扇形的圆心角是 .13.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是 .14.已知整数k <5,若△ABC 的边长均满足关于x 的方程280x -+=,则△ABC 的周长是 . 15.如图,直线434+-=x y 与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO′B′,则点B′的坐标是 .16.如图,在平面直角坐标系中,抛物线y =221x 经过平移得到抛物线y =x x 2212-,其对称轴与两段抛物线所围成的阴影部分的面积为 .三、解答题(共72分) 17.(9分)先化简,再求值 (b a +1-b a -1)÷222bab -a b +,其中a =1-2,b =1+2.18.(8分)已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2. (1)求k 的取值范围;(4分)(2)若|x 1+x 2|=x 1x 2-1,求k 的值.(4分)19.(8分)如图,在四边形ABCD 中,∠BAD =∠C =90°,AB =AD ,AE ⊥BC 于E ,AF ⊥DF 于F ,△BEA 旋转后能与△DFA 重叠.(1)△BEA 绕_______点________时针方向旋转_______度能与△DFA 重合;(4分) (2)若AE =6cm ,求四边形AECF 的面积.(4分)20.(9分)为丰富学生的学习生活,某校九年级1班组织学生参加春游活动,所联系的旅行社收费标准如下:春游活动结束后,该班共支付给该旅行社活动费用2800元,请问该班共有多少人参加这次春游活动? 21.(9分)已知甲同学手中藏有三张分别标有数字21,41,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片的外形相同,现从甲、乙两人手中各任取一张卡片,并将它们的数字分别记为a 、b . (1)请你用树形图或列表法列出所有可能的结果;(4分)(2)现制订这样一个游戏规则,若所选出的a 、b 能使ax 2+bx +1=0有两个不相等的实数根,则称甲胜;否则乙胜,请问这样的游戏规则公平吗?请你用概率知识解释.(5分)22.(9分)如图,AB为⊙O的直径,AD与⊙O相切于一点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(4分)(2)若5=AB,AD=2,求线段BC的长.(5分)223.(10分)某工厂生产一种合金薄板(其厚度忽略不计)这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据,(1)求一张薄板的出厂价与边长之间满足的函数关系式;(4分)(2)已知出厂一张边长为40cm的薄板,获得利润是26元(利润=出厂价-成本价).①求一张薄板的利润与边长这之间满足的函数关系式.②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?(6分)24.(10分)如图,在平面直角坐标系中,二次函数cy+=2的图象与x轴交于A、B两点,A点在原点的+xbx左则,B点的坐标为(3,0),与y轴交于C(0,―3)点,点P是直线BC下方的抛物线上一动点。
山东省17市2013年中考数学试题分类解析汇编 专题11 圆

山东17市2013年中考数学试题分类解析汇编 专题11 圆一、选择题1. (2013年山东滨州3分)如图,已知圆心角∠BOC=78°,则圆周角∠BAC 的度数是【 】A .1560B .780C .390D .1202. (2013年山东东营3分)已知1O ⊙的半径1r =2,2O ⊙的半径2r 是方程32x x 1=-的根,1O ⊙与1O ⊙的圆心距为1,那么两圆的位置关系为【 】A .内含B .内切C .相交D .外切3. (2013年山东东营3分)如图,正方形ABCD 中,分别以B 、D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为【 】A. a πB. 2a πC. 1a 2πD.3a π4. (2013年山东济南、德州3分)如图,扇形AOB 的半径为1,∠AOB=90°,以AB 为直径画半圆,则图中阴影部分的面积为【 】A .14πB .12π- C .12 D .1142π+ 【答案】C 。
【考点】扇形面积的计算,勾股定理,转换思想的应用。
【分析】在Rt△AOB 中,AB ==5. (2013年山东济宁3分)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为【】A.4 B.C.6 D.【分析】连接OD,∵DF为圆O的切线,∴OD⊥DF。
∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°。
∵OD=OC,∴△OCD为等边三角形。
∴OD∥AB。
又O为BC的中点,∴D为AC的中点,即OD为△ABC的中位线。
则根据勾股定理得:FG=。
故选B。
6. (2013年山东莱芜3分)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为【】A. C D.3 27. (2013年山东莱芜3分)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为【】A.135° B.122.5° C.115.5° D.112.5°【答案】D。
2013年枣庄市实验中学自主招生数学试题

2013年自主招生考试数学试题 第1页(共4页)(第8题图)FEDCBAC DBAE O(第10题图)绝密☆启用前 试卷类型: 2013年枣庄市实验中学自主招生考试数 学 试 题 2013.5注意事项:1.本试卷共6页,满分100分,考试用时90分钟。
考试结束时,将本试卷一并交回。
2.答题前,考生务必将自己的姓名、准考证号等信息写在试卷密封线内。
3.必须用黑色签字笔或蓝黑色钢笔作答(作图除外),答案必须写在答题纸各题目指定区域相应的位置,不按要求作答的答案无效。
第Ⅰ卷 选择题(共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.在实数π,2,0,3.14,2-,tan45°,3.1415926,71,1.010010001……(每两个1之 间0的个数依次加1)中,无理数的个数是 ( )A . 2个 B. 3个 C. 4个 D. 5个2.某品牌商品,按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为( )A .21元B .19.8元C . 22.4元D . 25.2元 3.已知a >b ,c ≠0,则下列关系一定成立的是( )A .c +a >c +bB .a bc c> C .c -a >c -b D . ac >bc4.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是2 5 .如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是14 ,则原来盒中有黑色棋子( )A .8颗B .6颗C .4颗D .2颗5.已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面积是A .12cm 2B .96cm 2C .48cm 2D .24cm 26.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-7.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )8.如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为( ) A .3 B .4 C .5 D .69.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( ) A. (45)+ cm B. 9 cmC. 45cmD. 62cm 10.如图,AB 是O ⊙的直径,O ⊙交BC 的中点于D ,DE AC ⊥于E ,连接AD ,则下列结论正确的个数是( ) AD BC ⊥① EDA B ∠=∠② 12OA AC =③ ④DE 是O ⊙的切线A .1个B .2个C .3个D .4个第Ⅱ卷 非选择题 (共70分)二、填空题:本大题共7小题,满分21分.每题填对得3分.11.平面上一点P 到⊙O 上一点的距离最长6cm ,最短为2cm ,则⊙O 的半径为 _____ 12.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则a 的取值范围是2013年自主招生考试数学试题 第2页(共4页)13.右图是一个食品包装盒的侧面展开图,根据图中所标的尺寸,求这个多面体的全面积(侧面积与两个底面体之和)_____14.已知等腰△ABC 中,AD 是BC 边上的高,点D 是垂足,且AD=21BC , 则△ABC 底角的度数为_____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密☆启用前试卷类型:A二○一三年枣庄市2010级初中学业考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 第Ⅱ卷必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一 个均计零分.1.下列计算,正确的是A.33--=-B.030= C.133-=-3=± 2.如图,AB //CD ,∠CDE =140︒,则∠A 的度数为 A.140︒ B.60︒ C.50︒ D.40︒ 31的值在A. 2到3之间B.3到4之间C.4到5之间D.5到6之间4.化简xxx x -+-112的结果是 A.x +1 B.1x - C.x - D.x5.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为第2题图A.240元B.250元C.280元D.300元6.如图,ABC △中,AB =AC =10,BC =8,AD 平分BAC ∠交 BC 于点D ,点E 为AC 的中点,连接DE ,则CDE △的 周长为A.20B.18C.14D.137.若关于x 的一元二次方程220x x m -+=有两个不相等的实数根,则m 的取 值范围是A. 1m <-B. 1m <C. 1m >-D. 1m > 8. 对于非零实数a b 、,规定11a b b a⊕=-,若2(21)1x ⊕-=,则x 的值为 A.56 B.54 C.32 D.16- 9.图(1)是一个长为2 a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称 轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中 间空的部分的面积是A. abB.2()a b + C.2()a b - D. a 2-b 210.如图,已知线段OA 交⊙O 于点B ,且OB =AB ,点P 是 ⊙O 上的一个动点,那么∠OAP 的最大值是A.90°B.60°C.45°D.30°11. 将抛物线23y x =向左平移2个单位,再向下平移1个单位,所得抛物线为(C )A. ()2321y x =-- B.()2321y x =-+ C. ()2321y x =+- D.()2321y x =++第10题图第6题(1)(2)第9题图12.如图,在边长为2的正方形ABCD 中,M 为边AD 的中点,延长MD 至点E ,使ME MC =,以DE 为边 作正方形DEFG ,点G 在边CD 上,则DG 的长为1B.311第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分.13.若221163a b a b -=-=,,则a b +的值为 . 14.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是 .15. 从1、2、3、4中任取一个数作为十位上的数字,再从2、3、4中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是 .16.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为 .17. 已知正比例函数2y x =-与反比例函数ky x=的图象的一个交点坐标为(-1,2),则另一个交点的坐标为 .18.已知矩形ABCD 中,1AB =,在BC 上取一点E ,沿AE 将ABE △向上折叠,使B 点落在AD 上的F 点.若四边形EFDC 与矩形ABCD 相似,则AD = .第14题图第16题图第18题图B第12题图三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分8分) 先化简,再求值:2352362m m m m m -⎛⎫÷+- ⎪--⎝⎭,其中m 是方程0132=++x x 的根.20.(本题满分8分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A 和点B 在小正方形的顶点上.(1)在图1中画出ABC △,使ABC △为直角三角形(点C 在小正方形的顶点上,画出一个即可);(2)在图2中画出ABD △,使ABD △为等腰三角形(点D 在小正方形的顶点上,画出一个即可).(1) (2) 第20题图第21题图 90童装童车 儿童玩具 类 别 儿童玩具 %25%童车 %童装 抽查件数21.(本题满分8分)“六·一”前夕,质检部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品.以下是根据抽查结果绘制出的不完整的统计表和扇形图:请根据上述统计表和扇形图提供的信息,完成下列问题:(1)补全上述统计表和扇形图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?22.(本题满分8分)交通安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使30CAD ∠=°,60CBD ∠=°.(1)求AB的长(精确到0.1173=.141=.); (2)已知本路段对汽车限速为40千米/小时,若测得某辆汽车从A 到B 用时为2秒,这辆汽车是否超速?说明理由.如图,在平面直角坐标中,直角梯形OABC 的边OC OA 、分别在x 轴、y 轴上,9045AB OC AOC BCO BC ===∥,∠°,∠°,C 的坐标为()180.-,(1)求点B 的坐标;(2)若直线DE 交梯形对角线BO 于点D ,交y 轴于点E ,且42OE OD BD ==,,求直线DE24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是弦,直线EF 经过点C ,AD EF ⊥于点D ,.DAC BAC =∠∠(1)求证:EF 是⊙O 的切线;(2)求证:ABAD AC⋅=2;(3)若⊙O 的半径为2,30ACD =∠°,求图中阴影部分的面积.第23题图第24题图如图,在平面直角坐标系中,二次函数2=++y x bx c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点(03)C -,,点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP C '.是否存在点P ,使四边形POP C '为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的绝密☆启用前二○一三年枣庄市2010级初中学业考试数学参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分. 2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分. 3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分.一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)13.12 14.② 15.13 16.24 17.()12-, 18三、解答题:(本大题共7小题,共60分)19.(本题满分8分) 解:原式=()239322m m m m m --÷-- ……………………………………………2分 ()()()323233m m m m m m --=∙-+- ()133m m =+. …………………………………………………………5分∵m 是方程0132=++x x 的根,∴ 0132=++m m .∴132-=+m m ,即(3)1m m +=-. ∴原式=)1(31-⨯=31-. …………………………………………………8分20.(本题满分8分)(1)正确画图(参考图1-图4) ·········································································· 4分 (2)正确画图(参考图5-图8) ·········································································· 8分21.(解:(1)(每空1分) ………………………………………………4分(2)85.0300%80135%8875%9090=⨯+⨯+⨯.答:从该超市这三类儿童用品中随机购买一件买到合格品的概率是0.85 ……8分22.(本题满分8分) 解:(1)在Rt ADC △中,CD =21,30CAD ∠=°, ∴3633tan 303CD AD ====.°; (2)90抽查件数童装 童车儿童玩具类 别儿童玩具% 25%童车 %童装 7513545 30分在Rt BDC △中,CD =21,60CBD ∠=°,∴1211tan 60CD BD ====.°. ………………………………………4分所以363312112422242AB AD BD =-=-=...≈.(米). (5)分(2)汽车从A 到B 用时2秒,所以速度为2422121÷=..(米/秒).又因为 121360043.561000⨯=.. 所以该汽车速度为4356.千米/小时,大于40千米/小时, 故此汽车在AB 路段超速. ……………………………………………………8分23. (本题满分8分)解:(1)过点B 作BF x ⊥轴于F .在Rt BCF △中,∠BCO =45°,BC =212, ∴ CF =BF =12. …………………1分 ∵点C 的坐标为()180-,, ∴AB =OF =18-12=6.∴点B 的坐标为()612-,. ………3分 (2)过点D 作DG y ⊥轴于点G .∵AB DG ∥,∴OD G O B A △∽△.∴23DG OG OD AB OA OB ===. ∵AB=6,OA=12,∴48DG OG ==,.∴()()4804D E -,,,. ………………………………………………………5分设直线DE 的解析式为()0y kx b k =+≠,将()()4804D E -,,,代入,得48,4.k b b -+=⎧⎨=⎩ 解之,得 1,4.k b =-⎧⎨=⎩第23题图∴直线DE 解析式为4y x =-+. …………………………………………………8分24.(本题满分10分)(1)证明:连接.OC∵OC OA =,∴.OCA OAC =∠∠∵∠DAC =∠BAC ,∴.OCA DAC =∠∠∴.OC AD ∥ …………………………1分又∵AD EF ⊥,∴.OC EF ⊥∴EF 是⊙O 的切线. ……………………3分(2)证明:连接.BC∵AB 是⊙O 的直径,∴90ACB =∠°.∴90.ACB ADC ==∠∠°又∵BAC DAC =∠∠,∴.ABC ACD △∽△ ∴AC AB AD AC =, 即AB AD AC ⋅=2. ………………………………………6分(3)解:∵30ACD =∠°,∴60OCA OAC ==∠∠°.∴OAC △是等边三角形.∴60AOC =∠°, 2.AC OC ==在Rt ADC △中,AC =2,∠ACD =30°,∴AD =1,CD =3. …………………………………………………………8分 ∴()()1112222ADCO S AD OC CD =+=+= 梯形 6023603OACS 2π⨯2π==扇形,∴2.ADCO OAC S S S π=-=3阴影梯形扇形 ………………………………10分 25.(本题满分10分) 第24题图解:(1)将B 、C 两点的坐标代入2=++y x bx c ,得93=0,= 3.b c c ++⎧⎨-⎩ 解之,得=2,= 3.b c -⎧⎨-⎩所以二次函数的解析式为2=23y x x --. ………………………………… 3分(2)如图1,假设抛物线上存在点P ,使四边形POP C '为菱形,连接PP '交CO 于点E .∵四边形POP C '为菱形,∴PC=PO ,且PE ⊥CO . ∴OE=EC=32,即P 点的纵坐标为32-.……5分 由223x x --=32-,得12x x 所以存在这样的点,此时P,32-). …………7分(3)如图2,连接PO ,作PM ⊥x 于M ,PN ⊥y 于N .设P 点坐标为(x ,223x x --),由223x x --=0,得点A 坐标为(-1,0).∴AO=1,OC=3, OB=3,P M=223x x -++,PN =x .∴S 四边形ABPC =AOC S ∆+POB S ∆+POC S ∆ =12AO·OC +12OB·PM +12OC·PN =12×1×3+12×3×(223x x -++)+12×3×x =239622x x -++ =23375()228x --+. ………………………8分 易知,当x=32时,四边形ABPC 的面积最大.此时P 点坐标为(32,154-),四边形ABPC 的最大面积为758. ………………………………………………………………10分P。