学习和记忆的生物学基础

合集下载

从生物学角度谈记忆力的培养

从生物学角度谈记忆力的培养

从生物学角度谈记忆力的培养作者:陈永水来源:《教师·下》2014年第06期摘要:记忆是智慧的仓库,是一种复杂的心理活动。

记忆在中学生的学习过程中是极为重要的。

中学生在学习理论知识和实际应用中要依靠记忆才能在头脑中保持并在需要时提取。

培养中学生的记忆力是发展学生观察、实验、思维、探究能力的基础。

本文将依据生物学科的特点,阐述在中学生物学中有效记忆形式的培养。

关键词:生物教学;记忆力;记忆形式记忆是将获得的经验进行贮存和再现的生理过程。

法国作家伏尔泰说过:“人,如果没有记忆,就无法发明、创造和联想。

”纵观古今中外著名人物,他们之所以有所作为,这与他们惊人的记忆力有极大的关系。

难怪有句格言说:“记忆乃才智之母。

”对学生来说,学习新知识离不开对旧知识的回忆。

思考问题离不开记忆的内容,提高学习效率也离不开记忆。

所以,在生物学教学中要提高教学质量,首先就必须培养学生对生物学知识的记忆能力。

集自己多年的生物教学经历,从认识心理学的观点出发,结合中学生物学科特点,在中学生物学中有效记忆形式的培养归纳如下:1.多方面协同记忆现代科学研究表明,输入大脑皮层的知识信息是多种通道的,一个人从“视觉”得到的知识比从“听觉”得到的要精确和持久,单纯依靠听觉获得的知识能记住15%,而从视觉获得的知识能记住25%,既听又看可记住65%,看、听、说相结合能记住86%。

如果将各种渠道充分利用起来,就会使大脑皮层的各中枢建立许多通道的联系,使同一内容在大脑皮层上建立起“同一意义”的痕迹,从而达到加深记忆的目的。

据文献资料而知:用语言描述识记时间为2.8秒,用线条图解描述识记时间为1.5秒,用黑白照片描述识记时间为1.2秒,用彩色照片描述识记时间为0.9秒,直接看实物识记时间为0.4秒。

因此,在生物学教学中,充分利用实物、标本、模型、幻灯、录像、动画、多媒体、电影和视听工具做到声形并举,同时发挥学生耳听、眼看、口读、心想和手写的功能,这样能激发大脑皮层更多的功能区以及最大限度地调动大脑皮层各区域的功能作用,从而提高记忆和教学效果。

心理生物学基础第八章 学习和记忆的生理基础

心理生物学基础第八章 学习和记忆的生理基础

第八章学习和记忆的生理基础学习,人和动物获得关于外界知识的神经过程,他是对经验做出反应而改变行动的能力记忆,存储和提取所获得的知识的神经过程第一节学习的基本类型分为联合型学习,非联合型学习,知觉学习,运动性学习,关系型学习一,非联合型学习又叫简单学习,是指集体对单一刺激做出的行为反应,分为习惯化和敏感化两种1,习惯化是指当一个不产生伤害效应的刺激重复作用时,机体对该刺激的反射性行为反应逐渐减弱的过程2,敏感化是指反应加强的过程,一个弱的伤害性刺激不仅引起弱的反应,但在强的伤害性刺激作用后,弱刺激引起的反应就明显加强强烈的感觉刺激(一片漆黑)产生了敏感化,即学会所有刺激的反应均加强二,联合型学习刺激和反应之间建立联系的学习,实质是两种或两种以上刺激所引起的脑内两个以上的中枢之间的活动形成联结而实现的学习过程1,条件反射时间上把某一无关刺激(如铃声)与无关条件刺激(食物)结合多次,这个过程成为强化任何无关刺激与无条件刺激结合应用,都可以形成条件反射2,操作式条件反射动物必须通过自己完成某种运动或操作后才能得到强化,所以称为操作式条件反射经典条件反射是条件刺激与无条件刺激之间形成了某种联系,那么操作式条件反射则是操作和强化刺激间形成了联系第二节记忆的基本类型和记忆过程1,记忆的基本类型1>短时记忆和长时记忆1>>短时记忆,是一种对刚意识到的刺激和瞬间记忆,信息在短时记忆中一直复述到它最后存储到长时记忆里,保持时间在15秒左右,其容量为7+-2个项目,短时记忆的容量是有限的2>>长时记忆,信息经过充分的,有一定深度的加工后,在头脑中长时间保存下来大脑中存在两个相互作用的记忆系统,即短时记忆系统和长时记忆系统,前者相对比较容易受损伤,很多事实支持这种观点,因为不同脑区的损伤对短时记忆和长时记忆的影响是不同的2>陈述性记忆和非陈述记忆1>>陈述性记忆,对事实或事件及其相互关系的记忆,又称外显记忆,它可以通过语言传授而一次性获得,它的提取往往需求意识的参与,依赖于评价,比较和推理等认识过程陈述性又可分为情境记忆和语义记忆情景记忆是指有关自我生活史的记忆,语义记忆是指对于任何具体无关的事实和资料的知识2>>非陈述性记忆事情的记忆,又称内隐性记忆,包括程序性记忆,运动技能记忆和情绪记忆,利用这类记忆时,不需要意识参与,他的形成或提取不依赖于意识或认知过程(如评价,比较),非陈述性记忆需多次重复才能逐渐形成程序性记忆是指记住如何做某事,随着反复的练习,有意识的思考和回忆的参与也越来越少,脑由反思性加工转变为自发性加工非陈述性记忆和陈述性记忆可能有不同的神经通路参与二,记忆过程编码是通过感觉系统向脑内输入信息的阶段,是感觉阶段对外界信息进行形式转换的过程存储是把感知过的事物,体验过的情感,做过的动作,思考过的问题等,以一定的形式保持在人们的头脑中巩固假设个人在习得一种经验后,需要有一段时间,使这种经验通过脑内的神经活动,在脑内留下牢固的痕迹,保存时间的长短和巩固程度的强弱与该信息对个体的意义以及是否有反复应用有关提取是将贮存与脑内的信息提取出来使之再现于意识中的过程,记忆好坏是通过信息的提取表现出来的遗忘是因时日久远,使信息在记忆中变模糊,可能是编码错误,也可能是提取失败,记忆问题不都是贮存问题造成的,如后来记忆东西会干扰前面记忆的东西,对一种知识没有很好的理解就不能有效得编码并把它记住第三节学习与记忆的生理基础记忆是客观刺激作用于感受器,在大脑皮层上就会形成暂时神经联系,这些暂时性神经联系在刺激物作用终止以后以某种痕迹的方式保留在头脑中1,对非联合型学习的解释缩腮反射可因连续多次轻触外套膜或水管皮肤而渐渐减弱呈现习惯化反射敏感化是在海兔的头部或尾部给予伤害性刺激时,再重复轻触刺激水管,将会引起缩腮反射明显增强2,对联合型学习的解释在条件反射建立过程中,大脑皮层及皮层下结构,尤其是网状结构的广泛区域都有电活动一个无关刺激经与较强的无条件刺激多次结合后,无关刺激既能产生有效的行为反应条件刺激在感觉神经元产生的动作电位正好早于无条件刺激的到达,这样就造成易化的增强,这种易化增强称为活动依存性突触易化联合性学习引起的突触后神经元反应增强大于敏感化引起的反应大于习惯化二,大脑的可塑性大脑可以分为环境和经验所修饰,具有外界环境和经验的呃作用下塑造大脑结构和功能的能力,分为结构可塑性和功能可塑性1,学习记忆与突触的可塑性大脑可塑性变化指的是各种学习记忆训练均可诱发与学习记忆相关的脑区产生明显的结构可塑性变化,如新突触形成和突触机能改变等感官所接受的信息刺激经过神经元的电脉冲得以传递,而这种传递又要经过突触的中转,每一次中转都是一次不同程度的信息加工短时记忆的活动过程只持续短暂的一段时间,而长时记忆则涉及神经系统结构的改变,所以较为持久,它们有不同的神经生理机制回路的活动由感觉刺激引起的,在刺激消除后会持续一短暂的时间,这个短暂的活动属于回路的反响,反响回路可以使神经活动在一段时间里循环和”自我维持”,以引发巩固过程为了形成一个较为稳固的记忆,在学习后需要有一定时间的时间巩固,这说明相同性质和内容的长时记忆与短时记忆之间存在着一种链锁式的联系,反响回路可能是短时记忆的生理基础长时记忆是神经突触所产生的持久性的改变,这种突触结构的改变需要一段时间才能巩固,使脑细胞发生生理变化,产生新的树突和轴突生理上的代谢或衰退的过程,可以使突触间的联系松弛,以致长时记忆也有衰退的现象,在巩固的过程中受到干扰,将皮坏长时记忆的建立,称为长时记忆的突触学说外界刺激使神经末梢肥大,突触就诶够变大,与相邻的下一个细胞膜接触的面积就增大,神经冲动到达后对下一个细胞的影响就相应的增大外界刺激使神经末梢分支,末梢的数量增加,突触的数量增加,可以和更多的细胞建立联系外界刺激刺激时突触小泡数量增多,传递神经冲动的神经递质也增多,对下一个神经细胞的作用也加大2,环境对大脑发育的影响中枢神经系统结构受基因等内在因素的调控,又可受学习训练,环境刺激等外界因素的影响皮层厚度,树突分支,树突棘的数量,突触的大小,丰富环境下长大的大白鼠由于中等环境,中等环境由于贫乏环境3,脑发育”敏感期”与学习发育过程中的敏感期,细胞间通讯能改变细胞命运的一段时间外界环境蚀刻于神经系统,与在胚胎发育敏感期诱导组织而改变其发育命运是两个类似的过程人类婴儿的敏感期可从第18个月持续到3岁,印记学习是一种局限性很强的学习方式,其不可逆性是它却别与其他学习形式的重要特征,脑中神经元及神经环路的命运依赖于动物在出生后早期所获得的生活经验第四节记忆障碍1,遗忘的基本类型记忆障碍分为两类1>>顺行性遗忘患者不能保留新近获得的信息,这种障碍与海马的功能损伤有关2>>逆行性遗忘患者不能回忆起紧接着本症发生前一段时间的经历2,遗忘的生理基础1>间脑与记忆障碍间脑不仅与颞叶之间有大量的纤维联系,而且海马的传出纤维(穹窿柱)到达乳头体,乳头体的传出纤维又投射到丘脑前核(由此再到扣带回),这是帕帕兹环路的组成部分,丘脑背内侧核接受包括杏仁核和下颞叶新皮层在内的颞叶诸结构的传入,投射纤维则到几乎所有额叶皮层科尔萨科夫综合征也说明间脑在记忆功能中起重要作用患者最初出现轻微的顺行性遗忘,随后又出现逆行性遗忘,对病前期发生的事情选择性遗忘,对早年的事情仍保持良好记忆2>海马与陈述性记忆癫痫患者H.M的研究,他被切除了双侧包括海马在内侧颞叶1>顺行性遗忘,患者学习和保持新的信息的功能受到损伤,颞叶切除,完全不能形成陈述性记忆,即对重要事件也不能形成确定而巩固的长时记忆2>逆行性遗忘,H.M的逆行性遗忘症状同样是局限的,只影响手术钱11年内的记忆,而对再早的记忆没有影响3>不影响非陈述性记忆海马结构是陈述性记忆结构的脑结构,闹内还存在另一个非陈述性记忆系统,海马损伤后对他没有影响。

记忆和神经学

记忆和神经学

学习和记忆的神经生物学基础摘要:学习和记忆是脑的最基本的功能之一,学习是指获取新信息和新知识的神经过程,而记忆则是对所获取信息的编码,巩固,保存和读出的神经过程.学习被区分为两种基本类型:非结合性学习,结合性学习。

记忆可分成下列几种类型:陈述性记忆,非陈述性记忆,短时记忆,长时记忆。

学习和记忆本身是一个非常复杂的过程,海马是学习和记忆的关键部位,LTP(突出后长时程增强)海马记忆形成过程中的可能机制,是神经细胞突出可塑性的两种主要特征:受体和通道是产生LTP生物学基础;神经递质即早基因的转录因子CREB ( cAMP反应成分结合蛋白)参与学习和记忆过程。

NMDA受体,钙离子,蛋白激酶C,该调速,cAMP,蛋白激酶A,以及CREB在产生短时记忆和长时记忆过程中起了关键的作用。

特别是钙离子和CREB,钙离子是而价带电粒子,同时有是强效第二信使物质,它具有将点活动与长时程结构变化直接偶连起来的特殊能力;而CREB的激活则是短时记忆向长时记忆转化的最初几步生物化学反应中最关键一步。

掌握较好的学习方法提高我们的记忆力,提高学习效率。

关键字:学习记忆神经海马学习和记忆是脑的重要机能之一。

人类和动物所以能适应环境而生存,完全依靠其具有学习与记忆的能力。

人类的语言文字,科学文化和劳动技巧,由于学习才能获得。

学习能力关系到整个国民的文化素质和科学水平的提高。

研究学习与记忆的机制影响因素,可以提高学习效率,增进智力发展,对于推动教育事业的进步,防治老年性痴呆和智力发育不全,以及促进人工智能的研究等。

(一)学习和记忆的定义学习是经验或训练引起行为适应性变化的过程,它是神经系统的可塑性表现。

机体周围环境在不断的变化,机体为适应环境而获得新的行为或习惯的过程,就是学习。

记忆是保持和回忆过去经验的能力,是学习后行为变化的保持和贮存。

(二)学习的类型学习被区分为两种基本类型:非结合性学习,结合性学习。

1.非结合性学习(nonassociative learning)是一种简单的学习类型,包括习惯化(habituation)和敏感化(sensitization)两种. 从低等动物到高等动物都具有习惯化和敏感化的学习行为。

学习与记忆(神经生物学)

学习与记忆(神经生物学)

记忆分类
长时记忆
记忆保持的时间
短时记忆 陈述性记忆 信息储存和回忆的方式 非陈述性记忆
记忆的储存有阶段性
普遍接受的一种记忆分类就是将记忆分成
短时记忆:数秒到数分钟 长时记忆:相对长期稳定,但随时间的推 移会逐渐减弱
记忆的储存有阶段性
记忆储存的阶段性



记忆储存的阶段 性是从短时记忆 向长时记忆的转 化过程 刚学到的新知识 先在短时工作记 忆中加工,然后 经过一步或若干 步转化为永久性 的长时记忆。 当回忆时,一个 搜寻和提取系统 从储存的记忆中 找到所要的信息
Ca2+ 积累→突触前末梢持续释放神 经递质→突触后电位增强
Copyright 2001 by Allyn & Bacon
非联合性学习
敏感化
习惯化仅仅涉及一个反射 敏感化是一个反射回路的兴 回路中的各个神经元 奋对另一个反射回路的影响
联合性学习(associative learning):

概念:两个或两个以上事件在时间上很 接近地重复发生,最后在脑内逐渐形成 联系。
PKA/PKC磷酸化并开放L型Ca通道,进一步增加Ca内流。
3.
第2、3种功能依赖于PKA和PKC的协同作用。
补充概念:
强直后增强 (posttetanic potentiation): 定义:突触前末梢受到一短串强直性
刺激后在突触后神经元上产生的突 触后电位增强,可持续60s。
机制:强直性刺激→突触前神经元内


陈述记忆是有关时间、地点和人物的知识 ,这种记忆需要一个清醒地回忆的过程。 它的形成依赖于评价,比较和推理等认知 过程。 陈述记忆储存的是有关事件或事实的知识 ,它有时经过一次测试或一次经历即可形 成。我们通常所说的记忆就是指的陈述记 忆。

神经生物学中的神经可塑性:探索神经可塑性的分子机制与在学习、记忆中的作用

神经生物学中的神经可塑性:探索神经可塑性的分子机制与在学习、记忆中的作用

神经生物学中的神经可塑性:探索神经可塑性的分子机制与在学习、记忆中的作用摘要神经可塑性是大脑适应环境变化、学习新知识和形成记忆的基础。

本文将深入探讨神经可塑性的分子机制,包括突触可塑性、神经发生和神经环路重塑。

同时,我们将重点阐述神经可塑性在学习和记忆过程中的关键作用,并探讨其在神经系统疾病治疗中的潜在应用。

1. 引言神经可塑性是指神经系统在一生中不断改变和重塑自身结构和功能的能力。

这种能力使大脑能够适应环境变化、学习新技能、形成记忆,并在受伤后进行修复。

神经可塑性是神经科学研究的核心领域之一,其分子机制的揭示对于理解大脑功能和开发神经系统疾病治疗方法具有重要意义。

2. 神经可塑性的分子机制2.1 突触可塑性突触是神经元之间传递信息的连接点。

突触可塑性是指突触连接强度随经验和学习而变化的能力。

长时程增强(LTP)和长时程抑制(LTD)是两种主要的突触可塑性形式。

LTP 增强突触连接强度,被认为是学习和记忆形成的基础。

LTD 则削弱突触连接强度,有助于神经环路精细化和记忆清除。

突触可塑性的分子机制涉及多种信号通路和分子。

谷氨酸受体,特别是 NMDA 受体,在LTP 中起关键作用。

钙离子内流激活一系列信号通路,包括钙调蛋白激酶 II (CaMKII)、蛋白激酶 C (PKC) 和丝裂原活化蛋白激酶 (MAPK),导致突触后膜受体数量增加和突触形态改变。

2.2 神经发生神经发生是指神经干细胞分化产生新的神经元的过程。

成年哺乳动物大脑的某些区域,如海马齿状回和侧脑室下区,仍然保留着神经发生的能力。

神经发生在学习、记忆和情绪调节中起重要作用。

神经发生的分子机制涉及多种生长因子和转录因子。

脑源性神经营养因子 (BDNF) 是促进神经发生的关键分子。

BDNF 激活受体酪氨酸激酶 B (TrkB),启动一系列信号通路,促进神经干细胞增殖、分化和存活。

2.3 神经环路重塑神经环路重塑是指神经元之间连接模式的改变。

细胞生物学巧记方法

细胞生物学巧记方法

细胞生物学巧记方法
细胞生物学是当今生命科学最基础而又最为重要的学科,也是老师经常让学生们细记的学科。

细胞生物学考试虽然考查内容十分丰富,但是学好也不是很难的事情。

这里就结合自
己的学习经验,总结出了适合于学生的几种细胞生物学记忆方法。

一是记忆大纲法,用表格的形式列出细胞生物学的课程大纲,再根据每个章节的内容,结
合老师上课所讲,总结出自己明白的知识点,记录下来,这样容易形成知识框架,帮助记
忆细胞生物学知识,也能和老师在课堂上演练,提高自己的能力。

二是利用联想法来记忆,比如说,有细胞周期和有丝分裂这几个概念,那么就可以把它们
想象成一个早晨的场景:细胞准备工作正在进行,这是细胞周期;突然一声震动,有丝分
裂发生了,然后这个场景范围逐渐扩大,可以让细胞的变化变化得更容易理解。

三是练习答题技巧。

在学习细胞生物学的过程中,考生一定要根据历届试题进行模拟练习,多练习完形填空、填空题、判断题、计算题等,让自己演练以及准确答题来达到积累、巩
固细胞生物学知识的目的。

四是及时总结笔记,把自己学习到的重点内容用语言简单明晰的方式记录,并学会有条理
的总结与归纳,把自己的重点内容形象的容易理解的方式表达,这样的技巧能够有效的提
高记忆效果。

五是多思考,细胞生物学的知识体系是大量的,学习细胞生物学,需要有自己对事物有逻
辑思维,学会思考原因,理解细胞分子相互间的协调作用,这样让你知道细胞生物学知识
从何而来,学会去思考每一个细胞注释的缘由,这样也能大大的提高记忆效率。

以上就是我总结的几种细胞生物学巧记方法,当然,同时也要多做题,真正的理解掌握细
胞生物学的知识,才能让我们的知识积累得更加充实。

初中生物学习方法大全

初中生物学习方法大全

初中生物学习方法大全一、记忆方法:记忆是学习的基础,是知识的仓库,是思维的伴侣,是创造的前提,所以学习中依据不同知识的特点,配以适宜的记忆方法,可以有效地提高学习效率和质量。

记忆方法很多,下面仅举生物学学习中最常用的几种。

(1)简化记忆法即通过分析教材,找出要点,将知识简化成有规律的几个字来帮助记忆。

例如DNA的分子结构可简化为“五四三二一”,即五种基本元素,四种基本单位,每种单位有三种基本物质,很多单位形成两条脱氧核酸链,成为一种规则的双螺旋结构。

(2)联想记忆法即根据教材内容,巧妙地利用联想帮助记忆。

例如记血浆的成分,可以和厨房里的食品联系起来,记住水、蛋、糖、盐就可以了(水即水,蛋是蛋白质,糖指葡萄糖,盐代表无机盐)。

(3)对比记忆法在生物学学习中,有很多相近的名词易混淆、难记忆。

对于这样的内容,可运用对比法记忆。

对比法即将有关的名词单列出来,然后从范围、内涵、外延,乃至文字等方面进行比较,存同求异,找出不同点。

这样反差鲜明,容易记忆。

例如同化作用与异化作用、有氧呼吸与无氧呼吸、激素调节与神经调节、物质循环与能量流动等等。

(4)纲要记忆法生物学中有很多重要的、复杂的内容不容易记忆。

可将这些知识的核心内容或语提炼出来,作为知识的纲要,抓住了纲要则有利于知识的记忆。

例如高等动物的物质代谢就很复杂,但它也有一定规律可循,无论是哪一类有机物的代谢,一般都要经过“消化”、“吸收”、“运输”、“利用”、“排泄”五个过程,这十个字则成为记忆知识的纲要。

(5)衍射记忆法此法是以某一重要的知识点为核心,通过思维的发散过程,把与之有关的其他知识尽可能多地建立起联系。

这种方法多用于章节知识的总结或复习,也可用于将分散在各章节中的相关知识联系在一起。

例如,以细胞为核心,可衍射出细胞的概念、细胞的发现、细胞的学说、细胞的种类、细胞的成分、细胞的结构、细胞的功能、细胞的分裂等知识。

二、思维方法:思维能力是各种能力的核心,思维方法是思维能力的关键,所以思维方法在学习方法中占有核心的位置。

生物知识点记忆方法(推荐9篇)

生物知识点记忆方法(推荐9篇)

生物知识点记忆方法(推荐9篇)生物知识点记忆方法第1篇将生物学知识编成“顺口溜”,生动有趣,印象深刻,不易遗忘。

例如:判断遗传病的显性或隐性关系:无(病)中生有(病)为隐性(遗传病)有(病)中生无(病)为显性(遗传病)大量元素——他(C)请(H)杨(O)丹(N)留(S)人(P)盖(Ca)美(Mg)家(K);微量元素——铁(Fe)棚(B)铜(Cu)门(Mn)新(Zn)驴(Cl)木(Mo)碾(Ni) 生物知识点记忆方法第2篇第一章生命的物质基础第一节、组成生物体的化学元素名词:1、微量元素:生物体必需的,含量很少的元素。

如:Fe(铁)、Mn(门)、B(碰)、Zn(醒)、Cu(铜)、Mo(母) ,巧记:铁门碰醒铜母(驴)。

2、大量元素:生物体必需的,含量占生物体总重量万分之一以上的元素。

如:C (探)、 0(洋)、H(亲)、N(丹)、S(留)、P(人people)、Ca(盖)、Mg(美)K(家) 巧记:洋人探亲,丹留人盖美家。

3、统一性:组成细胞的化学元素在非生物界都可以找到,这说明了生物界与非生物界具有统一性。

4、差异性:组成生物体的化学元素在细胞内的含量与在非生物界中的含量明显不同,说明了生物界与非生物界存在着差异性。

语句:1、地球上的生物现在大约有200万种,组成生物体的化学元素有20多种。

2、生物体生命活动的物质基础是指组成生物体的各种元素和化合物。

3、组成生物体的化学元素的重要作用:① C、H、O、N、P、S 6种元素是组成原生质的主要元素,大约占原生质的97%②.有的参与生物体的组成。

③有的微量元素能影响生物体的生命活动(如:B能够促进花粉的萌发和花粉管的伸长。

当植物体内缺B时,花药和花丝萎缩,花粉发育不良,影响受精过程。

)第二节组成生物体的化合物名词:1、原生质:指细胞内有生命的物质,包括细胞质、细胞核和细胞膜三部分。

不包括细胞壁,其主要成分为核酸和蛋白质。

如:一个植物细胞就不是一团原生质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习和记忆的生物学基础
努尔艾拉·艾力学号:1244408058
摘要:学习和记忆是脑的重要功能,,学习是指通过神经系统接受环境的变化而获得的行为习惯的过程,记忆则指行为习惯的贮存和再现过程,关于学习和记忆神经基础的研究是当前神经科学研究的热点。

神经科学的任务之一就是要阐明在学习和记忆过程中脑内发生了什么变化,信息是如何获得和储存的,又是如何读出的,从而可以延缓学习和记忆能力的衰退,治疗学习和记忆障碍,提高学习和记忆能力。

关键词:学习记忆神经机制
神经科学把学习定义为“人和动物获得关于外界只是的神经过程”,把记忆定义为“将获得的知识储存和读出的神经过程”。

随着对学习和记忆神经生物学研究的不断深入,人们对学习和记忆的神经基础有了更多的了解,越来越认识到学习和记忆神经过程的复杂性。

一.学习与记忆的脑功能定位
运用脑外科手术切除某一部分脑组织,观察手术对某种学会了的反应的影响,或者观察手术对动物的学习效率的影响,以及对病人的临床观察,这是学习和记忆的神经基础研究手段。

临床上,潘菲尔德用微弱电流刺激清醒的癫痫患者一侧颞叶联合区,结果引起病人对以往经验的回顾记忆,并且产生一种特异时听幻觉或视幻觉,或者两种幻觉同时出现。

更换刺激点或过一定时间刺激同一点则可能产生另一种不同的记忆幻觉,由此推测,颞叶在记忆功能上是一个重要部分。

在临床上,由于癫痫病人需要切除两侧大脑颞叶,损伤了海马及有关结构,引起病人丧失新近记忆的能力,丧失记忆程度常取决于受伤部位大小,但手术后病人智力正常。

由此推测,颞叶与海马结构可能与记忆巩固有关。

后来有人通过动物实验证明了这一推测,实验过程是把动物分实验和对照两组,同时给两组大鼠的海马埋藏好电极,然后训练大鼠压杠杆,以得到一滴糖水喝作为奖赏。

训练成功后,在实验组的大鼠按压杠杆时给其一次强电击,有了这次经验后,动物不再去按压,或很慢地去按压杠杆。

但过了24小时后则与对照组不同,又去按压杠杆。

实验表明,海马受电
刺激的干扰后,可阻碍短时性记忆巩固发展为长时性记忆。

据此推测,海马在记忆巩固过程中起重要作用。

由于手术切除第三脑室囊肿而损伤了穹窿,也使患者丧失了近期记忆能力。

由此看来,与近期记忆有关的神经结构在脑内形成一个环路,与设想的情绪反应活动环路极为根似,其中一些环路包括扣带回、梅马、穹窿、下丘脑乳头体、丘脑前核、丘脑背内侧核和大脑皮层前额叶等,动物实验还发现,海马受刺激而兴奋时,其触突活动可持续数小时,因此,有人设想,当同一信息反复出砚时,脑内有关细胞活动可发生总和而活动增强,同时由于神经环路的活动又可使神经元的活动延长,如来多次如此反复,就可能引起突触部位发生结构上的变化,使得细胞间联系变得更为容易,最终形成特殊机能通道,并不断得以巩固而形成长时记忆。

二.学习记忆的分子生物学基础
六十年代,安格拉诺夫以特制的水箱训练金鱼建立以灯光为信号的回避电击的条件反射,训练成功之后,隔天或一月检查,金鱼都能发生条件反射,即表明金鱼有长时记忆,若在开始训练之前,先给金鱼注射适量的嘌呤毒素,金鱼仍能完成正常学习,表明短时记忆正常,但学习后三天的记忆保持遭到明显破坏,表明嘌呤毒素阻抑了蛋白质合成,影响了记忆巩固;若嘌呤毒素是在训练后1小时注人,则长时记忆不受影响;若是在训练后30分钟注人,则产生介于前二者之间的效应。

若嘌呤毒素用量减少,则对记忆影响减弱。

结果表明,长时记忆有赖于脑蛋白质合成。

短时记忆则似乎与蛋白质合成无关,这一结论同样在小白鼠走迷宫的实验中得到证实。

很多实验证明,RNA在形成长时记忆过程中起重要作用。

海登训练大白鼠爬倾斜45度的钢丝,训练成功后将其处死,分析前庭外侧核中的神经细胞核中RNA碱基对组成,发现训练组腺嘌呤含量增加,胞嘧啶减少,据此推想,训练组前庭外侧核神经细胞核中有新的RNA合成。

巴宾奇训练大白鼠在短声或闪光出现时按压实验箱的杆杠以获得食物,然后从这两组动物脑内提取RNA,并以腹膜或脑室内注射的方式分别注人两组未经训练的大鼠体内,其结果使这两组动物分别对声与光和食物建立的条件反射的训练时间大大缩短。

有人用电击方法训练大白鼠使之避开黑暗场所,从这种大鼠的脑组织中分离出一种多肽,将这种多肤注人正常大鼠、小鼠及鱼类体内,也可使这些动物产生避光效应,这种多肤有15个氨基酸,名为避暗素。

总之,上述种种研究支持如下假说:脑内神经环路的反复循环或活动,可导致神经元内RNA成分上的改变,进而便蛋白质合成模式发生改变,结果导致形成长时记忆。

根据实脸证明,脑内微量注射或系统服用拟胆碱药能增进实脸动物的学习记忆能力;而
抗胆碱药物则相反,能干扰受试者近期记忆能力。

德拉奇曼等观察正常育年受试者服用引起的记忆功能衰退,近似正常老人的健忘症征象,由此推测老年健忘症很可能是由于中枢胆碱系统功能衰退引起的。

用胆碱疗法提高脑内胆碱和乙联胆碱浓度,增强中枢胆碱能系统功能,可改善老年人学习记忆机能,由此可知,中枢胆碱能系统的正常功能是哺乳动物脑内记忆形成的必要条件。

脑垂体的肽类激素中,加压素、催产素、促肾上腺皮质激素和黑色素细胞刺激等对学习和记忆均有不同程度的影响。

德·摄尔得发现,切除垂体后叶的大鼠不能保留条件性回避反应,但用垂体后叶粗提物处理后则能迅速恢复正常,粗提物中影响记忆的主要成分即是加压素,是丘脑下部视上核所分泌的一种九肽,先天缺乏加压素的大鼠所建立的回避性条件反射在24小时内即消失,而对照组则可达120小时。

老年人血液中的垂体后叶激素含量减少,用加压素喷鼻,可使他们记忆效率明显提商。

关于加压素增进学习记忆的机制:一类观点认为,加压素对学习记忆影响有直接的特异性的作用;另一类观点认为加压素是通过影响其它系统的代谢而影响学习记忆的分子基础。

三.学习和记忆的神经生理学基础
从神经生理的角度来看,感觉性记忆和第一级记忆主要是神经元生理活动的功能表现。

神经元活动具有一定的后作用,在刺激作用过去以后,活动仍存留一定时间,这是记忆的最简单的形式,感觉性记忆的机制可能属于这一类,在神经系统中,神经元之间形成许多环路联系,环路的连续活动也是记忆的一种形式,第一级记忆的机制可能属于这一类。

例如,海马环路的活动就与第一级记忆的保持以及第一级记忆转入第二级记忆有关。

近年来对突触传递过程的变化与学习记忆的关系进行了许多研究。

在海兔(一种海洋软体动物)的缩鳃反射的研究中观察到,习惯化的发生是由于突触传递出现了改变,突触前末梢的递质释放量减少导致突触后电位减少,从而使反射反应逐渐减弱;敏感化的机制是突触传递效能的增强,突触前末梢的递质释放量增加。

在高等动物中也观察到突触传递具有可塑性。

有人在麻醉兔中,记录海马齿状回颗粒细胞的电活动观察到,如先以一串电脉冲刺激海马的传入纤维(前穿质纤维),再用单个电刺激来测试颗粒细胞电活动改变,则兴奋性突触后电位和锋电位波幅增大,锋电位的潜伏期缩短。

这种易化现象持续时间可长达10小时以上,并被称为长时程增强。

不少人把长时程增强与学习记忆联系起来,认为它可能是学习记忆的神经基础。

在训练大鼠进行旋转平台的空间分辨学习过程中,记忆能力强的大鼠海马长时程增强反应大,而记忆能力差的大鼠长时程增强反应小。

四.学习和记忆的神经生物化学基础
从神经生化的角度来看,较长时性的记忆必然与脑内的物质代谢有关,尤其是与脑内蛋白质的合成有关。

在金鱼建立条件反射的过程中,如用嘌呤霉素注入动物脑内以抑制脑内蛋白质的合成,则运动不能完成条件反射的建立,学习记忆能力发生明显障碍。

人类的第二级记忆可能与这一类机制关系较大。

在逆行性遗忘症中,可能就是由于脑内蛋白质合成代谢受到了破坏,以致使前一段时间的记忆丧失。

中枢递质与学习记忆活动也有关。

运动学习训练后注射拟胆碱药毒扁豆碱可加强记忆活动,而注射抗胆碱药东莨菪硷可使学习记忆减退。

用利血平使脑内儿茶酚胺耗竭,则破坏学习记忆过程。

动物在训练后,在脑室内注入γ-氨基丁酸可加速学习。

动物训练后将加压素注入海马齿状回可增强记忆,而注入催产素则使记忆减退。

一定量的脑啡可使动物学习过程遭受破坏,而纳洛酮可增强记忆。

临床研究发现,老年人血液中垂体后叶激素含量减少,用加压素喷鼻可使记忆效率提高;用加压素治疗遗忘症亦收到满意效果。

以上只是从几个比较受到重视的方面概述了学习和记忆的生理基础的研究成果。

目前对学习和记忆的研究已经在各个水平上都开展了大量工作。

但是,要完全阐明学习与记忆的机理,还需要各个水平的研究工作的密切配合,才能揭示学习与记忆的本质,并在实践上为控制某些神经系统疾病及增进人类学习与记忆的能力提供有效手段。

相关文档
最新文档