2020年八年级数学下期中试卷(带答案)(1)
人教版2020-2021学年初二数学下册期中考试试卷 (含答案)

2020-2021学年八年级(下)期中数学试卷一、选择题(本大题有10个小题,每小题3分,共30分)1.(3分)下列四个交通标志图案中,是中心对称图形的为()A.B.C.D.2.(3分)下列方程中,属于一元二次方程的是()A.x+1=0B.x2=2x﹣1C.2y﹣x=1D.x2+3=3.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣34.(3分)八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7B.6C.5D.45.(3分)已知▱ABCD中,∠B+∠D=130°,则∠A的度数是()A.125°B.105°C.135°D.115°6.(3分)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°7.(3分)下列选项中,运算正确的是()A.3=3B.=7C.=5D.=12 8.(3分)如图,▱ABCD的周长是24cm,对角线AC与BD交于点O,BD⊥AD,E是AB 中点,△COD的周长比△BOC的周长多4cm,则DE的长为()A.5B.5C.4D.49.(3分)若一元二次方程x(kx+1)﹣x2+3=0无实数根,则k的最小整数值是()A.2B.1C.0D.﹣110.(3分)如图,在矩形ABCD中,AB=6,AD=8,顺次连接各边中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点得到四边形A2B2C2D2…依此类推,则四边形A9B9C9D9的周长为()A.B.C.D.二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)一个多边形的内角和是720°,这个多边形的边数是.12.(3分)某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数14322则这个队队员年龄的众数和中位数分别是岁、岁.13.(3分)化简:=.14.(3分)若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=.15.(3分)某公园准备围建一个矩形花园ABCD,其中一边靠墙,其他三边用长为54米的篱笆围成,已知墙EF长为28米,并且与墙平行的一面BC上要预留2米宽的入口(如图MN所示,不用围篱笆),若花园的面积为320平方米,则AB=.16.(3分)在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD上的一个动点,连接BF,若将四边形ABEF沿EF折叠,点A、B分别落在点A′、B'处,则当点B恰好落在矩形ABCD的一边上时,AF的长为.三、解答题(本大题有7小题,共52分)17.(6分)计算:(1);(2).18.(6分)解下列方程:(1)x2=4x;(2)2x2﹣7x﹣4=0.19.(6分)如图,在7×6的正方形网格中,点A,B,C,D都在格点上,请你按要求画出图形.(1)在图甲中作出△A1B1C1,使△A1B1C1和△ABC关于点D成中心对称;(2)在图乙中以AB为三角形一边画出△ABC 2,使得△ABC2为轴对称图形,且=3S△ABC.20.(8分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?21.(8分)如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC 的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连结BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.22.(8分)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率;(2)该网店五月降价促销,经调查发现,若该农产品每袋降价2元,销售量可增加10袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)23.(10分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分)1.(3分)下列四个交通标志图案中,是中心对称图形的为()A.B.C.D.【分析】根据中心对称图形的定义进行判断.【解答】解:四个交通标志图案中,只有第2个为中心对称图形.故选:B.2.(3分)下列方程中,属于一元二次方程的是()A.x+1=0B.x2=2x﹣1C.2y﹣x=1D.x2+3=【分析】利用一元二次方程的定义进行分析即可.【解答】解:A、x+1=0是一元一次方程,故此选项不合题意;B、x2=2x﹣1是一元二次方程,故此选项符合题意;C、含有2个未知数,2y﹣x=1不是一元二次方程,故此选项不合题意;D、含有分式,x2+3=不是一元二次方程;故此选项不合题意.故选:B.3.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣3【分析】二次根式的被开方数是非负数.【解答】解:依题意得x+3≥0,解得x≥﹣3.故选:A.4.(3分)八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7B.6C.5D.4【分析】根据平均数的计算公式列出算式,再进行计算即可得出x的值.【解答】解:∵5,7,6,x,7的平均数是6,∴(5+7+6+x+7)=6,解得:x=5;故选:C.5.(3分)已知▱ABCD中,∠B+∠D=130°,则∠A的度数是()A.125°B.105°C.135°D.115°【分析】根据平行四边形的对角相等、邻角互补,即可得出∠A的度数.【解答】解:∵在▱ABCD中,∠B+∠D=130°,∠B=∠D,∴∠B=∠D=65°,又∵∠A+∠B=180°,∴∠A=180°﹣65°=115°.故选:D.6.(3分)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°【分析】至少有一个角不小于90°的反面是每个角都小于90°,据此即可假设.【解答】解:用反证法证明:在四边形中,至少有一个角不小于90°,应先假设:四边形中的每个角都小于90°.故选:C.7.(3分)下列选项中,运算正确的是()A.3=3B.=7C.=5D.=12【分析】利用二次根式的加减法对A、C进行判断;利用二次根式的除法法则对B进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、原式=2,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项错误;D、原式=2×3=12,所以D选项正确.故选:D.8.(3分)如图,▱ABCD的周长是24cm,对角线AC与BD交于点O,BD⊥AD,E是AB 中点,△COD的周长比△BOC的周长多4cm,则DE的长为()A.5B.5C.4D.4【分析】根据平行四边形的性质得到OB=OD,AD+AB=CD+BC=12,根据三角形的周长公式得到CD﹣BC=4,解方程组求出CD,得到AB的长,根据直角三角形的性质解答即可.【解答】解:∵四边形ABCD是平行四边形,四边形ABCD的周长是24,∴AB=CD,AD=BC,OB=OD,AD+AB=CD+BC=12,∵△COD的周长比△BOC的周长多4,∴(CD+OD+OC)﹣(CB+OB+OC)=4,即CD﹣BC=4,,解得,CD=8,BC=4,∴AB=CD=8,∵BD⊥AD,E是AB中点,∴DE=AB=4,故选:C.9.(3分)若一元二次方程x(kx+1)﹣x2+3=0无实数根,则k的最小整数值是()A.2B.1C.0D.﹣1【分析】由根的判别式与方程根的情况,可得△<0,从而求出k的取值范围,再确定k 的最小整数.要保证二次项系数不为0.【解答】解:∵一元二次方程x(kx+1)﹣x2+3=0,即(k﹣1)x2+x+3=0无实数根,∴△=b2﹣4ac=1﹣4×(k﹣1)×3<0且k﹣1≠0,解得k>且k≠1.k最小整数=2.故选:A.10.(3分)如图,在矩形ABCD中,AB=6,AD=8,顺次连接各边中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点得到四边形A2B2C2D2…依此类推,则四边形A9B9C9D9的周长为()A.B.C.D.【分析】连接AC、BC,根据勾股定理求出A1B1,根据三角形中位线定理、菱形的判定定理得到四边形A1B1C1D1是菱形,且菱形的周长=5×4=20,总结规律,根据规律解答.【解答】解:连接AC、BC,由题意得,AB1=×6=3,AA1=×8=4,由勾股定理得,A1B1==5,∵四边形ABCD为矩形,∴AC=BD,∵顺次连接四边形ABCD各边中点得到四边形A1B1C1D1,∴A1B1=BD,A1B1∥BD,C1B1=AC,C1B1∥AC,A1D1=AC,A1D1∥AC,∴A1B1=C1D1,A1B1∥C1D1,A1B1∥B1C1,∴四边形A1B1C1D1是菱形,且菱形的周长=5×4=20,同理,四边形A3B3C3D3是菱形,且菱形的周长=20×=10,……四边形A9B9C9D9是菱形,且菱形的周长=20×=,故选:B.二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)一个多边形的内角和是720°,这个多边形的边数是6.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.12.(3分)某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数14322则这个队队员年龄的众数和中位数分别是15岁、16岁.【分析】根据中位数和众数的定义求解.【解答】解:从小到大排列此数据,数据15出现了四次最多为众数,16和16处在第5位和第六位,它两个数的平均数为16为中位数.故填16,15.13.(3分)化简:=π﹣3.【分析】二次根式的性质:=a(a≥0),根据性质可以对上式化简.【解答】解:==π﹣3.故答案是:π﹣3.14.(3分)若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=2020.【分析】由方程有一根为﹣1,将x=﹣1代入方程,整理后即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2020=0得:a+b﹣2020=0,即a+b=2020.故答案是:2020.15.(3分)某公园准备围建一个矩形花园ABCD,其中一边靠墙,其他三边用长为54米的篱笆围成,已知墙EF长为28米,并且与墙平行的一面BC上要预留2米宽的入口(如图MN所示,不用围篱笆),若花园的面积为320平方米,则AB=20.【分析】根据54米的篱笆,即总长度是54m,BC=xm,则AB=(54﹣x+2)m,再根据矩形的面积公式列方程,解一元二次方程即可.【解答】解:设矩形花园BC的长为x米,则其宽为(54﹣x+2)米,依题意列方程得:(54﹣x+2)x=320,x2﹣56x+640=0,解这个方程得:x1=16,x2=40,∵28<40,∴x2=40(不合题意,舍去),∴x=16,∴AB=(54﹣x+2)=20.答:当矩形的长AB为16米时,矩形花园的面积为320平方米;故答案为:20.16.(3分)在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD上的一个动点,连接BF,若将四边形ABEF沿EF折叠,点A、B分别落在点A′、B'处,则当点B恰好落在矩形ABCD的一边上时,AF的长为3或.【分析】分两种情况讨论,当点B'落在AD边上时,由折叠知,△BEF≌△B'EF,推出∠BFE=∠B'FE,进一步推BF=BE=5,在Rt△ABF中,通过勾股定理求出AF的长;当点B'落在CD边上时,在Rt△ECB'中,利用勾股定理求出CB'的长,进一步求出DB'的长,分别在Rt△F A'B'和Rt△FDB'中,利用勾股定理求出含x的FB'的长度,联立构造方程,求出x的值,即AF的长度.【解答】解:如图1,当点B'落在AD边上时,由折叠知,△BEF≌△B'EF,∴∠BFE=∠B'FE,∵四边形ABCD是矩形,∴AD∥BC,∴∠FEB=∠B'EF,∴∠FEB=∠BFE,∴BF=BE,∵BE=BC﹣EC=9﹣4=5,∴BF=5,在Rt△ABF中,AF===3;如图2,当点B'落在CD边上时,由折叠知,△BEF≌△B'EF,△ABF≌△A'B'F,∴EB'=EB=5,A'B'=AB=CD=4,∵四边形ABCD是矩形,∴∠D=∠C=90°,在Rt△ECB'中,CB'===3,∴DB'=CD﹣CB'=4﹣3=1,设AF=A'F=x,在Rt△F A'B'中,FB'2=F A'2+A'B'2=x2+42,在Rt△FDB'中,FB'2=FD2+DB'2=(9﹣x)2+12,∴x2+42=(9﹣x)2+12,解得,x=,∴AF=;故答案为:3或.三、解答题(本大题有7小题,共52分)17.(6分)计算:(1);(2).【分析】(1)利用二次根式的性质计算;(2)利用二次根式的乘除法则运算.【解答】解:(1)原式=3﹣8+3=﹣2;(2)原式=﹣2=﹣2=﹣.18.(6分)解下列方程:(1)x2=4x;(2)2x2﹣7x﹣4=0.【分析】利用因式分解法求解可得.【解答】解:(1)∵x2=4x,∴x2﹣4x=0,∴x(x﹣4)=0,则x=0或x﹣4=0,解得x1=0,x2=4;(2)∵2x2﹣7x﹣4=0,∴(x﹣4)(2x+1)=0,则x﹣4=0或2x+1=0,解得x1=4,x2=﹣0.5.19.(6分)如图,在7×6的正方形网格中,点A,B,C,D都在格点上,请你按要求画出图形.(1)在图甲中作出△A1B1C1,使△A1B1C1和△ABC关于点D成中心对称;(2)在图乙中以AB为三角形一边画出△ABC2,使得△ABC2为轴对称图形,且=3S△ABC.【分析】(1)利用网格特点和中心对称的性质画出A、B、C的对应点即可;(2)利用勾股定理作出AC2=5,则△ABC2为等腰三角形,此三角形满足条件.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△ABC2为所作.20.(8分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?【分析】(1)直接利用算术平均数的定义求解可得;(2)根据加权平均数的定义计算可得.【解答】解:(1)小张的期末评价成绩为=80(分);(2)①小张的期末评价成绩为=80(分);②设小王期末考试成绩为x分,根据题意,得:≥80,解得x≥84.2,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.21.(8分)如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC 的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连结BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.【分析】(1)由角平分线的性质和等腰三角形的性质可得∠DAF=∠E,可证AD∥BE,可得结论;(2)先证△ABE是等边三角形,可求S△ABF的面积,即可求解.【解答】证明:(1)∵AB=BE,∴∠E=∠BAE,∵AF平分∠BAD,∴∠DAF=∠BAE,∴∠DAF=∠E,∴AD∥BE,又∵AB∥CD,∴四边形ABCD是平行四边形;(2)∵AB=BE,∠E=60°,∴△ABE是等边三角形,∴BA=AE=6,∠BAE=60°,又∵BF⊥AE,∴AF=EF=3,∴BF===3,∴S△ABF=AF×BF=×3×3=,∴▱ABCD的面积=2×S△ABF=9.22.(8分)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率;(2)该网店五月降价促销,经调查发现,若该农产品每袋降价2元,销售量可增加10袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)【分析】(1)直接利用二月销量×(1+x)2=四月的销量进而求出答案.(2)首先设出未知数,再利用每袋的利润×销量=总利润列出方程,再解即可.【解答】解:(1)设三、四这两个月的月平均增长率为x.由题意得:192(1+x)2=300,解得:x1=,x2=﹣(不合题意,舍去),答:三、四这两个月的月平均增长率为25%.(2)设当农产品每袋降价m元时,该淘宝网店五月份获利3250元.根据题意可得:(40﹣25﹣m)(300+5m)=3250,解得:m1=5,m2=﹣50(不合题意,舍去).答:当农产品每袋降价5元时,该淘宝网店五月份获利3250元.23.(10分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=3;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.【分析】(1)把(4,0)代入y=﹣x+b即可求得b的值;(2)过点D作DE⊥x轴于点E,证明△OAB≌△EDA,即可求得AE和DE的长,则D 的坐标即可求得;(3)分当OM=MB=BN=NO时;当OB=BN=NM=MO=3时两种情况进行讨论.【解答】解:(1)把(4,0)代入y=﹣x+b,得:﹣3+b=0,解得:b=3,故答案是:3;(2)如图1,过点D作DE⊥x轴于点E,∵正方形ABCD中,∠BAD=90°,∴∠1+∠2=90°,又∵直角△OAB中,∠1+∠3=90°,∴∠1=∠3,在△OAB和△EDA中,,∴△OAB≌△EDA,∴AE=OB=3,DE=OA=4,∴OE=4+3=7,∴点D的坐标为(7,4);(3)存在.①如图2,当OM=MB=BN=NM时,四边形OMBN为菱形.则MN在OB的中垂线上,则M的纵坐标是,把y=代入y=﹣x+3中,得x=2,即M的坐标是(2,),则点N的坐标为(﹣2,).②如图3,当OB=BN=NM=MO=3时,四边形BOMN为菱形.∵ON⊥BM,∴ON的解析式是y=x.根据题意得:,解得:.则点N的坐标为(,).综上所述,满足条件的点N的坐标为(﹣2,)或(,).1、三人行,必有我师。
【2020年最新】八年级下册期中数学试卷及答案

八年级(下)期中数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.下列图形中,是中心对称但不是轴对称的图形是()A.等边三角形 B.正方形C.圆 D.平等四边形2.下面有四种说法:①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是()A.①②③B.①②④C.②③④D.②④3.下列各式从左到右的变形正确的是()A. =1 B. =C. =x+y D. =4.下列命题中,假命题是()A.对角线互相垂直且相等的四边形是正方形B.对角线相等且互相平分的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分的四边形是平行四边形5.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种B.5种C.4种D.3种二、填空题(共10小题,每小题2分,共20分.请把答案直接填写在答题纸相应位置上)7.若分式有意义,则x的取值范围是.8.平行四边形ABCD中,∠A比∠B小20°,那么∠C= .9.在一个不透明的口袋里装了2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:.10.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为,频率为.11.如图,在矩形ABCD中,对角线AC、BD交于点O,已知∠AOB=60°,AC=8,则BC的长为.12.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A= °.13.如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=3,则菱形ABCD的周长是.14.用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法:.15.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是.16.已知在平面直角坐标系中,点A、B、C、D的坐标依次为(﹣1,0),(m,n),(﹣1,10),(﹣7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)•(2)﹣﹣3.18.先化简,再求值:÷(﹣1),然后从2,1,﹣1,﹣2中选一个你认为合适的数作为a 的值代入求值.19.证明矩形的判定定理:对角线相等的平行四边形是矩形.20.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.21.在平行四边形ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,GE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是矩形,则平等四边行ABCD应满足的条件是.(直接写出答案,不需要证明)22.某校有2 000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到如图表(频数分布表中部分划记被墨水盖住):某校100名学生上学方式频数分布表方式划记频数步行正正正15骑车正正正正正29乘公共交通工具正正正正正正30乘私家车其它合计100(1)本次调查的个体是;(2)求频数分布表中,“乘私家车”部分对应的频数;(3)请估计该校2 000名学生中,先把骑车和步行上学的一共有多少人?23.如图,在正方形ABCD,M、N是对角线AC上的两点,且AM=CN,连接DM并延长,交AB 于点F,连接BN并延长,交DC于点E.连接BM、DN.(1)求证:四边形MBND为菱形;(2)求证:△MFB≌△NED.24.浴缸有两个水龙头,一个放热水,一个放冷水,两水龙头放水速度:放热水的是a升/分,放冷水的速度是b升/分,下面有两种放水方式:方式一:先开热水,使热水注满浴缸的一半,后一半容积的水接着开冷水龙头注放.方式二:前一半时间让热水龙头注放,后一半时间让冷水龙头注放.(1)在方式一中:设浴缸容积为V升,则先开热水,热水注满浴缸一半所需的时间为分;(2)两种方式中,哪种方式更节省时间?请说明理由.25.阅读下面的解题过程,然后解题:题目:已知(a、b、c互相不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a)于是,x+y+z=k(a﹣b+b﹣c+c﹣a)=k•0=0,依照上述方法解答下列问题:已知: ==(x+y+z≠0),求的值.26.如图①,已知△ABC是等腰三角形,∠BAC=90°,点D是BC的中点,作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG.(1)试猜想线段BG和AE的关系为;(2)如图②,将正方形DEFG绕点D按逆时针方向旋转α(0°<α≤90°),判断(1)中的结论是否仍然成立,证明你的结论.八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.下列图形中,是中心对称但不是轴对称的图形是()A.等边三角形 B.正方形C.圆 D.平等四边形【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项错误;C、既是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下面有四种说法:①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是()A.①②③B.①②④C.②③④D.②④【考点】X3:概率的意义;V2:全面调查与抽样调查;X1:随机事件.【分析】根据调查方式的选择、必然事件、不可能事件、随机事件的概念分别进行解答即可.【解答】解:①了解某一天出入南京市的人口流量适合用抽样调查的方式,故本选项错误;②抛掷一个正方体骰子,点数为奇数的概率是,正确;③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件,正确;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件,正确;故选C.【点评】此题考查了概率的意义、抽样调查和全面调查和随机事件,不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列各式从左到右的变形正确的是()A. =1 B. =C. =x+y D. =【考点】65:分式的基本性质.【专题】11 :计算题;513:分式.【分析】原式变形变形得到结果,即可作出判断.【解答】解:A、原式==1,正确;B、原式=,错误;C、原式为最简结果,错误;D、原式=,错误,故选A【点评】此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.4.下列命题中,假命题是()A.对角线互相垂直且相等的四边形是正方形B.对角线相等且互相平分的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分的四边形是平行四边形【考点】O1:命题与定理;L6:平行四边形的判定;L9:菱形的判定;LC:矩形的判定;LF:正方形的判定.【分析】根据平行四边形,矩形,菱形和正方形的对角线矩形判断即可.【解答】解:对角线互相垂直平分且相等的四边形是正方形,所以A为假命题;对角线相等且互相平分的四边形是矩形,所以B为真命题;对角线互相垂直平分的四边形是菱形,所以C为真命题;对角线互相平分的四边形为平行四边形,所以D为真命题.故选A.【点评】本题考查了从对角线来判断特殊四边形的方法:对角线互相平分的四边形为平行四边形;对角线互相垂直平分的四边形为菱形;对角线互相平分且相等的四边形为矩形;对角线互相垂直平分且相等的四边形为正方形.也考查了真命题与假命题的概念.5.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【考点】X8:利用频率估计概率.【专题】1 :常规题型.【分析】根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.【解答】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.【点评】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种B.5种C.4种D.3种【考点】L6:平行四边形的判定.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【解答】解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;∴有4种可能使四边形ABCD为平行四边形.故选:C.【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.二、填空题(共10小题,每小题2分,共20分.请把答案直接填写在答题纸相应位置上)7.若分式有意义,则x的取值范围是x≠﹣1 .【考点】62:分式有意义的条件.【分析】根据分式有意义的条件可得1+x≠0,再解即可.【解答】解:由题意得:1+x≠0,解得:x≠﹣1,故答案为:x≠﹣1.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.8.平行四边形ABCD中,∠A比∠B小20°,那么∠C= 80°.【考点】L5:平行四边形的性质.【专题】11 :计算题.【分析】根据平行四边形的性质分别求出∠A和∠B的度数,然后根据平行四边形对角相等的性质可得∠C=∠A,即可求解.【解答】解:∵四边形ABCD为平行四边形,∴,解得:,∴∠C=∠A=80°.故答案为:80°.【点评】本题考查了平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.9.在一个不透明的口袋里装了2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:求摸到白球的概率.【考点】X2:可能性的大小;X1:随机事件.【分析】发生的可能性小于的随机事件就是摸出的球的个数占总数的一半以下,据此求解.【解答】解:一个不透明的口袋里装了2个红球和1个白球,摸到白球的概率为: =<,故答案为:求摸到白球的概率.【点评】本题考查了可能性的大小的知识,解题的关键是能够根据题意确定摸到红球和摸到白球的概率,难度不大.10.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为20 ,频率为0.4 .【考点】V6:频数与频率.【分析】总数减去其它四组的数据就是第5组的频数,用频数除以数据总数就是频率.【解答】解:根据题意可得:第1、2、3、4组数据的个数分别是2、8、15、5,共(2+8+15+5)=30,样本总数为50,故第5小组的频数是50﹣30=20,频率是=0.4.故答案为20,0.4.【点评】本题考查频率、频数的关系:频率=,同时考查频数的定义即样本数据出现的次数.11.如图,在矩形ABCD中,对角线AC、BD交于点O,已知∠AOB=60°,AC=8,则BC的长为4 .【考点】LB:矩形的性质.【分析】由矩形的性质可得到OA=OB,于是可证明△ABO为等边三角形,于是可求得AB=4,然后依据勾股定理可求得BC的长.【解答】解:∵四边形ABCD为矩形,∴OA=OB=AC=4.∵OA=OB,∠AOB=60°,∴△OAB为等边三角形.∴AB=4.在Rt△ABC中,BC==4.故答案为:4.【点评】本题主要考查的是矩形的性质、等边三角形的性质和判定、勾股定理的应用,求得AB的长是解题的关键.12.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A= 65 °.【考点】L5:平行四边形的性质.【分析】由平行四边形与折叠的性质,易得CD∥MN∥AB,然后根据平行线的性质,即可求得∠DMN=∠FMN=∠A,又由平角的定义,根据∠AMF=50°,求得∠DMF的度数,然后可求得∠A 的度数.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,根据折叠的性质可得:MN∥AE,∠FMN=∠DMN,∴AB∥CD∥MN,∴∠DMN=∠FMN=∠A,∵∠AMF=50°,∴∠DMF=180°﹣∠AMF=130°,∴∠FMN=∠DMN=∠A=65°,故答案为:65.【点评】此题考查了平行四边形的性质、平行线的性质与折叠的性质,注意数形结合思想的应用以及折叠中的对应关系,难度适中.13.如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=3,则菱形ABCD的周长是24 .【考点】L8:菱形的性质.【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=3,∴AB=6,∴菱形ABCD的周长是:4×6=24,故答案为:24【点评】此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等.14.用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法:答案不唯一,如两组对角分别相等的四边形是平行四边形等.【考点】L6:平行四边形的判定.【专题】26 :开放型.【分析】根据平行四边形的定义以及判定方法得出即可.【解答】解:答案不唯一,如两组对角分别相等的四边形是平行四边形等;理由:∵∠B=∠D,∠A=∠C,∠B+∠C+∠D+∠A=360°,∴∠B+∠C=180°,∠A+∠D=180°,∴AB∥CD,AD∥BC,∴四边行ABCD是平行四边形.故答案为:答案不唯一,如两组对角分别相等的四边形是平行四边形等.【点评】此题主要考查了平行四边形的判定,熟练掌握相关判定定理是解题关键.15.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是对角线互相垂直.【考点】LN:中点四边形;LC:矩形的判定.【分析】根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直.【解答】解:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG,∴四边形EFGH是平行四边形,∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故答案为:对角线互相垂直.【点评】本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.16.已知在平面直角坐标系中,点A、B、C、D的坐标依次为(﹣1,0),(m,n),(﹣1,10),(﹣7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是2,5,18 .【考点】L9:菱形的判定;D5:坐标与图形性质.【分析】利用菱形的性质结合A,C点坐标进而得出符合题意的n的值.【解答】解:如图所示:当C(﹣7,2),C′(﹣7,5)时,都可以得到以A、B、C、D四个点为顶点的四边形是菱形,同理可得:当D(﹣7,8)则对应点C的坐标为;(﹣7,18)可以得到以A、B、C、D四个点为顶点的四边形是菱形,故n的值为:2,5,18.故答案为:2,5,18.【点评】此题主要考查了菱形的判定以及坐标与图形的性质,利用菱形的性质得出C点坐标是解题关键.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)•(2)﹣﹣3.【考点】6C:分式的混合运算.【分析】(1)先约分,再计算即可;(2)化为同分母的分式,再进行相加即可.【解答】解:(1)原式=﹣;(2)原式=﹣﹣===﹣2.【点评】本题考查了分式的混合运算,掌握分式的约分和通分是解此题的关键.18.先化简,再求值:÷(﹣1),然后从2,1,﹣1,﹣2中选一个你认为合适的数作为a 的值代入求值.【考点】6D:分式的化简求值.【分析】先算括号里面的,再算除法,最后选出合适的a的值代入进行计算即可.【解答】解:原式=÷=•=﹣,当a=﹣2时,原式=﹣=1.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.19.证明矩形的判定定理:对角线相等的平行四边形是矩形.【考点】LC:矩形的判定.【分析】由全等三角形的判定定理SSS证得△ABC≌△DCB,则∠ABC=∠DCB=90°,所以“有一内角为直角的平行四边形是矩形”.【解答】已知:四边形ABCD是平行四边形,AC、BD是两条对角线,且AC=BD.求证:平行四边形ABCD是矩形.证明:如图,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.在△ABC与△DCB中,,∴△ABC≌△DCB(SSS).∴∠ABC=∠DCB.又∵∠ABC+∠DCB=180°,∴∠ABC=∠DCB=90°,∴平行四边形ABCD是矩形.【点评】本题考查了矩形的判定.此题通过全等三角形的性质得到同旁内角互补,结合平行线的性质证得平行四边形的两个内角为直角.20.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.【考点】R8:作图﹣旋转变换.【分析】(1)连接AA1、BB1,再分别作AA1、BB1中垂线,两中垂线交点即为点O;(2)根据旋转的性质可知,对应角都相等都等于旋转角,对应点到旋转中心距离相等,据此可知.【解答】解:(1)如图,点O即为所求;(2)OA=OA1、∠AOA1=∠BOB1.【点评】本题主要考查旋转变换的作图,熟练掌握旋转变换的性质:①对应点到旋转中心的距离相等(意味着:旋转中心在对应点所连线段的垂直平分线上),②对应点与旋转中心所连线段的夹角等于旋转角,③旋转前、后的图形全等.21.在平行四边形ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,GE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是矩形,则平等四边行ABCD应满足的条件是平行四边形ABCD是矩形,并且AB=2AD .(直接写出答案,不需要证明)【考点】LC:矩形的判定;L7:平行四边形的判定与性质.【分析】(1)通过证明两组对边分别平行,可得四边形EHFG是平行四边形;(2)当平行四边形ABCD是矩形,并且AB=2AD时,先证明四边形ADFE是正方形,得出有一个内角等于90°,从而证明菱形EHFG为一个矩形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AE∥CF,AB=CD,∵E是AB中点,F是CD中点,∴AE=CF,∴四边形AECF是平行四边形,∴AF∥CE.同理可得DE∥BF,∴四边形FGEH是平行四边形;(2)解:当平行四边形ABCD是矩形,并且AB=2AD时,平行四边形EHFG是矩形.理由如下:连接EF,如图所示:∵E,F分别为AB,CD的中点,且AB=CD,∴AE=DF,且AE∥DF,∴四边形AEFD为平行四边形,∴AD=EF,又∵AB=2AD,E为AB中点,则AB=2AE,于是有AE=AD=AB,这时,EF=AE=AD=DF=AB,∠EAD=∠FDA=90°,∴四边形ADFE是正方形,∴EG=FG=AF,AF⊥DE,∠EGF=90°,∴此时,平行四边形EHFG是矩形;故答案为:平行四边形ABCD是矩形,并且AB=2AD.【点评】本题考查了平行四边形的判定与性质,矩形的判定,注意找准条件,有一定的难度.22.某校有2 000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到如图表(频数分布表中部分划记被墨水盖住):某校100名学生上学方式频数分布表方式划记频数步行正正正15骑车正正正正正29乘公共交通工具正正正正正正30乘私家车其它合计100(1)本次调查的个体是每名学生的上学方式;(2)求频数分布表中,“乘私家车”部分对应的频数;(3)请估计该校2 000名学生中,先把骑车和步行上学的一共有多少人?【考点】V7:频数(率)分布表;V3:总体、个体、样本、样本容量;V5:用样本估计总体.【分析】(1)每一个调查对象称为个体,据此求解;(2)首先求得私家车部分所占的百分比,然后乘以总人数即可求得对应频数;(3)用学生总数乘以骑车和步行上学所占的百分比的和即可求得人数.【解答】解:(1)本次调查的个体是每名学生的上学方式,故答案为:每名学生的上学方式;(2)由扇形统计图知,“乘私家车”部分对应的百分比为1﹣15%﹣29%﹣30%﹣6%=20%,则“乘私家车”部分对应的频数为100×20%=20;(3)2000×(15%+29%)=880人.答:估计该校2000名学生中,选择骑车和步行上学的一共有880人.【点评】本题考查了频率分布表、用样本估计总体及扇形统计图的知识,解题的关键是能够读懂统计图,并从统计图中整理出进一步解题的有关信息.23.如图,在正方形ABCD,M、N是对角线AC上的两点,且AM=CN,连接DM并延长,交AB 于点F,连接BN并延长,交DC于点E.连接BM、DN.(1)求证:四边形MBND为菱形;(2)求证:△MFB≌△NED.【考点】LE:正方形的性质;KB:全等三角形的判定;LA:菱形的判定与性质.【分析】(1)连接BD交AC于O,先证明四边形BMDN是平行四边形,再根据NM⊥BD即可证明.(2)先证明四边形BFDE是平行四边形,得到∠BFM=∠DEN,再证明BM=DN,∠BMF=∠DNE即可解决问题.【解答】(1)证明:连接BD交AC于O.∵四边形ABCD是正方形,∴OA=OC,OB=OD,AC⊥BD,∵AM=CN,∴OM=ON,∵OB=OD,∴四边形MBND是平行四边形,∵MN⊥DB,∴四边形MBND是菱形.(2)证明:∵四边形MBND是菱形,∴DM∥NB,BM=DN,∠DMB=∠DNB,∴∠BMF=∠DNE,∵BF∥DE,∴四边形BFDE是平行四边形,∴∠BFM=∠DEN,在△MFB和△NED中,,∴△MFB≌△NED.【点评】本题考查正方形的性质、全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题.24.浴缸有两个水龙头,一个放热水,一个放冷水,两水龙头放水速度:放热水的是a升/分,放冷水的速度是b升/分,下面有两种放水方式:方式一:先开热水,使热水注满浴缸的一半,后一半容积的水接着开冷水龙头注放.方式二:前一半时间让热水龙头注放,后一半时间让冷水龙头注放.(1)在方式一中:设浴缸容积为V升,则先开热水,热水注满浴缸一半所需的时间为分;(2)两种方式中,哪种方式更节省时间?请说明理由.【考点】6C:分式的混合运算.【分析】(1)根据题意即可得到结论;(2)首先浴缸容积为V,然后求出方式一和方式二注满时间为t、t′,最后作差比较.【解答】解:(1)先开热水注满浴缸一半所需的时间为分;故答案为:;(2)方式一:设浴缸容积为V,注满时间为t,依题意,得t=+,方式二:同样设浴缸容积为V,注满总时间为t′,依题意得t′a+t′b=V所以t′=,故t﹣t′=+﹣==,分类讨论:(Ⅰ)当a=b时,t﹣t′=0,即t=t′(Ⅱ)当a≠b时,>0,即t>t′综上所述:(1)当放热水速度与放冷水速度不相等时,选择方式二节约时间.(2)当两水龙头放水速度相等时,选其中任一方式都可以,因为此时注满水的时间相等.。
河南省南阳市邓州市2019-2020学年八年级下学期期中数学试题(解析版)

2019-2020学年河南省南阳市邓州市八年级(下)期中数学试卷一.选择题1.下列式子中是分式的是( ) A. 1π B. 3x C. 5a D. 23【答案】C【解析】【分析】根据分式的定义求解即可. 【详解】解:1π、3x 、23的分母中不含有字母,属于整式,5a 的分母中含有字母,属于分式. 故选:C .【点睛】本题主要考查了分式的定义理解,准确分析π是解题的关键.2.若代数式11x +在实数范围内有意义,则实数 x 的取值范围是( ) A. x > -1B. x = -1C. x ≠ 0D. x ≠ -1【答案】D【解析】【分析】先根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】由题意得x +1≠0,解得x ≠−1,故选:D .【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键. 3.2020年1月24日,中国疾控中心成功分离我国首株新型冠状病毒毒种,该毒种直径大约为90纳米(1纳米=0.000001毫米),数据“90纳米”用科学记数法表示为( )A. 70.910-⨯毫米B. 6910-⨯毫米C. 5910-⨯毫米D. 69010-⨯毫米 【答案】C【解析】【分析】科学记数法的表示形式为a 10n ⨯的形式,其中0a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:90纳米0.00009=毫米5910-=⨯毫米故选:C .【点睛】本题考查的知识点是用科学记数法表示较小的数,需要注意的是当原数的绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.4.根据分式的基本性质,分式a b a -可变形为( ) A. a a b -- B. ﹣a a b - C. a a b -+ D. a a b- 【答案】B【解析】【分析】根据分式的基本性质即可求出答案. 【详解】解:a a ab a a b a b-=-=---, 故选:B .【点睛】此题主要考查分式的变形运算,解题的关键是熟知分式的性质.5.某公司为尽快给医院供应一批医用防护服,原计划x 天生产120套防护服,由于采用新技术,每天增加生产30套,因此提前2天完成任务,列出方程为( ) A.1200x =12002x -﹣30 B.1200x =12002x +﹣30 C. 12002x +=1200x ﹣30 D. 12002x -=1200x ﹣30 【答案】A【解析】【分析】 根据工作效率=工作总量÷时间结合采用新技术后每天多生产30套,即可得出关于x 的分式方程,此题得解. 【详解】解:依题意,得:1200x =12002x -﹣30.故选:A.【点睛】本题主要考查了分式方程的应用题,根据已知条件列出方程是解题关键.6.下列各曲线中不能表示y是x的函数是()A. B. C. D. 【答案】D 【解析】【分析】根据函数的定义:给定一个数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A),那么这个关系式就叫函数关系式简称函数,可以得出答案.【详解】A选项,对于x在的每一个确定的值,y都有唯一确定的值与它对应,y是x的函数,故A不符合题意;B选项,对于x在的每一个确定的值,y都有唯一确定的值与它对应,y是x的函数,故B不符合题意;C选项,对于x在的每一个确定的值,y都有唯一确定的值与它对应,y是x的函数,故C不符合题意;D选项,对于x在的每一个确定的值,y有时有2个甚至3个值与它对应,y不是x的函数,故D符合题意;所以答案为D.【点睛】本题主要考查了函数的定义,熟练掌握函数的概念是解题关键.7.若点P在一次函数4=-+的图像上,则点P一定不在()y xA. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据一次函数的性质进行判定即可.【详解】一次函数y=-x+4中k=-1<0,b>0,所以一次函数y=-x+4的图象经过二、一、四象限,又点P在一次函数y=-x+4的图象上,所以点P一定不在第三象限,故选C.【点睛】本题考查了一次函数的图象和性质,熟练掌握是解题的关键.y=kx+b:当k>0,b>0时,函数的图象经过一,二,三象限;当k>0,b<0时,函数的图象经过一,三,四象限;当k<0,b>0时,函数的图象经过一,二,四象限;当k<0,b<0时,函数的图象经过二,三,四象限.8.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A. 28°B. 38°C. 62°D. 72°【答案】A【解析】【分析】由在平行四边形ABCD中,∠A=118°,可求得∠B的度数,又由CE⊥AB,即可求得答案.【详解】∵四边形ABCD是平行四边形,∴∠B=180°−∠A=180°−118°=62°,∵CE⊥AB,∴∠BCE=90°−∠B=28°.故选A.【点睛】考查平行四边形的性质,掌握平行四边形的邻角互补是解题的关键.9.如果反比例函数y=12mx的图象在每个象限内,y随着x的增大而增大,则m的最小整数值为()A. ﹣1B. 0C. 1D. 2 【答案】C【解析】【分析】根据反比例函数的性质可得1﹣2m<0,再解不等式即可.【详解】解:∵反比例函数y =12m x 的图象在每个象限内,y 随着x 的增大而增大, ∴1﹣2m <0,解得,m >12. ∴m 的最小整数值为1,故选:C .【点睛】本题主要是考查了反比例函数图像的性质,根据函数图象的增减性判断k 的值是解题的关键 . 10.如图,在平面直角坐标系中点A 的坐标为(0,6),点B 的坐标为(﹣32,5),将△AOB 沿x 轴向左平移得到△A′O′B′,点A 的对应点A′落在直线y =﹣34x 上,则点B 的对应点B′的坐标为( ) A . (﹣8,6)B. (﹣132,5)C. (﹣192,5)D. (﹣8,5) 【答案】C【解析】【分析】根据题意确定点A′的纵坐标,根据点A′落在直线y =﹣34x 上,求出点A′的横坐标,确定△OAB 沿x 轴向左平移的单位长度即可得到答案.【详解】解:由题意可知,点A 移动到点A′位置时,纵坐标不变,∴点A′的纵坐标为6,∵点A′落在直线上y =﹣34x 上, ∴﹣34x =6,解得x =﹣8, ∴△OAB 沿x 轴向左平移得到△O′A′B′位置,移动了8个单位,∴点B与其对应点B′的坐标为(﹣192,5),故答案选:C.【点睛】本题主要考查了一次函数图像上点的坐标特征和图形的平移,解题的关键是确定△OAB移动的距离.二.填空题11.计算:(-3)0+3-1= .【答案】4 3 .【解析】【详解】试题分析:-3的0次幂是1,3的-1次幂是三分子一,1+13=43.考点:整数指数幂的运算.12.关于x的分式方程721511x mx x-+=--有增根,则m的值为__________.【答案】4.【解析】去分母得:7x+5(x-1)=2m-1,因为分式方程有增根,所以x-1=0,所以x=1,把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,解得:m=4,故答案为4.13.若点A(1,y1)和点B(2,y2)在反比例函数y=﹣2x的图象上,则y1与y2的大小关系是_____.【答案】y1<y2【解析】【分析】由k=-2可知,反比例函数y=﹣2x的图象在每个象限内,y随x的增大而增大,则问题可解.【详解】解:∵反比例函数y=﹣2x中,k=﹣2<0,∴此函数在每个象限内,y随x的增大而增大,∵点A(1,y1),B(2,y2)在反比例函数y=﹣2x的图象上,2>1,∴y 1<y 2,故答案为y 1<y 2.【点睛】本题考查了反比例函数的增减性,解答关键是注意根据比例系数k 的符号确定,在各个象限内函数的增减性解决问题.14.如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是___.【答案】12【解析】【分析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出线段长度解答.【详解】根据题意观察图象可得BC=5,点P 在AC 上运动时,BP ⊥AC 时,BP 有最小值,观察图象可得,BP 的最小值为4,即BP ⊥AC 时BP=4,又勾股定理求得CP=3,因点P 从点C 运动到点A ,根据函数的对称性可得CP=AP=3,所以ABC ∆的面积是13+342⨯⨯()=12. 【点睛】本题考查动点问题的函数图象,解题的关键是注意结合图象求出线段的长度,本题属于中等题型.15.如图,在▱ABCD 中,AB =32,BC =10,∠A =45°,点E 是边AD 上一动点,将△AEB 沿直线BE 折叠,得到△FEB ,设BF 与AD 交于点M ,当BF 与▱ABCD 的一边垂直时,DM 的长为_____.【答案】4或7【解析】【分析】如图1,当BF ⊥AD 时,如图2,当BF ⊥AB 时,根据折叠性质和等腰直角三角形的判定和性质即可得到结论.【详解】解:如图1,当BF ⊥AD 时,∴∠AMB =90°,∵将△AEB 沿BE 翻折,得到△FEB ,∴∠A =∠F =45°,∴∠ABM =45°,∵AB =32, ∴AM =BM =3222⨯=3, ∵平行四边形ABCD ,BC =AD =10,∴DM =AD ﹣AM =10﹣3=7;如图2,当BF ⊥AB 时,∵将△AEB 沿BE 翻折,得到△FEB ,∴∠A =∠EFB =45°,∴∠ABF =90°,此时F 与点M 重合,∵AB =BF =2,∴AF =226,∴DM =10﹣6=4.综合以上可得DM 的长为4或7.故答案为:4或7.【点睛】本题主要考查平行四边形的判定与性质,解题的关键是熟知平行四边形的性质及折叠的特点.三.解答题16.先化简,再求值:222x x 11x x x 2x 1-⎛⎫-÷ ⎪+++⎝⎭,其中x 的值从不等式组1214x x -≤⎧⎨-≤⎩的整数解中选取.【答案】1xx-,-2【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再解不等式组求得x的范围,据此得出x的整数值,继而根据分式有意义的条件得出x的值,代入计算可得.【详解】解:22222 2221(1)(1)121(1)(1)(1)(1)(1)1 x x x x x x x x xx x x x x x x x x x x x x---+-+⎛⎫-÷=⨯=⨯=⎪+++++-++--⎝⎭,解不等式组1214xx-≤⎧⎨-≤⎩得,-1≤x≤52,∴不等式组的整数解为-1,0,1,2,∵x≠±1且x≠0,∴x=2,将x=2代入1xx-得,原式=22 12=--.【点睛】本题主要考查了分式的化简求值以及解不等式组,解题的关键是掌握基本运算法则,并注意选取代入的数值一定要使原分式有意义.17.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米;(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分;(3)小明在书店停留了多少分钟;(4)本次上学途中,小明一共行驶了多少米;一共用了多少分钟.【答案】(1)1500米;(2)小明在12﹣14分钟最快,速度为450米/分;(3)4分钟.(4)共2700米,共用了14分钟.【解析】【分析】(1)根据图象,观察学校与小明家的纵坐标,可得答案;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)读图,对应题意找到其在书店停留的时间段,进而可得其在书店停留的时间;(4)读图,计算可得答案,注意要计算路程.【详解】解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;(2)根据图象,12≤x≤14时,直线最陡,故小明在12-14分钟最快,速度为1500-600=45014-12米/分.(3)根据题意,小明在书店停留的时间为从8分到12分,故小明在书店停留了4分钟.(4)读图可得:小明共行驶了1200+600+900=2700米,共用了14分钟.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.18.如图,点E是平行四边形ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若AB=8,BC=5,则EF的长为时,AB⊥AF.【答案】(1)见解析;(2)3【解析】【分析】(1)利用中点定义可得DE=CE,再用平行四边形的性质可得∠D=∠DCF,然后可证明△ADE≌△FCE;(2)根据平行四边形的性质可得CE=4,CF=5,然后利用勾股定理可得EF的长.【详解】(1)证明:∵E是边CD的中点,∴DE=CE,∵四边形ABCD是平行四边形,∴AD∥BF,∴∠D =∠DCF ,在△ADE 和△FCE 中D ECF ED CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA );(2)解:∵四边形ABCD 是平行四边形,∴AB =CD =8,CD =AD =5,AB ∥CD ,∵△ADE ≌△FCE ,∴AD =CF =5,∵E 为CD 中点,∴CE =4,∵AB ⊥AF ,AB ∥CD ,∴CE ⊥EF ,∴EF =3,故答案为:3.【点睛】此题主要考查平行四边形的性质与证明,解题的关键是熟知平行四边形的性质特点.19.如图,点()5,2A ,()()5B m n m <,在反比例函数k y x=的图象上,作AC y ⊥轴于点C .⑴求反比例函数的表达式;⑵若ABC ∆的面积为10,求点B 的坐标.【答案】(1)10y x =;(2)5,63⎛⎫ ⎪⎝⎭B 【解析】【分析】(1)利用待定系数法即可解决问题;(2)利用三角形的面积公式构建方程求出n ,再利用待定系数法求出m 的值即可;【详解】解:(1)∵点()5,2A 在反比例函数k y x=图象上, 10k ∴=, ∴反比例函数的解析式为:10y x =. (2)由题意:15(2)102n ⨯⨯-=, 6n ∴=,5(,6)3B ∴. 【点睛】本题考查反比例函数的应用,解题的关键是熟练掌握待定系数法,学会构建方程解决问题,属于中考常考题型.20.为及时救治新冠肺炎重症患者,某医院需购买A 、B 两种型号的呼吸机.已知购买一台A 型呼吸机需6万元,购买一台B 型呼吸机需4万元,该医院准备投入资金y 万元,全部用于购进35台这两种型号的呼吸机,设购进A 型呼吸机x 台.(1)求y 关于x 的函数关系式;(2)若购进B 型呼吸机的数量不超过A 型呼吸机数量的2倍,则该医院至少需要投入资金多少万元?【答案】(1)y =2x+140;(2)该医院至少需要投入资金164万元【解析】【分析】(1)根据题意即可得出y 关于x 的函数解析式;(2)根据题意列解不等式组求出x 的范围,再根据一次函数的性质解答即可.【详解】解:(1)由题意得,y =6x+4(35﹣x )=2x+140;(2)由题意得:350352x x x ->⎧⎨-≤⎩, 解得35353x <, ∵x 为正整数,∴x 的最小值是12,又∵y =2x+140,k =2>0,∴y 随x 的增大而增大,∴当x =12时,y 最小=2×12+140=164,答:该医院至少需要投入资金164万元.【点睛】此题主要考查不等式组及一次函数的应用,解题的关键是根据题意找到等量关系列出函数.21.我们经历了“确定函数的表达式﹣利用函数图象研究其性质﹣运用函数解决问题”的学习过程在画函数图象时,我们通过描点的方法画出了所学的函数图象同时,我们也学习了绝对值的意义:|a|=(0)(0)a aa a⎧⎨-<⎩,结合上面经历的学习过程,解决下面问题:(1)若一次函数y=kx+b的图象分别经过点A(﹣1,1),B(2,2),请求出此函数表达式;(2)在给出的平面直角坐标系中,直接画出函数y=|x|和y=kx+b的图象;(3)根据这两个函数图象直接写出不等式|x|≤kx+b的解集.【答案】(1)y=1433x+;(2)见解析;(3)﹣1≤x≤2【解析】【分析】(1)根据待定系数法可以求得该函数的表达式;(2)根据函数表达式可以画出该函数的图象;(3)根据图象可以直接写出所求不等式的解集.【详解】解:(1)由题意得1 22k bk b-+=⎧⎨+=⎩,∴1343kb⎧=⎪⎪⎨⎪=⎪⎩,∴此函数表达式为:y=14 33x+;(2)画出函数y=|x|和y=kx+b的图象如图:;(3)由图象可知,不等式|x|≤kx+b的解集为﹣1≤x≤2.【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法及函数的图像与不等式的解的联系.22.在△ABC中,AB=AC,点P为△ABC所在平面内一点过点P分别作PE∥AC交AB于点E,PF∥AB 交BC于点D,交AC于点F.(1)观察猜想如图1,当点P在BC边上时,此时点P、D重合,试猜想PD,PE,PF与AB的数量关系:.(2)类比探究如图2,当点P在△ABC内时,过点P作MN∥BC交AB于点M,交AC于点N,试写出PD,PE,PF与AB的数量关系,并加以证明.(3)解决问题如图3,当点P在△ABC外时,若AB=6,PD=1,请直接写出平行四边形PEAF的周长.【答案】(1)PD+PE+PF=AB;(2)PD+PE+PF=AB,见解析;(3)14【解析】【分析】(1)由PE∥AC,PF∥AB可判断四边形AEPF为平行四边形,根据平行线的性质得∠1=∠C,根据平行四边形的性质得PF=AE,再根据等腰三角形的性质得∠B=∠C,则∠B=∠1,则可根据等腰三角形的判定得PE=BE,所以PE+PF=AB;(2)因为四边形PEAF为平行四边形,所以PE=AF,又三角形FDC为等腰三角形,所以FD=PF+PD=FC,即PE+PD+PF=AC=AB;(3)过点P作MN∥BC分别交AB、AC于M、N两点,推出PE+PF=AM,再推出MB=PD即可得到结论.【详解】解:(1)答:PD+PE+PF=AB.证明如下:∵点P在BC上,∴PD=0,∵PE∥AC,PF∥AB,∴四边形PFAE是平行四边形,∴PF=AE,∵PE∥AC,∴∠BPE=∠C,∴∠B=∠BPE,∴PE=BE,∴PE+PF=BE+AE=AB,∵PD=0,∴PD+PE+PF=AB,故答案为:PD+PE+PF=AB;(2)如图2,结论成立:PD+PE+PF=AB.证明:过点P作MN∥BC分别交AB,AC于M,N两点,∵PE∥AC,PF∥AB,∴四边形AEPF是平行四边形,∵MN∥BC,PF∥AB,∴四边形BDPM是平行四边形,∴AE=PF,∠EPM=∠ANM=∠C,∵AB=AC,∴∠EMP=∠B,∴∠EMP=∠EPM,∴PE=EM,∴PE+PF=AE+EM=AM.∵四边形BDPM是平行四边形,∴MB=PD.∴PD+PE+PF=MB+AM=AB,即PD+PE+PF=AB;(3)如图3,过点P作MN∥BC分别交AB、AC延长线于M、N两点.∵PE∥AC,PF∥AB,∴四边形PEAF是平行四边形,∴PF=AE,∵AB=AC,∴∠B=∠C,∵MN∥BC,∴∠ANM=∠C=∠B=∠AMN,∵PE∥AC,∴∠EPM=∠FNP,∴∠AMN=∠FPN,∴∠EPM=∠EMP,∴PE=ME,∵AE+ME=AM,∴PE+PF=AM,∵MN∥CB,DF∥AB,∴四边形BDPM是平行四边形,∴MB=PD,∴PE+PF﹣PD=AM﹣MB=AB,∴PE+PF=AB+PD=6+1=7,∴平行四边形PEAF的周长=14,故答案:14.【点睛】本题主要考查了平行四边形的性质应用,结合等腰三角判断角的关系是解题的关键.23.如图,A点的纵坐标为3,过A点的一次函数图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的表达式;(2)若点P为第一象限内直线AB上的一动点,设点P的横坐标为m,过点P作x轴的垂线交正比例函数图象于点Q,交x轴于点M.①当△AOB≌△PQB时,求线段PM的长.②当线段PQ=12AO时,请直接写出点P的坐标.【答案】(1)y=﹣x+3;(2)①1;②点P的坐标为(32,32)或(12,52).【解析】【分析】(1)根据图象上点的坐标特征求得B的坐标,然后根据待定系数法即可求得一次函数的解析式;(2)①根据题意P(m,﹣m+3),则Q(m,2m),即可得到PQ=|2m﹣(﹣m+3)|=|3m﹣3|,当△AOB≌△PQB 时,AO=PQ,即|3m﹣3|=3,然后结合题意即可求得P(2,1),PM=1;②根据题意得到|3m﹣3|=32,求得m的值,从而求得P的坐标.【详解】解:(1)∵点B的横坐标为1,且点B在正比例函数y=2x的图象上,∴y=2×1=2,∴B(1,2),∵A点的纵坐标为3,设一次函数的解析式为y=kx+3,代入B(1,2)得,2=k+3,解得k=﹣1,∴一次函数的解析式为y=﹣x+3;(2)①∵点P 为第一象限内直线AB 上的一动点,且点P 的横坐标为m ,∴P (m ,﹣m+3),∵PQ ⊥x 轴,且Q 在y =2x的图象上,∴Q (m ,2m ),∴PQ =|2m ﹣(﹣m+3)|=|3m ﹣3|,当△AOB ≌△PQB 时,∴AO =PQ ,即|3m ﹣3|=3, ∴m =2或0(由点P 在第一象限,故舍去),∴P (2,1),PM =1;②当线段PQ =12AO 时,则|3m ﹣3|=32, 当3m ﹣3=32时, 解得m =32, 此时P (32,32); 当﹣3m+3=32时, 解得m =12, 此时P (12,52). 综上:点P 的坐标为(32,32)或(12,52). 【点睛】此题考查的是一次函数与几何图形的综合题型,掌握利用待定系数法求一次函数解析式、全等三角形的性质和方程思想是解决此题的关键.。
2020-2021学年八年级数学下学期期中考试试题(含答案) (1)

2020-2021学年八年级数学下学期期中考试试题时间:90分钟 满分:120分 考试内容:第十六章至第十八章一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一个选项是符合题目要求的)1.(2020江苏连云港赣榆期末,4,★☆☆)若3-m 为二次根式,则m 的取值范围是 ( )A.m<3B.m≤3C.m≥3D.m>32.(2020江苏盐城期末,5,★☆☆)若a>0,则下列二次根式中,属于最简二次根式的是 ( )A.1aB.1a2 C. aD.a 23.(2020上海浦东新区建平中学期末,2,★☆☆)下列计算正确的是 ( )A.-(-3)2=-3B.(- 3 )2=9C.(-3)2=±3 D.9116 =3144.(2019山西忻州期中,1,★☆☆)下列各式化简后,与3的被开方数相同的是 ( )A.12B.18C.19D.235.如图,每个小正方形的边长为1,四边形的顶点A,B,C,D 都在格点上,则下面4条线段的长度为10 的是( A. ABB.BCC. CDD. AD6.如图,在四边形ABCD 中,∠ABC=90°,AB=3,BC =4,CD =12,AD =13,则四边形ABCD 的面积为 ( )A.72B.36C.66D.427.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,则下列说法正确的是 ( )A. CE =BCB. DE =12ABC.∠AED=∠CD.∠A=∠C8.(2020湖南邵阳隆回期末,5,★☆☆)如图,已知直线a∥b∥c,直线d 与直线a,b,c 分别垂直且相交于A,B,C 三点,若AB =2,AC =6,则平行线b 、c 之间的距离是 ( )A.2B.4C.6D.89.(2020四川眉山东坡学校模拟,11,★★☆)如图,已知菱形ABCD 的对角线AC 、BD 的长分别为10cm 、24cm,AE ⊥BC 于点E,则AE 的长是 ( )A.5 3 cmB.2 5 cmC.24013cm D.1201310.(2020四川宜宾叙州期末,12,★★☆)如图正方形ABCO 和正方形DEFO 的顶点A,E,0在同一直线l 上,且EF =2 ,AB =3,给出下列结论:①∠COD=45°,②AE=5,③CF=BD =17 ,④△COF 的面积S △CDF =3,其中正确结论 的个数为 ( )A.1B.2C.3D.4二、填空题(本大题共8小题,每小题4分,共32分)11.(2020湖北武汉东湖高新区期末,11,★☆☆)49=________;1-33 的相反数为________; 3 -2 =________12.(2020福建厦门湖里五缘实验学校期末,13,☆☆)在□ABCD 中,∠C:∠D=5:4,则∠B 的度数为________ 13.已知△ABC 的三边长分别为a,b,c,且a,满足b =5-a +a -5 +12,c =13,则S △A BC =________14.如图,∠CAB=30°,点D 在射线AB 上,且AD =4,点P 在射线AC 上运动,当△ADP 是直角三角形时,PD 的长为 ________15.(2020广东清远英德期末,16,★★☆)如图,在平行四边形ABCD 中,∠C=42°,过点D 作BC 的垂线DF,交AB 于点E,交CB 的延长线于点F,则∠BEF 的度数为________16.如图,正方形ABCD 的边长是2,对角线AC 、BD 相交于点O,点E 、F 分别在边AD 、AB 上,且OE⊥OF,则四边形 AFOE 的面积为________17.(2020湖南娄底期末,18,★★☆)1+13=213,2+14=314,3+15=415,……观察各式,则第n(n≥1)个等式为________________________。
2020-2021学年八年级下学期期中数学试卷及答案

2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分) 1.若m >n ,则下列不等式正确的是( ) A .m ﹣4<n ﹣4B .m 4>n4C .4m <4nD .﹣2m >﹣2n2.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A .∠B =∠CB .AD ⊥BCC .AD 平分∠BACD .AB =2BD3.不等式组{2x −4≤0x +2>0的解集在数轴上用阴影表示正确的是( )A .B .C .D .4.如图,点E ,F ,G ,Q ,H 在一条直线上,且EF =GH ,我们知道按如图所作的直线l 为线段FG 的垂直平分线.下列说法正确的是( )A .l 是线段EH 的垂直平分线B .l 是线段EQ 的垂直平分线C .l 是线段FH 的垂直平分线D .EH 是l 的垂直平分线5.已知a <b ,则下列不等式不成立的是( ) A .a ﹣1<b ﹣1B .a2<b2C .a ﹣b <0D .1−a 3<1−b 36.如图,将三角形ABE 向右平移1cm 得到三角形DCF ,如果三角形ABE 的周长是10cm ,那么四边形ABFD的周长是()A.12cm B.16cm C.18cm D.20cm7.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确8.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)9.已知一次函数y=ax+b的图象经过一、二、三象限,且与x轴交于点(﹣2,0),则不等式ax>b的解集为()A.x>﹣2B.x<﹣2C.x>2D.x<210.如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD 上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为()A.14B.13C.12D.10二.填空题(共5小题,满分15分,每小题3分)11.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=.12.已知a+b+c=0,a>b>c,则ca的取值范围是.13.若关于x的不等式组{2x−k>0x−2≤0有且只有五个整数解,则k的取值范围是.14.如图,是由边长为1个单位长度的小正方形的网格,在格点中找一点C,使△ABC是等腰三角形,这样的点C有个.15.如图所示,在平面直角坐标系中,A(4,0),B(0,2),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是.三.解答题(共7小题,满分63分,每小题9分)16.(9分)(1)分解因式:ax2﹣2ax+a;(2)解不等式组:{x+3≤2(x+2)x3+1>3x−14,并写出所有非负整数解.17.(9分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,1),B(﹣1,3),C(﹣1,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△ABC,若A对应的点A2坐标为(﹣4,﹣5),画出△A2B2C2;(2)若△A1B1C1绕某一点旋转可以得到△A2B2C2,直接写出旋转中心坐标.(3)在x轴上有一点P使得P A+PB的值最小,直接写出点P的坐标.18.(9分)如图,在△ABC中,AB=AC,AB的垂直平分线分别交AB、AC于点E、点D,∠A=36°.求证:AD=BC.19.(9分)(1)已知3m=6,9n=2,求32m﹣2n+1的值;(2)已知a+b=6,ab=8,求a2+b2与(a﹣b)2的值.20.(9分)如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于点E.(1)求∠EDA的度数;(2)若AB=10,AC=8,DE=20√39,求S△ABC.21.(9分)随着夏季的来临,某公司决定购买10套设备生产电风扇,现有甲、乙两种型号的设备,其中每套的价格、日生产量如表:甲型乙型价格(万元/套)m n生产量(台/日)120100经调查:购买两套甲型设备比购买一套乙型设备多6万元,购买一套甲型设备和购买三套乙型设备共需10万元.(1)求m,n的值;(2)经预算,该公司购买生产设备的资金不超过26万元,且每日的生产量不低于1020台,为了节约资金,请你为公司设计一种最省钱的购买方案.22.(9分)如图,△ABC中,AB=30cm,AC=20cm,以BC为边作等边△BCD,连接AD,求AD的最大值,最小值分别是多少?2020-2021学年八年级下期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分) 1.若m >n ,则下列不等式正确的是( ) A .m ﹣4<n ﹣4B .m 4>n4C .4m <4nD .﹣2m >﹣2n【解答】解:∵m >n ,∴m ﹣4>n ﹣4;14m >14n ;4m >4n ,﹣2m <﹣2n .故选:B .2.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A .∠B =∠CB .AD ⊥BCC .AD 平分∠BACD .AB =2BD【解答】解:∵△ABC 中,AB =AC ,D 是BC 中点 ∴∠B =∠C ,(故A 正确) AD ⊥BC ,(故B 正确) ∠BAD =∠CAD (故C 正确) 无法得到AB =2BD ,(故D 不正确). 故选:D .3.不等式组{2x −4≤0x +2>0的解集在数轴上用阴影表示正确的是( )A .B .C .D .【解答】解:{2x −4≤0①x +2>0②,由①得x ≤2,由②得x >﹣2, 故此不等式组的解集为:故选:C .4.如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l 为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线【解答】解:如图:A.∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=OG+GH,即EO=OH,∴l为线段EH的垂直平分线,故此选项正确;B.∵EO≠OQ,∴l不是线段EQ的垂直平分线,故此选项错误;C.∵FO≠OH,∴l不是线段FH的垂直平分线,故此选项错误;D .∵l 为直线,EH 不能平分直线l , ∴EH 不是l 的垂直平分线,故此选项错误; 故选:A .5.已知a <b ,则下列不等式不成立的是( ) A .a ﹣1<b ﹣1B .a2<b2C .a ﹣b <0D .1−a 3<1−b 3【解答】解:∵a <b ,∴a ﹣1<b ﹣1,12a <12b ,a ﹣b <0,1−a 3>1−b 3.故选:D .6.如图,将三角形ABE 向右平移1cm 得到三角形DCF ,如果三角形ABE 的周长是10cm ,那么四边形ABFD 的周长是( )A .12cmB .16cmC .18cmD .20cm【解答】解:∵△ABE 的周长=AB +BE +AE =10(cm ),由平移的性质可知,BC =AD =EF =1(cm ),AE =DF ,∴四边形ABFD 的周长=AB +BE +EF +DF +AD =10+1+1=12(cm ). 故选:A .7.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A .角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确【解答】解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.8.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)【解答】解:由图可知,大正方形减小正方形剩下的部分面积为:a2﹣b2;拼成的长方形的面积为:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:D.9.已知一次函数y=ax+b的图象经过一、二、三象限,且与x轴交于点(﹣2,0),则不等式ax>b的解集为()A.x>﹣2B.x<﹣2C.x>2D.x<2【解答】解:∵一次函数y=ax+b的图象经过一、二、三象限,则函数y随x的增大而增大,∴a>0.把点(﹣2,0),代入即可得到:﹣2a+b=0.即2a﹣b=0.不等式ax>b的解集就是求函数y=ax﹣b>0,故当x>2时,不等式ax>b成立.则不等式ax>b的解集为x>2.故选:C.10.如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD 上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为()A.14B.13C.12D.10【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故选:D.二.填空题(共5小题,满分15分,每小题3分)11.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=(a+1)100.【解答】解:原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98]=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97]=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96]=…=(a+1)100.故答案为:(a+1)100.12.已知a+b+c=0,a>b>c,则ca 的取值范围是﹣2<ca<−12.【解答】解:∵a+b+c=0,∴a>0,c<0 ①∴b=﹣a﹣c,且a>0,c<0∵a>b>c∴﹣a﹣c<a,即2a>﹣c②解得ca>−2,将b=﹣a﹣c代入b>c,得﹣a﹣c>c,即a<﹣2c③解得ca <−12,∴﹣2<ca<−12.故答案为:﹣2<ca<−12.13.若关于x的不等式组{2x−k>0x−2≤0有且只有五个整数解,则k的取值范围是﹣6≤k<﹣4.【解答】解:解不等式2x﹣k>0得x>k 2,解不等式x﹣2≤0,得:x≤2,∵不等式组有且只有5个整数解,∴﹣3≤k2<−2,解得﹣6≤k<﹣4,故答案为:﹣6≤k<﹣4.14.如图,是由边长为1个单位长度的小正方形的网格,在格点中找一点C,使△ABC是等腰三角形,这样的点C有6个.【解答】解:AB=√5,以B为顶点,BC=BA,这样的C点有4个;以A为顶点,AC=AB,这样的C点有2个;以C为顶点,CA=CB,这样的点不存在,但与前面的重合;所以使△ABC的等腰三角形,这样的格点C的个数有6个.故答案为6.15.如图所示,在平面直角坐标系中,A(4,0),B(0,2),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是y=2x﹣8.【解答】解:∵A(4,0),B(0,2),∴OA=4,OB=2,过点C作CD⊥x轴于点D,∵∠ABO +∠BAO =∠BAO +∠CAD ,∴∠ABO =∠CAD ,在△ACD 和△BAO 中{∠ABO =∠CAD ∠AOB =∠CDA AB =AC,∴△ACD ≌△BAO (AAS )∴AD =OB =2,CD =OA =4,∴C (6,4)设直线AC 的解析式为y =kx +b ,将点A ,点C 坐标代入得{4k +b =06k +b =4, ∴{k =2b =−8, ∴直线AC 的解析式为y =2x ﹣8.故答案为:y =2x ﹣8.三.解答题(共7小题,满分63分,每小题9分)16.(9分)(1)分解因式:ax 2﹣2ax +a ;(2)解不等式组:{x +3≤2(x +2)x 3+1>3x−14,并写出所有非负整数解. 【解答】解:(1)ax 2﹣2ax +a =a (x 2﹣2x +1)=a (x ﹣1)2;(2){x +3≤2(x +2)①x 3+1>3x−14②, 解不等式①得,x ≥﹣1,解不等式②得,x <3将两个不等式的解集在数轴上表示为:∴不等式组的解集为﹣1≤x <3:∴非负整数解有:0,1,2.17.(9分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,1),B(﹣1,3),C(﹣1,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△ABC,若A对应的点A2坐标为(﹣4,﹣5),画出△A2B2C2;(2)若△A1B1C1绕某一点旋转可以得到△A2B2C2,直接写出旋转中心坐标(﹣1,﹣2).(3)在x轴上有一点P使得P A+PB的值最小,直接写出点P的坐标(−134,0).【解答】解:(1)如图所示,△A1B1C1,△A2B2C2即为所求.(2)如图所示,点Q即为所求,其坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2);(3)如图所示,点P即为所求,设直线A′B的解析式为y=kx+b,将点A′(﹣4,﹣1),B(﹣1,3)代入,得:{−4k +b =−1−k +b =3, 解得:{k =43b =133, ∴直线A ′B 的解析式为y =43x +133, 当y =0时,43x +133=0, 解得x =−134,∴点P 的坐标为(−134,0). 故答案为:(−134,0). 18.(9分)如图,在△ABC 中,AB =AC ,AB 的垂直平分线分别交AB 、AC 于点E 、点D ,∠A =36°.求证:AD =BC .【解答】证明:∵AB 的垂直平分线分别交AB 、AC 于点E 、点D ,∴DB =DA ,∴△ABD 是等腰三角形;∵∠A =36°,∴∠ABD =∠A =36°,∠ABC =∠C =(180°﹣36°)÷2=72°,∴∠BDC =∠A +∠ABD =72°,∴∠C =∠BDC ,∴BD =BC ,∴AD =BC .19.(9分)(1)已知3m =6,9n =2,求32m ﹣2n +1的值;(2)已知a +b =6,ab =8,求a 2+b 2与(a ﹣b )2的值.【解答】解:(1)∵3m =6,9n =2,∴32m﹣2n+1=(3m)2÷9n×3=36÷2×3=54;(2)将a+b=6平方得:(a+b)2=a2+b2+2ab=36,把ab=8代入得:a2+b2+16=36,即a2+b2=20;∴(a﹣b)2=a2+b2﹣2ab=20﹣16=4.20.(9分)如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于点E.(1)求∠EDA的度数;(2)若AB=10,AC=8,DE=20√39,求S△ABC.【解答】解:(1)∵∠B=50°,∠C=70°,∴∠BAC=60°∵AD是△ABC的角平分线,∴∠BAD=12∠BAC=30°∵DE⊥AB,∴∠DEA=90°∴∠EDA=90°﹣∠BAD=60°(2)过点D作DF⊥AC于点F.∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=20√3 9,又AB=10,AC=8,∴S△ABC=12×10×20√39+12×8×20√39=20√321.(9分)随着夏季的来临,某公司决定购买10套设备生产电风扇,现有甲、乙两种型号的设备,其中每套的价格、日生产量如表:甲型 乙型 价格(万元/套)m n 生产量(台/日) 120 100经调查:购买两套甲型设备比购买一套乙型设备多6万元,购买一套甲型设备和购买三套乙型设备共需10万元.(1)求m ,n 的值;(2)经预算,该公司购买生产设备的资金不超过26万元,且每日的生产量不低于1020台,为了节约资金,请你为公司设计一种最省钱的购买方案.【解答】解:(1)根据题意知{m −n =6m +3n =10, 解得:{m =7n =1; (2)设购买甲型设备x 台、乙型设备(10﹣x )台,根据题意,得:{7x +10−x ≤26120x +100(10−x)≥1020, 解得:1≤x ≤83,∵x 为整数,∴x =1或x =2,即有两种购买方案:方案一:购买1台甲型设备、9台乙型设备,购买总费用为1×7+9×1=16万元; 方案二:购买2台甲型设备、8台乙型设备,购买总费用为2×7+8×1=22万元; 所以购买1台甲型设备、9台乙型设备最省钱.22.(9分)如图,△ABC 中,AB =30cm ,AC =20cm ,以BC 为边作等边△BCD ,连接AD ,求AD 的最大值,最小值分别是多少?【解答】解:∵△BCD为等边三角形,∴DC=DB,∠BDC=60°,把△DAC绕点D逆时针旋转60°得到△DEB,如图,连接AE,∴DA=DE,∠ADE=60°,BE=AC=20,∴△DAE为等边三角形,∴AD=AE,∵AB+BE≥AE或AB﹣BE≤AE(当且仅当A、B、E共线时取等号),∴AE的最大值为30+20=50,AE的最小值为30﹣20=10.。
浙江省温州市2020年八年级下学期数学期中考试试卷(I)卷

浙江省温州市2020年八年级下学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2015八下·绍兴期中) 下列各式中,不是二次根式的是()A .B .C .D .2. (2分) (2019八下·黄陂月考) 二次根式中的取值范围是()A .B . 3C .D .3. (2分) (2020八下·焦作期末) 下列式子中,为最简二次根式的是()A .B .C .D .4. (2分)(2019·东营) 下列运算正确的是()A .B .C .D .5. (2分)弹簧挂重物会伸长,测得弹簧长度y(cm)最长为20cm,与所挂物体重量x(kg)有下面的关系.x01234…y88.599.510…下列说法不正确的是()A . x与y都是变量,x是自变量,y是因变量B . 所挂物体为6kg,弹簧长度为11cmC . 物体每增加1kg,弹簧长度就增加0.5cmD . 挂30kg物体时一定比原长增加15cm6. (2分) (2017八上·衡阳期末) 将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是().A . 8、15、17B . 7、24、25C . 3、4、5D . 2、3、 47. (2分)下列运算和化简,不正确的是()A . =0.5B .C .D .8. (2分) (2019八下·江阴期中) 如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE 折叠,使点B落在矩形内点F处,连接CF,则S△ECF的值为()A .B .C .D .9. (2分) (2019九上·阳新期末) 如图,在矩形ABCD中,AB=8,AD=4,E为CD中点,连接AE、BE,点M 从点A出发沿AE方向向点E匀速运动,同时点N从点E出发沿EB方向向点B匀速运动,点M、N运动速度均为每秒1个单位长度,运动时间为t,连接MN,设△EMN的面积为S,S关于t的函数图象为()A .B .C .D .10. (2分) (2019八上·慈溪期中) 如图,在等腰△ABC中,AB=AC,D为AB的中点,BE⊥AC,垂足为E.若DE=5,CE=2,则BE的长度是()A . 5B . 6C .D . 711. (2分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A .B .C . 12D . 2412. (2分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD 上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,①∠EBG=45°;②△DEF∽△ABG;③S△ABG= S△FGH;④AG+DF=FG.则下列结论正确的有()A . ①②④B . ①③④C . ②③④D . ①②③二、填空题 (共7题;共13分)13. (1分)计算:= ________.14. (2分)(2017·平南模拟) 函数y= 中,自变量x的取值范围是________.15. (2分)(2016·钦州) 若正比例函数y=kx的图象经过点(1,2),则k=________.16. (1分) (2019七下·长春月考) 三角形的三边长分别是,则的取值范围是 ________ .17. (1分) (2017八下·江苏期中) 如图,在四边形ABCD中,已知AB∥DC,AB=DC. 在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上的一个条件是________.18. (1分) (2017八上·高州月考) 若一个三角形的三边满足,则这个三角形是________。
人教版2020-2021学年初二数学下学期期中检测试题 ( 含答案)

2020-2021学年八年级第二学期期中数学试卷一、选择题(共10小题).1.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.2.(3分)下列计算正确的是()A.﹣B.3C.﹣D.=±33.(3分)函数y=的自变量x的取值范围为()A.x>2B.x<2C.x≤2D.x≠24.(3分)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5B.6、8、10C.、2、D.5、12、13 5.(3分)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直6.(3分)如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°7.(3分)关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=18.(3分)已知直角三角形斜边上的中线长为3,则斜边长为()A.3B.6C.9D.129.(3分)已知﹣2<m<3,化简+|m+2|的结果是()A.5B.1C.2m﹣1D.2m﹣510.(3分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB 于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.1B.1.3C.1.2D.1.5二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)要使有意义,则x的取值范围是.12.(4分)已知,如图在四边形ABCD中,AB=CD,则添加一个条件(只需填写一种)可以使得四边形ABCD为平行四边形.13.(4分)已知函数y=x+m﹣2020(m常数)是正比例函数,则m=.14.(4分)已知直角三角形的两边的长分别是3和4,则第三边长为.15.(4分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD 的周长是.16.(4分)若是整数,则满足条件的最小正整数n为.17.(4分)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是.三、解答题(本大题3小题,每小题6分,共18分)18.(6分)计算:÷﹣×+.19.(6分)如图,在平行四边形ABCD中,点E,F分别为边BC,AD的中点.求证:四边形AECF是平行四边形.20.(6分)小红星期天从家里出发骑自行车去舅舅家,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,如图是她本次去舅舅家所用的时间与小红离家的距离的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是米,小红在商店停留了分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?四、解答题(本大题3小题,每小题8分,共24分)21.(8分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.22.(8分)已知:如图,过矩形ABCD的顶点C作CE∥BD,交AB的延长线于点E.(1)求证:∠CAE=∠CEA;(2)若AD=1,∠E=30°,求△ACE的周长.23.(8分)已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点M,使△AOM是等腰三角形?若存在,求点M的坐标;若不存在,请说明理由.五、解答题(本大题2小题,每小题10分,共20分)24.(10分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;(三)====﹣1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简=.②参照(三)式化简=.(2)化简:+++…+.25.(10分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.参考答案一、选择题(本大题10小题,每小题3分,共30分)每小题给出4个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.2.(3分)下列计算正确的是()A.﹣B.3C.﹣D.=±3解:A、﹣,无法计算,故此选项错误;B、3=,故此选项错误;C、﹣=,正确;D、=3,故此选项错误;故选:C.3.(3分)函数y=的自变量x的取值范围为()A.x>2B.x<2C.x≤2D.x≠2解:∵函数表达式y=的分母中含有自变量x,∴自变量x的取值范围为:x﹣2≠0,即x≠2.故选:D.4.(3分)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5B.6、8、10C.、2、D.5、12、13解:A、32+42=52,故是直角三角形,故A选项不符合题意;B、62+82=102,故是直角三角形,故B选项不符合题意;C、()2+22≠()2,故不是直角三角形,故C选项符合题意;D、52+122=132,故是直角三角形,故D选项不符合题意.故选:C.5.(3分)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直解:矩形和菱形的内角和都为360°,矩形的对角线互相平分且相等,菱形的对角线垂直且平分,∴矩形具有而菱形不具有的性质为对角线相等,故选:C.6.(3分)如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°解:在▱ABCD中,∵AD∥BC,∴∠DAB=180°﹣∠B=180°﹣100°=80°.∵AE平分∠DAB,∴∠AED=∠DAB=40°.故选:D.7.(3分)关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=1解:A.图象经过原点,错误;B.y随x的增大而减小,错误;C、图象经过第二、四象限,正确;D.当x=时,y=﹣1,错误;故选:C.8.(3分)已知直角三角形斜边上的中线长为3,则斜边长为()A.3B.6C.9D.12解:∵直角三角形斜边上的中线长为3,∴斜边长是6.故选:B.9.(3分)已知﹣2<m<3,化简+|m+2|的结果是()A.5B.1C.2m﹣1D.2m﹣5解:∵﹣2<m<3,∴m﹣3<0,m+2>0,∴+|m+2|=3﹣m+m+2=5.故选:A.10.(3分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB 于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.1B.1.3C.1.2D.1.5解:∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点.∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP•BC=AB•AC,∴AP•BC=AB•AC.∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=2.4,∴AM=1.2;故选:C.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)要使有意义,则x的取值范围是x≥4.解:由题意得:x﹣4≥0,解得:x≥4.故答案为:x≥4.12.(4分)已知,如图在四边形ABCD中,AB=CD,则添加一个AD=BC条件(只需填写一种)可以使得四边形ABCD为平行四边形.解:添加AD=BC,∵AD=BC,AB=CD,∴四边形ABCD为平行四边形,故答案为:AD=BC.13.(4分)已知函数y=x+m﹣2020(m常数)是正比例函数,则m=2020.解:∵函数y=x+m﹣2020(m常数)是正比例函数,∴m﹣2020=0,解得m=2020,故答案为:2020.14.(4分)已知直角三角形的两边的长分别是3和4,则第三边长为5或.解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.15.(4分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD 的周长是24.解:∵AC是菱形ABCD的对角线,E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=3,∴BC=6,∴菱形ABCD的周长是4×6=24.故答案为24.16.(4分)若是整数,则满足条件的最小正整数n为7.解:∵28=4×7,4是平方数,∴若是整数,则n的最小值为7.故答案为:7.17.(4分)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是(0,21009).解:由已知,点A每次旋转转动45°,则转动一周需转动8次,每次转动点A到原点的距离变为转动前的倍∵2018=252×8+2∴点A2018的在y轴正半轴上,OA2018==21009故答案为:(0,21009)三、解答题(本大题3小题,每小题6分,共18分)18.(6分)计算:÷﹣×+.解:原式=﹣+2=4+19.(6分)如图,在平行四边形ABCD中,点E,F分别为边BC,AD的中点.求证:四边形AECF是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E,F分别是BC,AD的中点,∴,,∴AF∥EC,AF=EC,∴四边形AECF是平行四边形.20.(6分)小红星期天从家里出发骑自行车去舅舅家,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,如图是她本次去舅舅家所用的时间与小红离家的距离的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是1500米,小红在商店停留了4分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?解:(1)根据图象舅舅家纵坐标为1500,小红家的纵坐标为0,故小红家到舅舅家的路程是1500米;据题意,小红在商店停留的时间为从8分到12分,故小红在商店停留了4分钟.故答案为:1500,4;(2)根据图象,12≤x≤14时,直线最陡,故小红在12﹣14分钟最快,速度为=450米/分.四、解答题(本大题3小题,每小题8分,共24分)21.(8分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.【解答】证明:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理,得AC2=202+152=625.又CD=7,AD=24,∴CD2+AD2=625,∴AC2=CD2+AD2,∴∠D=90°.∴∠A+∠C=360°﹣180°=180°.22.(8分)已知:如图,过矩形ABCD的顶点C作CE∥BD,交AB的延长线于点E.(1)求证:∠CAE=∠CEA;(2)若AD=1,∠E=30°,求△ACE的周长.【解答】证明:(1)∵四边形ABCD是矩形,∴DC∥BE,AC=BD.又EC∥BD,∴四边形DBEC是平行四边形.∴CE=DB.∴AC=EC.∴∠CAE=∠CEA;(2)由(1)得∠DBA=∠E=30°,∴BD=2AD=2,AB=.∴AC=CE=BD=2,AE=2AB=2.所以△ACE周长为4+2.23.(8分)已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点M,使△AOM是等腰三角形?若存在,求点M的坐标;若不存在,请说明理由.解:(1)∵点A的横坐标为3,△AOH的面积为3,点A在第四象限,∴点A的坐标为(3,﹣2).将A(3,﹣2)代入y=kx,﹣2=3k,解得:k=﹣,∴正比例函数的表达式为y=﹣x.(2)①当OM=OA时,如图1所示,∵点A的坐标为(3,﹣2),∴OH=3,AH=2,OA==,∴点M的坐标为(﹣,0)或(,0);②当AO=AM时,如图2所示,∵点H的坐标为(3,0),∴点M的坐标为(6,0);③当OM=MA时,设OM=x,则MH=3﹣x,∵OM=MA,∴x=,解得:x=,∴点M的坐标为(,0).综上所述:当点M的坐标为(﹣,0)、(,0)、(6,0)或(,0)时,△AOM是等腰三角形.五、解答题(本大题2小题,每小题10分,共20分)24.(10分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;(三)====﹣1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简=﹣.②参照(三)式化简=﹣.(2)化简:+++…+.解:(1)①==﹣;②===﹣;(2)原式=+++…+==.故答案为:(1)①﹣;②﹣25.(10分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE.∵EF垂直平分AC,∴OA=OC.在△AOE和△COF中,∴△AOE≌△COF(AAS),∴OE=OF(AAS).∵EF⊥AC,∴四边形AFCE为菱形.②设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,在Rt△ABF中,AB=4cm,由勾股定理,得16+(8﹣x)2=x2,解得:x=5,∴AF=5.2)由作图可以知道,P点AF上时,Q点CD上,此时A,C,P,Q四点不可能构成平行四边形;同理P点AB上时,Q点DE或CE上,也不能构成平行四边形.∴只有当P点在BF上,Q点在ED上时,才能构成平行四边形,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,∴PC=QA,∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=5t,QA=12﹣4t,∴5t=12﹣4t,解得:t=.∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒.1、三人行,必有我师。
2020-2020学年驻马店市八年级下期中数学试卷含答案解析

2020-2020学年河南省驻马店市八年级(下)期中数学试卷一、选择题1.要使有意义,则x的取值范围是()A.x≤ B.x≥C.x≤D.x≥2.下列二次根式中属于最简二次根式的是()A. B. C.D.3.下列各组线段能构成直角三角形的一组是()A.7,12,13 B.30,40,50 C.5,9,12 D.3,4,64.如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则BD的长为()A.B.C.D.5.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14 B.16 C.20 D.186.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.6米B.6米C.3米D.3米7.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE8.下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③对角线互相垂直平分的四边形是正方形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是()A.1 B.2 C.3 D.4二、填空9.命题“等腰三角形的两个底角相等”的逆命题是.10.当1<a<2时,代数式+|1﹣a|的值是.11.三角形周长为(7+2)cm,已知两边长分别为cm和cm,则第三边的长是cm.12.已知平行四边形ABCD中,∠B=5∠A,则∠D=.13.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH为a,BH为b,则ab=.16.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(6,0)、(0,4),点P是线段BC上的动点,当△OPA是等腰三角形时,则P点的坐标是.三、解答(本大题共8个小题,满分67分)17.计算:(1)(10﹣6+4)÷(2)×(﹣)÷(﹣)18.已知x=+,y=﹣,求代数式x2+y2﹣xy﹣2x+2y的值.19.如图,在四边形ABCD中,∠ABC=90°,∠BAD=135°,AB=1,AC=,点E为CD中点.求证:CD=2AE.20.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.21.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.22.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M 和点N.(1)请你判断OM和ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.23.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.2020-2020学年河南省驻马店市八年级(下)期中数学试卷参考答案与试题解析一、选择题1.要使有意义,则x的取值范围是()A.x≤ B.x≥C.x≤D.x≥【考点】二次根式有意义的条件.【分析】二次根式有意义的条件是被开方数大于或等于零.【解答】解:要使有意义,则4﹣5x≥0,解得:x≤.故选;A.【点评】本题主要考查的是二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.2.下列二次根式中属于最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含能开得尽方的因数或因式,故A错误;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含分母,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.下列各组线段能构成直角三角形的一组是()A.7,12,13 B.30,40,50 C.5,9,12 D.3,4,6【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理(看看两小边的平方和是否等于大边的平方)分别进行判断即可.【解答】解:A、∵72+122≠132,∴以7,12,13为边的三角形不是直角三角形,故本选项错误;B、∵302+402=502,∴以30,40,50为边的三角形是直角三角形,故本选项正确;C、∵52+92≠122,∴以5,9,12为边的三角形不是直角三角形,故本选项错误;D、∵32+42≠62,∴以3,4,6为边的三角形不是直角三角形,故本选项错误;故选B.【点评】本题考查了勾股定理的逆定理的应用,能熟记知识点是解此题的关键,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.4.如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则BD的长为()A.B.C.D.【考点】勾股定理;三角形的面积.【专题】计算题.【分析】利用勾股定理求得相关线段的长度,然后由面积法求得BD的长度.【解答】解:如图,由勾股定理得AC==.∵BC×2=AC•BD,即×2×2=×BD∴BD=.故选:C.【点评】本题考查了勾股定理,三角形的面积.利用面积法求得线段BD的长度是解题的关键.5.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14 B.16 C.20 D.18【考点】平行四边形的性质.【分析】由平行四边形的性质得出AB=CD,BC=AD,OB=OD,再根据线段垂直平分线的性质得出BE=DE,由△CDE的周长得出BC+CD=6cm,即可求出平行四边形ABCD的周长.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选C.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形、平行四边形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.6.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.6米B.6米C.3米D.3米【考点】菱形的性质.【专题】应用题.【分析】由四边形ABCD为菱形,得到四条边相等,对角线垂直且互相平分,根据∠BAD=60°得到三角形ABD为等边三角形,在直角三角形ABO中,利用勾股定理求出OA的长,即可确定出AC的长.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=24÷4=6(米),∵∠BAD=60°,∴△ABD为等边三角形,∴BD=AB=6(米),OD=OB=3(米),在Rt△AOB中,根据勾股定理得:OA==3(米),则AC=2OA=6米,故选A.【点评】此题考查了勾股定理,菱形的性质,以及等边三角形的判定与性质,熟练掌握菱形的性质是解本题的关键.7.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE【考点】矩形的判定;平行四边形的性质.【分析】先证明四边形ABCD为平行四边形,再根据矩形的判定进行解答.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误.故选B.【点评】本题考查了平行四边形的判定和性质、矩形的判定,首先判定四边形ABCD为平行四边形是解题的关键.8.下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③对角线互相垂直平分的四边形是正方形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是()A.1 B.2 C.3 D.4【考点】命题与定理.【分析】根据平行四边形的性质对①进行判断;根据矩形的判定方法对②进行判断;根据正方形的判定方法对③进行判断;根据菱形的判定方法对④进行判断.【解答】解:平行四边形的对边相等,所以①正确;对角线相等的平行四边形是矩形,所以②错误;对角线互相垂直平分且相等的四边形是正方形,所以③错误;一条对角线平分一组对角的平行四边形是菱形,所以④正确.故选B.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.二、填空9.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【考点】命题与定理.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.【点评】根据逆命题的概念来回答:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.10.当1<a<2时,代数式+|1﹣a|的值是1.【考点】二次根式的性质与化简.【分析】直接利用a的取值范围去掉绝对值和化简二次根式,进而求出答案.【解答】解:∵1<a<2,+|1﹣a|=2﹣a+a﹣1=1.故答案为:1.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.11.三角形周长为(7+2)cm,已知两边长分别为cm和cm,则第三边的长是4cm.【考点】二次根式的加减法.【分析】首先化简二次根式,进而合并同类二次根式得出答案.【解答】解:∵三角形周长为(7+2)cm,两边长分别为cm和cm,∴第三边的长是:(7+2)﹣﹣=7+2﹣3﹣2=4(cm).故答案为:4.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.12.已知平行四边形ABCD中,∠B=5∠A,则∠D=150°.【考点】平行四边形的性质.【分析】根据题意画出图形,再根据∠B=5∠A得出∠B的度数,进而得出∠D的度数.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∠D=∠B,∵∠B=5∠A,∴6∠A=180°,解得∠A=30°,∴∠D=∠B=30°×5=150°°.故答案为:150°.【点评】本题考查的是平行四边形的性质,熟知平行四边形的对边互相平行,两组内角分别相等是解答此题的关键.13.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=2.【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再根据中线的定义即可求出BD的长.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF=AD,∵EF=1,∴AD=2,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE 与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.15.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH为a,BH为b,则ab=48.【考点】勾股定理的证明.【分析】根据面积的差得出a+b的值,再利用a﹣b=2,解得a,b的值代入即可.【解答】解:∵AB=10,EF=2,∴大正方形的面积是100,小正方形的面积是4,∴四个直角三角形面积和为100﹣4=96,设AH为a,BH为b,即4×ab=96,∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,∵a﹣b=2,解得:a=8,b=6,∴AH=8,BH=6,∴ab=6×8=48.故答案为:48.【点评】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab的值.16.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(6,0)、(0,4),点P是线段BC上的动点,当△OPA是等腰三角形时,则P点的坐标是(3,4)或(2,4)或(6﹣2,4).【考点】矩形的性质;坐标与图形性质;等腰三角形的判定.【分析】由矩形的性质得出BC=OA=6,AB=OC=4,∠B=∠OCB=90°,分三种情况:①当PO=PA时;②当AP=AO=6时;③当OP=OA=6时;分别求出PC的长,即可得出结果.【解答】解:∵四边形OABC是矩形,∴BC=OA=6,AB=OC=4,∠B=∠OCB=90°,分三种情况:如图所示:①当PO=PA时,P在OA的垂直平分线上,P是BC的中点,PC=3,∴点P的坐标为(3,4);②当AP=AO=6时,BP==2,∴PC=6﹣2,∴P(6﹣2,4);③当OP=OA=6时,PC==2,∴P(2,4).综上所述:点P的坐标为(3,4)或(2,4)或(6﹣2,4).故答案为:(3,4)或(2,4)或(6﹣2,4).【点评】本题考查了矩形的性质、坐标与图形性质、等腰三角形的判定、勾股定理;熟练掌握矩形的性质,进行分类讨论是解决问题的关键.三、解答(本大题共8个小题,满分67分)17.计算:(1)(10﹣6+4)÷(2)×(﹣)÷(﹣)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先对括号内的式子化简,再根据二次根式的除法进行计算即可解答本题;(2)根据二次根式的乘除法进行计算即可解答本题.【解答】解:(1)(10﹣6+4)÷===15;(2)×(﹣)÷(﹣)===.【点评】本题考查考查二次根式的混合运算,解题的关键是明确二次根式混合运算的计算方法.18.已知x=+,y=﹣,求代数式x2+y2﹣xy﹣2x+2y的值.【考点】二次根式的化简求值.【分析】首先把x2+y2﹣xy﹣2x+2y化为x2﹣2xy+y2+xy﹣2x+2y=(x﹣y)2+xy﹣2(x﹣y),在代入数值计算即可.【解答】解:∵x=+,y=﹣,∴x2+y2﹣xy﹣2x+2y=x2﹣2xy+y2+xy﹣2x+2y=(x﹣y)2+xy﹣2(x﹣y)=8+1﹣4=9﹣4.【点评】此题主要二次根式的化简求值,主要利用完全平方公式把整式整理,再进一步代入计算.19.如图,在四边形ABCD中,∠ABC=90°,∠BAD=135°,AB=1,AC=,点E为CD中点.求证:CD=2AE.【考点】勾股定理;直角三角形斜边上的中线.【专题】证明题.【分析】首先利用已知条件和勾股定理可证明BC=AB,进而可得∠BCA=∠BAC=45°,再根据已知条件可得∠CAD=135﹣45°=90°,所以三角形CAD是直角三角形,利用在直角三角形中,斜边上的中线等于斜边的一半即可证明CD=2AE.【解答】证明:Rt△ABC中,∠ABC=90°,AB=1,AC=∴BC2=()2﹣12=1,∴BC=AB,∴∠BCA=∠BAC=45°,又∵∠BAD=135°,∴∠CAD=135﹣45°=90°,又∵AE为CD上中点,∴AE为Rt△CAD斜边上中线,则CD=2AE.【点评】本题考查了勾股定理的运用以及在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)的性质,解题的关键是证明△CAD是直角三角形.20.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【专题】证明题.【分析】首先证明△AEB≌△CFD可得AB=CD,再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.【解答】证明:∵AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠DFA=∠BEC,∴∠AEB=∠DFC,在△AEB和△CFD中,∴△AEB≌△CFD(ASA),∴AB=CD,∵AB∥CD,∴四边形ABCD为平行四边形.【点评】此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.21.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【考点】平行四边形的性质;角平分线的性质;勾股定理的逆定理;矩形的判定.【专题】证明题.【分析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点评】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.22.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M 和点N.(1)请你判断OM和ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.【考点】菱形的性质;全等三角形的判定与性质;勾股定理.【专题】计算题;矩形菱形正方形.【分析】(1)根据四边形ABCD是菱形,判断出AD∥BC,AO=OC,即可推得OM=ON.(2)首先根据四边形ABCD是菱形,判断出AC⊥BD,AD=BC=AB=6,进而求出BO、BD的值是多少;然后根据DE∥AC,AD∥CE,判断出四边形ACED是平行四边形,求出DE=AC=6,即可求出△BDE的周长是多少.【解答】解:(1)∵四边形ABCD是菱形,∴AD∥BC,AO=OC,∴,∴OM=ON.(2)∵四边形ABCD是菱形,∴AC⊥BD,AD=BC=AB=6,∴BO==2,∴,∵DE∥AC,AD∥CE,∴四边形ACED是平行四边形,∴DE=AC=8,∴△BDE的周长是:BD+DE+BE=BD+AC+(BC+CE)=4+8+(6+6)=20即△BDE的周长是20.【点评】(1)此题主要考查了菱形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.(2)此题还考查了三角形的周长的含义以及求法,以及勾股定理的应用,要熟练掌握.23.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【考点】四边形综合题.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【解答】证明:延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.【点评】本题是四边形综合题,主要考查了正方形及矩形的性质、全等三角形的性质和判定、等腰三角形的判定、平行线的性质、角平分线的定义等知识,考查了基本模型的构造(平行加中点构造全等三角形),考查了反证法的应用,综合性比较强.添加辅助线,构造全等三角形是解决这道题的关键.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【考点】正方形的判定;平行四边形的判定与性质;菱形的判定.【专题】几何综合题.【分析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.【点评】本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
【详解】
设 CD=x,则 DE=a﹣x, ∵HG=b, ∴AH=CD=AG﹣HG=DE﹣HG=a﹣x﹣b=x,
∴x= a b , 2
∴BC=DE=a﹣ a b = a b ,
2
2
∴BD2=BC2+CD2=( a b )2+( a b )2= a2 b2 ,
2
2
2
∴BD= a2 b2 , 2
(1)判断与推理: ① 邻边长分别为 2 和 3 的平行四边形是__________阶准菱形;
② 小明为了剪去一个菱形,进行如下操作:如图 2,把平行四边形 ABCD 沿着 BE 折叠 (点 E 在 AD 上)使点 A 落在 BC 边上的点 F ,得到四边形 ABFE ,请证明四边形 ABFE 是菱形.
11.D
解析:D 【解析】 【分析】 连接 OB,根据等腰三角形三线合一的性质可得 BO⊥EF,再根据矩形的性质可得 OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求 出∠ABO=30°,即∠BAC=30°,根据直角三角形 30°角所对的直角边等于斜边的一半求出 AC,再利用勾股定理列式计算即可求出 AB. 【详解】 解:如图,连接 OB,
(1)求证:△AEF≌△DEB; (2)证明四边形 ADCF 是菱形; (3)若 AC=4,AB=5,求菱形 ADCFD 的面积. 25.已知一次函数图象经过(-2,1)和(1,3)两点. (1)求这个一次函数的解析式;
(2)当 x 3 时,求 y 的值.
【参考答案】***试卷处理标记,请不要删除
确找到点 P 的位置是解此题的关键.
8.D
解析:D 【解析】 【分析】 【详解】 解:如图:
利用顶点式及取值范围,可画出函数图象会发现:当 x=3 时,y=k 成立的 x 值恰好有三个. 故选:D.
9.D
解析:D 【解析】 【分析】 先根据二次根式有意义的条件求出 a 的范围,再把根号外的非负数平方后移入根号内即 可. 【详解】
一、选择题
1.A 解析:A 【解析】 【分析】 先做出合适的辅助线,再证明△ADC 和△AOB 的关系,即可建立 y 与 x 的函数关系,从而 确定函数图像. 【详解】 解:由题意可得:OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点 C 的纵坐标 是 y, 作 AD∥x 轴,作 CD⊥AD 于点 D,如图所示:
17.若菱形的两条对角线长分别是 6 ㎝和 8 ㎝,则该菱形的面积是 ㎝ 2. 18.如图,在△ABC 中,AB=6,AC=10,点 D,E,F 分别是 AB,BC,AC 的中点,则 四边形 ADEF 的周长为_____.
19.如图所示,图中所有三角形都是直角三角形,所有四边形都是正方形,
S1 9,S2 16,S3 144 ,则 S4 _____.
本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关 系是判定的关键.
6.D
解析:D 【解析】 【分析】 寻找小于 26 的最大平方数和大于 26 的最小平方数即可. 【详解】
解:小于 26 的最大平方数为 25,大于 26 的最小平方数为 36,故 25< 26< 36 ,即:
C.4 和 5 之间
D.5 和 6 之间
7.如图,在菱形 ABCD 中,AB=6,∠ABC=60°,M 为 AD 中点,P 为对角线 BD 上一动点,
连接 PA 和 PM,则 PA+PM 的最小值是( )
A.3
B.2
C.3
D.6
x 12 1 x 3
8.已知函数
y
{
x
52
1
x>3
,则使
y=k
成立的
(2)操作、探究与计算:
① 已知平行四边形 ABCD 的邻边分别为 1, a(a 1) 裁剪线的示意图,并在图形下方写出 a 的值; ② 已知平行四边形 ABCD 的邻边长分别为 a,b(a b) ,满足 a 6b r,b 5r ,请写出 平行四边形 ABCD 是几阶准菱形.
24.在 Rt△ABC 中,∠BAC=90°,D 是 BC 的中点,E 是 AD 的中点.过点 A 作 AF∥BC 交 BE 的延长线于点 F
到根号外再平方后移到根号内.
10.D
解析:D 【解析】 【分析】 由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于 k 的一元一次不等式组,解之即可得出结论. 【详解】 ∵一次函数 y=(k-3)x-k 的图象经过第二、三、四象限,
∴
,
解得:0<k<3, 故选:D. 【点睛】 本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b 的图象在二、三、四 象限”是解题的关键.
20.如图,已知一次函数 y=kx+b 的图象与 x 轴交于点(3,0),与 y 轴交于点(0,2),不等式 kx+b≥2 解集是_______.
三、解答题 21.已知 a,b 分别为等腰三角形的两条边长,且 a,b 满足 b 3 3a 6 5 2 a ,
求此三角形的周长. 22.如图,△ABC 中,D、E、F 分别在边 BC、AB、AC 上,且 DE∥AC,DE=AF,延长 FD 到 G,使 DG=DF,求证:AG 和 DE 互相平分.
B.9.7 m ,9.8 m
C.9.8 m ,9.7 m
D.9.8 m ,9.9 m
4.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有 20 名学生,他
们的决赛成绩如下表所示:
决赛成绩/分
95
90
85
80
人数
4
6
8
2
那么 20 名学生决赛成绩的众数和中位数分别是( )
A.85,90
B.85,87.5
A.x>1
二、填空题
B.x<1
C.x>2
D.x<2
13.小明这学期第一次数学考试得了 72 分,第二次数学考试得了 86 分,为了达到三次考 试的平均成绩不少于 80 分的目标,他第三次数学考试至少得____分. 14.若一元二次方程 x2﹣2x﹣m=0 无实数根,则一次函数 y=(m+1)x+m﹣1 的图象不经 过第_____象限. 15.计算 (2 2 3 3)2 的结果等于_____. 16.如图,平面直角坐标系中,点 A、B 分别是 x、y 轴上的动点,以 AB 为边作边长为 2 的正方形 ABCD,则 OC 的最大值为_____.
x
值恰好有三个,则
k
的值为(
)
A.0
B.1
C.2
D.3
9.把式子 a 1 号外面的因式移到根号内,结果是( ) a
A. a
B. a
C. a
D. a
10.若一次函数 y=(k-3)x-k 的图象经过第二、三、四象限,则 k 的取值范围是( )
A.k<3
B.k<0
C.k>3
D.0<k<3
11.如图,在矩形 ABCD 中,E,F 分别是边 AB,CD 上的点,AE=CF,连接 EF,BF,
EF 与对角线 AC 交于点 O,且 BE=BF,∠BEF=2∠BAC,FC=2,则 AB 的长为( )
A.8 3
B.8
C.4 3
D.6
12.如图所示,一次函数 y=kx+b(k、b 为常数,且 k≠0)与正比例函数 y=ax(a 为常数,
且 a≠0)相交于点 P,则不等式 kx+b>ax 的解集是( )
故选:C. 【点睛】
本题考查了勾股定理,全等三角形的性质,正确的识别图形,用含 a, b 的式子表示各个线段
是解题的关键.
3.B
解析:B 【解析】 【分析】 将这 7 个数据从小到大排序后处在第 4 位的数是中位数,利用算术平均数的计算公式进行 计算即可. 【详解】 把这 7 个数据从小到大排列处于第 4 位的数是 9.7 m ,因此中位数是 9.7 m ,
∴∠DAO+∠AOD=180°, ∴∠DAO=90°, ∴∠OAB+∠BAD=∠BAD+∠DAC=90°, ∴∠OAB=∠DAC, 在△OAB 和△DAC 中, ∠AOB=∠ADC,∠OAB=∠DAC,AB=AC ∴△OAB≌△DAC(AAS), ∴OB=CD, ∴CD=x, ∵点 C 到 x 轴的距离为 y,点 D 到 x 轴的距离等于点 A 到 x 的距离 1, ∴y=x+1(x>0). 故选 A. 【点睛】
2020 年八年级数学下期中试卷(带答案)(1)
一、选择题
1.如右图,点 A 的坐标为(0,1),点 B 是 x 轴正半轴上的一动点,以 AB 为边作等腰 直角△ABC,使∠BAC=90°,如果点 B 的横坐标为 x,点 C 的纵坐标为 y,那么表示 y 与 x 的函数关系的图像大致是( )
A.
B.
5.D
解析:D 【解析】 【分析】 根据特殊平行四边形的判定方法判断即可. 【详解】 解:有一组邻边相等的平行四边形是菱形,A 选项正确;对角线互相垂直的平行四边形是 菱形,B 选项正确;有一个角是直角的平行四边形是矩形,C 选项正确;对角线互相垂直 且相等的平行四边形是正方形,D 选项错误. 故答案为:D 【点睛】
5< 26<6 ,故选择 D.
【点睛】 本题考查了二次根式的相关定义.
7.C
解析:C 【解析】 【分析】 首先连接 AC,交 BD 于点 O,连接 CM,则 CM 与 BD 交于点 P,此时 PA+PM 的值最 小,由在菱形 ABCD 中,AB=6,∠ABC=60°,易得△ACD 是等边三角形,BD 垂直平分 AC,继而可得 CM⊥AD,则可求得 CM 的值,继而求得 PA+PM 的最小值. 【详解】 解:连接 AC,交 BD 于点 O,连接 CM,则 CM 与 BD 交于点 P,此时 PA+PM 的值最 小,