火力发电厂电气主接线课程设计

合集下载

电厂主接线课程设计

电厂主接线课程设计

电厂主接线课程设计一、课程目标知识目标:1. 让学生理解电厂主接线的基本概念,掌握主接线图的相关知识;2. 学会分析不同类型的电厂主接线方式,了解其优缺点;3. 掌握电厂主接线的保护、自动化设备及运行原理。

技能目标:1. 能够独立阅读并理解电厂主接线图,具备绘制简单主接线图的能力;2. 学会运用所学知识,分析实际电厂主接线故障案例,并提出合理的解决方案;3. 能够运用相关软件进行电厂主接线的模拟操作,提高实际操作能力。

情感态度价值观目标:1. 培养学生对电力工程的兴趣,激发学习热情,形成积极的学习态度;2. 增强学生的团队合作意识,培养沟通协调能力;3. 培养学生关注环境保护,理解电力工程对环境的影响,树立绿色环保意识。

分析课程性质、学生特点和教学要求,本课程将目标分解为以下具体学习成果:1. 学生能够准确描述电厂主接线的基本概念和主接线图相关知识;2. 学生能够分析各类电厂主接线方式,并能列举其优缺点;3. 学生能够运用所学知识,解决实际电厂主接线故障问题;4. 学生能够独立绘制简单的主接线图,并进行模拟操作;5. 学生能够形成积极的学习态度,关注环境保护,具备一定的团队协作能力。

二、教学内容本章节教学内容依据课程目标,紧密结合课本,确保科学性和系统性。

具体内容包括:1. 电厂主接线基本概念:讲解主接线的定义、作用及其在电力系统中的重要性;- 教材章节:第一章第二节2. 主接线图的绘制与分析:学习主接线图的绘制方法,分析不同类型的主接线方式;- 教材章节:第二章3. 电厂主接线保护及自动化设备:介绍主接线的保护装置、自动化设备及其工作原理;- 教材章节:第三章4. 电厂主接线故障案例分析:分析实际电厂主接线故障案例,讲解故障原因及处理方法;- 教材章节:第四章5. 主接线模拟操作:运用相关软件,进行电厂主接线的模拟操作,提高实际操作能力;- 教材章节:第五章6. 电厂主接线与环境保护:探讨电厂主接线工程对环境的影响,倡导绿色环保意识;- 教材章节:第六章教学进度安排:第一周:电厂主接线基本概念;第二周:主接线图的绘制与分析;第三周:电厂主接线保护及自动化设备;第四周:电厂主接线故障案例分析;第五周:主接线模拟操作;第六周:电厂主接线与环境保护。

[第一组]发电厂电气部分课程设计

[第一组]发电厂电气部分课程设计

[第一组]发电厂电气部分课程设计发电厂电气部分课程设计学院:电气与信息工程学院专业班级:电气工程及其自动化班xxx班组号:第x组指导老师:xxx 时间:2021.71摘要本设计是电厂主接线设计。

该火电厂总装机容量为2×50+2×150+300=1300MW。

厂用电率6%,机组年利用小时T=6500h。

根据所给出的原始资料拟定两种电气主接线方案,然后对比这两种方案进行可靠性、经济型和灵活性比较厚,保留一种较合理的方案,最后通过定量的技术经济比较确定最终的电气主接线方案。

在对系统各种可能发生的短路故障分析计算的基础上,进行了电气设备和道题的选择校验设计。

在对发电厂一次系统分析的基础上,对发电厂的配电装置布置做了初步简单的设计。

此次设计的过程是一次将理论与实际相结合的初步过程,起到学以致用,巩固和加深对本专业的理解,建立了工程设计的基本观念,提升了自身设计能力。

关键字:电气主接线;火电厂;设备选型;配电装置布置。

max 2目录1.1设计的原始资料..................................................................3 1.2设计的任务与要求 (3)1设计任务书 (3)2电气主接线 (5)2.1系统与负荷资料分析............................................................5 2.2主接线方案的选择 (5)2.2.1方案拟定的依据.........................................................5 2.2.2主接线方案的拟定......................................................7 2.3 主变压器的选择与计算 (8)2.3.1变压器容量、台数和型式的确定原则..............................8 2.3.2变压器的选择与计算 (9)3短路计算 (10)3.1短路计算的一般规则............................................................10 3.2短路电流的计算 (10)3.2.1各元件电抗的计算......................................................10 3.2.2 等值网络的化简 (11)4电气设备的选择 (16)4.1电气设备选择的一般原则......................................................16 4.2电气设备的选择条件............................................................16 4.2.1按正常工作条件选择电气设备.......................................16 4.2.2按短路情况校验.........................................................17 4.2.3 断路器和隔离开关的选择.............................................19 4.2.4 电流互感器的选择 (20)5结束语.....................................................................21 6参考文献 (22)31 火力发电厂电气部分设计任务书1.1设计的原始资料火力发电厂:装机5台,分别为供热式机组2*50MVA(UN=10.5kv),凝汽式机组2*15MVA,(UN=10.5kv),1*300MVA(UN=10.5kv),厂用电率6%,机组年利用小时Tmax=6500小时。

2×25MW+2×50MW火电厂主接线设计

2×25MW+2×50MW火电厂主接线设计

发电厂电气部分课程设计报告2×25MW+2×50MW火电厂主接线设计学生:指导教师:摘要本次设计是火电厂主接线设计。

该水电站的总装机容量为2×25MW+2×50MW=150MW。

高压侧为110Kv,四回出线与系统相连,发电机电压级有10条电缆出线,其最大输送功率为150MW,该电厂的厂用电率为10%。

根据所给出的原始资料拟定两种电气主接线方案,然后对这两种方案进行可靠性、经济性和灵活性比较后,保留一种较合理的方案,最后通过定量的技术经济比较确定最终的电气主接线方案。

在对系统各种可能发生的短路故障分析计算的基础上,进行了电气设备和导体的选择校验设计。

在对发电厂一次系统分析的基础上,对发电厂的配电装置布置、防雷保护做了初步简单的设计。

此次设计的过程是一次将理论与实际相结合的初步过程,起到学以致用,巩固和加深对本专业的理解,建立了工程设计的基本观念,提升了自身设计能力。

关键字:电气主接线,短路电流计算,设备选型,配电装置布置,防雷保护。

课程设计任务书一、原始资料:某新建地方热电厂,发电机组2×25MW+2×50MW,ϕ,U=6.3KV,发电机电压级有10条电缆出线,其最大综合负荷30MW,cos=8.0最小负荷20MW,厂用电率10%,高压侧为110KV,有4条回路与电力系统相连,中压侧35KV,最大综合负荷20MW,最小负荷15MW。

发电厂处于北方平原地带,防雷按当地平均雷暴日考虑,土壤为普通沙土。

系统容量2000MW,电抗值0.8(归算到100KVA)。

二、设计内容:a)设计发电厂的主接线(两份选一),选择主变的型号;b)选择短路点计算三相对称短路电流和不对称短路电流并汇总成表;c)选择各电压等级的电气设备(断路器、隔离开关、母线、支柱绝缘子、穿墙套管、电抗器、电流互感器、电压互感器)并汇总成表;三、设计成果:设计说明计算书一份;1号图纸一张。

火力发电厂电气主接线课程设计报告

火力发电厂电气主接线课程设计报告

火力发电厂电气主接线课程设计报告前言电气主接线代表了发电厂和变压所高电压、大电流的电气部分的主体结构,是电力系统网络结构的重要组成部分。

它直接影响电力生产运行的可靠性、灵活性。

对电气设备的选择、配电装置的布置、继电保护、自动装置和控制方式等诸多方面都有决定性的关系。

本火电厂电气主接线主要从可靠性、灵活性、经济性三方面综合考虑并设计。

可靠性包括:发电厂和变电所在电力系统中的地位;负荷性质和类别;设备的制造水平;长期运行实际经验。

灵活性包括:操作的方便性;调度的方便性;扩建的方便性。

经济性包括:节省投资;降低损耗等。

综合以上三方面的考虑展开火电厂电气主接线的设计,并对设计进行可行性分析,得出结论:本设计适合实际应用。

1对原始资料的分析火力发电厂共有两台50MW的供热式机组,两台300MW的凝汽式机组。

所以Pmax=700MW;机组年利用小时Tmax=6500h。

设计电厂容量:2*50+2*300=700MW;占系统总容量700/(3500+700)*100%=16.7%;超过系统检修备用容量8%-15%和事故备用容量10%的限额。

说明该厂在系统中的作用和地位至关重要。

由于年利用小时数为6500h>5000h,远大于电力系统发电机组的平均最大负荷利用小时数。

该电厂在电力系统中将主要承担基荷,从而在设计电气主接线时务必侧重考虑可能性。

10.5KV电压级:地方负荷容量最大为25.35MW,共有10回电缆馈线,与50MW发电机端电压相等,宜采用直馈线。

220KV电压级:出线回路为5回,为保证检修出线断路器不致对该回路停电,宜采用带旁路母线接线方式。

500KV电压级:与系统有4回馈线,最大可能输送的电力为700-15-200-700*6%=443MW。

500KV电压级的界限可靠性要求相当高。

2 主接线方案的拟定2.1 10.5kV电压级根据设计规程规定:当每段母线超过24MW时应采用双母线分段式接线方式。

火力发电厂课程设计-发电厂电气部分主接线设计说明书

火力发电厂课程设计-发电厂电气部分主接线设计说明书

发电厂电气部分主接线设计说明书目录原始材料分析………………………………………………………………………第一章主线方案的拟定…………………………………………………………第二章选择发电机及主变压器………………………………………………. 第一节发电机的选择………………………………………………………. 第二节主变压器的选择…………………………………………………….. 第三章短路电流的计算……..………………………………………………第四章主要电气设备的选择 ..………………………………………………第一节断路器的选择………………………………………………………第二节隔离开关的选择……………………………………………………第三节裸导体的选择………………………………………………………第五章发电厂厂用电系统分析………………………………………………第一节厂用电设计的原则和要求…………………………………………第二节厂用电系统的设计…………………………………………………附发电厂电气部分课程设计任务书(10)……………………………………对原始材料的分析:设计电厂为中,小型抽气式热电厂,其容量为2*12+2*25+2*50=174MW。

最大单机容量为50MW,即具有小型容量的规模,中型机组的特点。

年利用小时为6570h/a>5000h/a。

并在系统中承担地区负荷,则主接线的设计着重考虑其可靠性。

本厂投产后,将占电力系统的总容量174100%8.0%1742000⨯=+(<15%),说明该厂在未来电力系统中的作用和地位不是非常重要。

第一章主接线方案的拟定根据对原始资料的分析现将各电压级可能采用的较佳方案列出。

进而以优异的组合方式,组成最佳的可比方案。

1) 6.3KV的电压级:鉴于出线回路多,且为直馈线、电压线,因此可采用单母线合段或双母线分段接线形式,为选择轻型电器,应在分段处加装母线电抗器,各条电缆馈线上的装设出线电抗器。

大型火力发电厂电气主接线设计

大型火力发电厂电气主接线设计

内蒙古科技大学本科生毕业设计说明书(毕业论文)题目:大型火力发电厂电气主接线设计学生姓名:\\\\学号:\\\\\\\\专业:电气工程及其自动化班级:电气07-2班指导教师:大型火力发电厂电气主接线设计摘要本文针对大型火力发电厂进行主接线设计,主要是对电气方面进行研究。

首先对发电厂的有关设备及类型做以简单介绍,并对火力发电厂的现状及原理加以阐述。

依据设备等的原始数据和电气主接线的基本原则进行了主接线的设计,选择了110KV电压网络单母线分段带旁母;220KV电压网络双母线带旁母;500KV电压网络单母线带旁母;普通双绕组变压器做主变;相邻两个电压网络间用自耦变压器联络。

在三相短路实用计算中基本假设的前提下,对三项短路电流进行计算。

由三相短路电流计算出两相短路是的短路电流。

根据负荷计算和短路电流计算的结果对断路器、隔离开关相关电气设备进行了选择和校验。

对厂用电负荷进行分类,并对厂用电进行简单概述。

关键词:大型火电厂;电气主接线;短路电流The main wiring project of Large coal-fired power plantsAbstractThis paper aims at main wiring project of Large coal-fired power plants, mainly research in electric aspect.Firstly,here is a brief introduction about the related facility and forms of power plant, and statement of the current situation and theory of coal-fired power plant. I conduct the main wiring project based on the initial data of facilities and the basic principle of main electric wiring. I choose sectionalized single-bus with transfer bus configuration in the internet of 110kv voltage, double bus connection with bypass in the internet of 220kv voltage, Single bus with bypass wiring in the internet of 500kv voltage . Ordinary duplex winding transformer as generator transformer. Under precondition of fundamental assumption of Three-phase short-circuit practical calculation, I conduct Three-phase short-circuit current calculation, and work out short-circuit current at the time of phase short circuit according to Three-phase short-circuit current. According to the result of load calculation and short-circuit current calculation, I conduct selection and validation of the related electric facilities including breaker, disconnector, power cable, etc. I conduct classification of electrical load of power plant, and a brief statement of Auxiliary power.Key words:large coal-fired power plants;electric aspect;short-circuit current目录摘要 (I)Abstract (II)目录 (III)第一章绪论 (1)1.1.发电厂的类型及简单的设备概述 (1)1.2. 设计任务及研究的目的和意义 (6)1.3.火电厂的发电原理 (8)第二章电气主接线的选择 (10)2.1.对电气主接线的基本要求 (10)2.2. 主接线的接线方式 (13)2.3.主接线形式的确定 (16)第三章短路电流的计算183.1. 短路的基本概念 (18)3.1.1.故障类型及原因 (18)3.1.2.短路的危害及措施 (19)3.1.3. 短路电流计算的具体目的和基本假设 (21)3.2. 短路电流的计算 (22)3.2.1.电气设备的标幺值计算 (22)3.2.2. 各短路点三相短路计算 (23)3.2.3. 短路容量、全电流最大有效值及冲击电流的计算 (26)第四章电气设备选择 (29)4.1.变压器的选择 (29)4.1.1. 变压器容量的选择 (29)4.2. 联络变压器的选择 (29)4.2.1. 联络变压器的容量选择原则 (29)4.2.2. 联络变压器的设计建议 (30)4.3.变压器的技术参数 (31)4.4. 断路器的选择 (32)4.4.1. 110KV侧断路器的选择 (32)4.4.2.220KV侧断路器的选择 (34)4.4.3. 500KV侧断路器的选择 (36)4.5. 隔离开关的选择 (39)4.5.1. 110KV侧隔离开关的选择 (39)4.5.2.220KV侧隔离开关的选择 (41)4.5.3.500KV侧隔离开关的选择 (43)第五章厂用电的概述 (46)5.1.厂用电负荷的分类 (46)5.2. 厂用电的设计原则 (47)第六章总结 (49)参考文献 (50)致谢 (51)附录 (52)第一章绪论本章简要的介绍发电厂的各种类型和生产过程,以及主要电气设备的作用,同时也介绍了我国电力工业的发展概况和发展展望,在本章结尾明确指出本课题的题目、内容要求及方法。

火力发电厂电气主接线设计(辽宁工程技术大学发电厂课设,格式完全正确,10分下载即用)

火力发电厂电气主接线设计(辽宁工程技术大学发电厂课设,格式完全正确,10分下载即用)
最终成绩: 评定教师签字:
发电厂电气部分
课程设计任务书
一、设计题目
火力发电厂电气主接线设计
二、设计任务
根据所提供的某火力发电厂原始资料,完成以下设计任务:
1.对原始资料的分析
2.主接线方案的拟定(至少两个方案)
3.变压器台数和容量的选择
4.所选方案的经济比较
5.主接线最终方案的确定
三、设计计划
本课程设计时间为一周,具体安排如下:
3.3
500kV负荷容量大,其主接线是本厂向系统输送功率的主要接线方式,为保证可靠性,可能有多种接线形式,经济性分析筛选厚,可选用的方案为双母线带旁路界限和一台半断路器界限,通过联络变压器与220kV连接,并通过一台三绕组变压器联系220kV及6.3kV电压,以提高可靠性,一台300MW机组与变压器组成单元接线,直接将功率送往500kV电力系统。
2.2
500kV系统容量为无穷大,基准容量为100MVA,系统归算到本电厂500kV母线上的电抗标么值Xs*= 0.021,500kV架空线4回,备用线1回。
3
3.1
鉴于出线回路多,且发电机单机容量为25MW,远大于有关设计规程对选用单母线分段接线每段上不宜超过12MW的规定,应确定为双母线分段接线形式。两台25MW机组分别接在两段母线上,剩余功率通过主变压器送往高一级电压220kV。由于两台25MW机组均接于6.3kV母线上,有较大短路电流,为选择轻型电器,应在分段处加装母线电抗器,各条电缆馈线上装设出线电抗器。考虑到25MW机组为供热式机组,通常“以热定电”,机组年最大负荷小时数较低,同时由于6.3kV电压最大负荷24.23MW,远小于2×25MW发电机组装机容量,即使在发电机检修或升压变压器检修的情况下,也可保证该电压等级负荷要求,因而6.3kV电压级与220kV电压之间按弱联系考虑,只设一台主变压器。

火力发电厂电气主接线设计

火力发电厂电气主接线设计

原始数据某火力发电厂原始资料如下:装机4台,分别为供热式机组2x50MW(U N = 6.3kV), 凝汽式机组2x 100MW (UN=10.5kV),厂用电率6.2%,机组年利用小时T max = 650011 o 系统规划部门提供的电力负荷及与电力系统连接情况资料如下:(1)6.3kV电压级最大负荷30MW,最小负荷25MW, cos(p = 0.8,电缆馈线10回;(2)220kV电压级最大负荷260MW,最小负荷210MW, cos(p = 0.85,架空线5回;(3)500kV电压级与容量为35OOMW的电力系统连接,系统归算到本电厂500kV母线上的电抗标么值xs* = 0.021 (基准容量为100MVA) , 500kV架空线4回,备用线1回。

摘要根据设计要求,本课程设计是对2*100MW+2*50MW的发电厂进行电气主接线进行设计。

首先对给出的原始资料和数据进行分析和计算,对发电厂的工程情况和电力系统的情况进行了解。

在设计过程中根据发电厂的各部分厂用电的要求,设计发电厂的各电压等级的电气主接线并选择各变压器的型号;进行参数计算,设计两个及以上的方案,进行方案的经济比较最后对厂用电的电气主接线的方案进行确定。

关键词:发电厂主接线变压器目录1前言 (1)2原始资料分析 (1)3主接线方案的拟定 (2)3. 1 6. 3kV 电压级 (2)3. 2 220kV 电压级 (2)3. 3 500kV 电压级 (2)3.4主接线方案图 (2)4变压器的选择 (4)4.1主变压器 (4)4.2联络变压器 (5)5方案的经济比较 (6)5.1 一次投资计算 (6)6主接线最终方案的确定 (7)7结论 (8)8参考文献 (9)1前言电力是我国主要能源行业,是国民经济基础产业和公共事业,是资金密集的装置型产业,同时也是资源密集型产业。

无论是电源还是电网,在建设和生产运营中有需要占有和消费大量,贯穿于电力规划、设计建设一直到生产运营全过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言电气主接线代表了发电厂和变压所高电压、大电流的电气部分的主体结构,是电力系统网络结构的重要组成部分。

它直接影响电力生产运行的可靠性、灵活性。

对电气设备的选择、配电装置的布置、继电保护、自动装置和控制方式等诸多方面都有决定性的关系。

本火电厂电气主接线主要从可靠性、灵活性、经济性三方面综合考虑并设计。

可靠性包括:发电厂和变电所在电力系统中的地位;负荷性质和类别;设备的制造水平;长期运行实际经验。

灵活性包括:操作的方便性;调度的方便性;扩建的方便性。

经济性包括:节省投资;降低损耗等。

综合以上三方面的考虑展开火电厂电气主接线的设计,并对设计进行可行性分析,得出结论:本设计适合实际应用。

1对原始资料的分析火力发电厂共有两台50MW的供热式机组,两台300MW的凝汽式机组。

所以Pmax=700MW;机组年利用小时Tmax=6500h。

设计电厂容量:2*50+2*300=700MW;占系统总容量700/(3500+700)*100%=16.7%;超过系统检修备用容量8%-15%和事故备用容量10%的限额。

说明该厂在系统中的作用和地位至关重要。

由于年利用小时数为6500h>5000h,远大于电力系统发电机组的平均最大负荷利用小时数。

该电厂在电力系统中将主要承担基荷,从而在设计电气主接线时务必侧重考虑可能性。

10.5KV电压级:地方负荷容量最大为25.35MW,共有10回电缆馈线,与50MW发电机端电压相等,宜采用直馈线。

220KV电压级:出线回路为5回,为保证检修出线断路器不致对该回路停电,宜采用带旁路母线接线方式。

500KV电压级:与系统有4回馈线,最大可能输送的电力为700-15-200-700*6%=443MW。

500KV电压级的界限可靠性要求相当高。

2 主接线方案的拟定2.1 10.5kV电压级根据设计规程规定:当每段母线超过24MW时应采用双母线分段式接线方式。

利用断路器将双母线中的一组母线分为W1和W2两段,在分段处装有电抗器,另一组母线不分段。

2台供热式机组输出的电能分别经断路器和隔离开关连接至10.5KV的母线上。

10.5KV 设计11回出线。

其中10回为额定电压10.5KV的负荷供电,1回线路接升压变压器连接至220KV母线进线端为220KV母线W4、W5,将剩余功率通过主变压器送往电压220KV。

2.2 220kV电压级出线回路数大于4回,为使其出线断路器检修时不停电,宜采用双母线带旁路接线或单母线分段式接线。

计算从10KV送来的剩余容量:2*50-[(20+10*14/26)+2*50*6%]=68.62MW<250MW,不能满足220KV最大负荷250MV的要求。

拟定1台300MW机组按发电机-变压器单元接线形式接至220KV母线上。

由联络变压器与500KV接线连接,相互交换功率。

方案I:220KV母线采用双母线带旁路接线方式。

300MW的凝汽式发电机采用发电机-变压器的接线方式,由变压器高压侧引出线连接至220kv母线上。

出线端共接线路6回,其中1回线路连接变压器接至500KV母线。

其余5回线路连接电抗器并为额定电压220KV 的负荷供电。

方案II:220KV母线采用单母线分段式接线方式。

出线方式与方案I相同。

2.3 500kV电压级500KV负荷容量大,为保证可靠性,有多种接线形式,经分析拟定两种接线方案。

将一台300MW机组与变压器组成单元接线,直接将功率送往500KV电力系统。

方案I:500KV采用双母线四分段带专用旁路母线接线方式。

出线5回,4回供电1回备用。

方案II:500KV采用一台半断路器接线方式。

综上,拟定的方案一共有4种:方案I:10.5KV采用双母线分段式接线;220KV母线采用双母线带旁路接线方式;500KV 双母线四分段带专用旁路母线接线方式。

火力发电厂电气主接线方案I设计图方式;500KV一台半断路器接线方式。

火力发电厂电气主接线方案II设计图500KV一台半断路器接线方式。

火力发电厂电气主接线方案III设计图方式;500KV双母线四分段带专用旁路母线接线方式。

火力发电厂电气主接线方案IV设计图3 方案的经济比较3.1 计算一次投资该项目取变压器500万;500KV断路器100万;220KV断路器40万;10.5KV断路器5万;500KV隔离开关20万;220KV隔离开关8万;10.5KV隔离开关1万。

设备总投资I0=I(变压器)+I(断路器)+I(隔离开关)综合总投资I=I0(1+α/100)α为明显的附加费用比例系数取90四种方案一次投资统计表3.2 计算年运行费运行期年运行费C=α1*I+α2*Iα1为检修维护费率取0.03α2为折旧费率取0.05四种方案年运行费统计表由以上两个表格分析可以看出,四个方案的投资金额从大到小依次是:方案III、方案II、方案I、方案IV。

相应的经济性由高到低排列:方案IV>方案I>方案II>方案III。

会根据以上数据表明,各个方案的一次投资和运行费差距很小,从经济方面分析,四个方案都可行。

4 主接线最终方案的确定4.1方案的可靠性比较10.5KV侧:4个方案均采用双母线分段式接线。

200KV侧:方案I:220KV母线采用双母线带旁路接线方式。

可靠性极高,故障率低的变压器的出口不装断路器,投资较省,整个线路具有相当高的灵活性,当双母线的两组母线同时工作时,通过母联断路器并联运行,电源与负荷平均分配在两组母线上,当母联断路器断开后,变电所负荷可同时接在母线或副母线上运行,当母线故障或检修时,将隔离开关运行倒闸操作,容易发生误操作。

方案II: 220KV母线采用单母线分段式接线方式。

检修任一台断路器时,该回路需停运,分段开关停运时,两段母线需解列运行,当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不致失电,另一段母线上其它线路需停运。

500KV侧:方案I:500KV采用双母线四分段带专用旁路接线方式。

供电可靠性大,可以轮流检修母线而不使供电中断,当一组母线故障时,只要将故障母线上的回路倒换到另一组母线,就可迅速恢复供电。

方案II:500KV采用3/2断路器接线方式。

运行可靠,每一回路由两台断路器供电,母线发生故障时,任何回路都不停电。

检修时操作方便,当一组母线停支时,回路不需要切换。

任一台断路器检修,各回路仍按原接线方式工作,不需切换。

4.2方案的灵活性比较220KV侧:方案I:220KV母线采用双母线带旁路接线方式。

检修方便、调度灵活、便于扩建。

用旁路断路器带该回路时,操作复杂,增加了误操作的机会。

同时,由于加装旁路断路器,使相应的保护及自动化系统复杂化。

方案II:220KV母线采用单母线分段式接线方式。

调度灵活,接线简单,易于拓建。

500KV侧:方案I:500KV采用双母线四分段带专用旁路接线方式。

检修方便、调度灵活、易于操作,但由于接线方式较复杂,倒闸时易发生误操作。

方案II:500KV采用3/2断路器接线方式。

运行调度灵活,正常时两条母线和全部断路器运行,成多路环状供电。

从发展看方案II比方案I更被认同和使用。

4.3方案最终确定该系统是发电厂的主接线,发电厂的出线线路的供电可靠性至关重要,为了保证周围企业和居民能够正常用电,必须在综合考虑三方面时优先考虑供电可靠性。

从供电可靠性、灵活性、经济性三个方面分析比较以上的四个不同的方案决定以第III方案为最终方案,即10.5KV采用双母线分段式接线;220KV母线采用双母线带旁路接线方式;500KV一台半断路器接线方式。

5 结论对于发电厂电气主接线设计,要从可靠性、灵活性、经济性三个方面来分析。

而可靠性和经济性往往存在矛盾。

对于发电厂这类重要的供电场所,主接线直接影响了周围负荷的正常用电,因此其可靠性至关重要,经济性要在保证可靠性的基础上考虑。

从最大程度的保证负荷用电的安全可靠方面考虑应选择方案I、III。

考虑到方案在经济性是否可行,设计中对四个方案的一次投资和年运行费进行了分析和计算,得出具体的数值进行比较。

从中发现四个方案的经济投资相差较小,可以认为经济性对本设计的影响较小。

从主接线的灵活性方面分析,双母线的接线方式和单母线的接线方式均具有灵活操作的特点。

所不同的是双母线的倒闸操作较单母线复杂,易发生误操作;与此同时双母线可以利用其结构优势有更为多样的调度方式,增加了操作的方便性。

综合以上方面的考虑,确定选定方案III为最终方案。

该方案能够保证供电的安全可靠,具有一定的经济性,同时在接线上力求简单、方便调度,保证了操作的灵活方便,可以投入建设。

6 参考文献[1] 熊信银. 发电厂电气部分-4版. 北京:中国电力出版社,2009[2] 刘介才. 工厂供电设计指导. 北京:机械工业出版社,1998[3] 工厂常用电气设备手册(第2版). 北京:中国电力出版社,1997[4] 黄纯华. 发电厂电气部分课程设计参考资料北京:水利电力出版社,1987[5] 电力工业行业标准汇编. 北京:中国电力出版社,1996~1998。

相关文档
最新文档