(完整word版)振动力学 概念题
《振动力学》习题集(含答案)【精选】精心总结

令 引起的静变形为 ,则有:
,即
令 + 引起的静变形为 ,同理有:
得:
则系统的自由振动可表示为:
其中系统的固有频率为:
注意到 与 方向相反,得系统的自由振动为:
1.9质量为m、长为l的均质杆和弹簧k及阻尼器c构成振动系统,如图E1.9所示。以杆偏角 为广义坐标,建立系统的动力学方程,给出存在自由振动的条件。若在弹簧原长处立即释手,问杆的最大振幅是多少?发生在何时?最大角速度是多少?发生在何时?是否在过静平衡位置时?
解:
(1)保持水平位置:
(2)微幅转动:
故:
2.10求图T 2-10所示系统的固有频率,刚性杆的质量忽略不计。
图T 2-10答案图T 2-10
解:
m的位置:
, ,
,
,
2.11图T 2-11所示是一个倒置的摆。摆球质量为m,刚杆质量可忽略,每个弹簧的刚度为 。
(1)求倒摆作微幅振动时的固有频率;
(2)摆球质量m为0.9 kg时,测得频率 为1.5 Hz,m为1.8 kg时,测得频率为0.75 Hz,问摆球质量为多少千克时恰使系统处于不稳定平衡状态?
图E1.2
解:
如图,令 为柱体的转角,则系统的动能和势能分别为:
利用 和 可得:
1.3转动惯量为J的圆盘由三段抗扭刚度分别为 , 和 的轴约束,如图E1.3所示。求系统的固有频率。
图E1.3
解:
系统的动能为:
和 相当于串联,则有:
以上两式联立可得:
系统的势能为:
利用 和 可得:
1.4在图E1.4所示的系统中,已知 ,横杆质量不计。求固有频率。
图E1.4答案图E1.4
解:
对m进行受力分析可得:
物理振动试题及答案解析

物理振动试题及答案解析1. 简谐运动的振动周期与哪些因素有关?答案:简谐运动的振动周期与振子的质量以及弹簧的劲度系数有关,与振幅无关。
2. 什么是阻尼振动?其振动周期与自由振动相比有何不同?答案:阻尼振动是指在振动过程中受到阻力作用的振动。
与自由振动相比,阻尼振动的振动周期会变长。
3. 简述单摆的周期公式。
答案:单摆的周期公式为 \( T = 2\pi \sqrt{\frac{L}{g}} \),其中 \( T \) 是周期,\( L \) 是摆长,\( g \) 是重力加速度。
4. 什么是共振现象?请举例说明。
答案:共振现象是指当驱动力的频率接近或等于系统的固有频率时,系统振幅急剧增大的现象。
例如,当行人在桥上行走时,如果步频与桥的固有频率接近,可能会引起桥梁的共振,导致桥梁剧烈振动甚至断裂。
5. 请解释为什么在声波传播中,频率越高的声波传播距离越短?答案:频率越高的声波波长越短,波长越短的声波在传播过程中更容易受到空气分子的散射作用,因此传播距离较短。
6. 什么是多普勒效应?请用物理公式表达。
答案:多普勒效应是指当波源和观察者相对运动时,观察者接收到的波频率与波源发出的频率不同的现象。
多普勒效应的公式为 \( f'= \frac{f(u + v)}{u + v \cos \theta} \),其中 \( f' \) 是观察者接收到的频率,\( f \) 是波源发出的频率,\( u \) 是波源的速度,\( v \) 是观察者的速度,\( \theta \) 是波源和观察者之间的夹角。
7. 请解释为什么在弹簧振子的振动过程中,振幅会逐渐减小?答案:在弹簧振子的振动过程中,振幅逐渐减小是因为存在阻力作用,如空气阻力或摩擦阻力,这些阻力会消耗振子的机械能,导致振幅减小。
8. 什么是机械波?请列举三种常见的机械波。
答案:机械波是指需要介质传播的波,其传播过程中介质的质点并不随波迁移,而是在平衡位置附近做振动。
(完整word版)振动力学的60对概念

振动力学的60对概念1 广义坐标与自由度广义坐标:能够完全确定系统在运动过程中的某一瞬时在空间所处的几何位置与形状的独立参变量。
自由度:系统独立坐标的数目。
2 线性振动与非线性振动根据系统运动微分方程的性质划分,微分方程中只包含位移、速度的一次方项称为线型振动,如果还包含位移、速度的二阶或高阶项则是非线性振动。
3 离散(集中参数)系统与连续(分布参数)系统单自由度和多自由度振动系统统称为离散系统.无限自由度系统具有连续分布的质量与连续分布的弹性,称为分布参数系统。
4角振动与扭转振动角振动:振动按位移的特征分为直线振动和角振动。
当质点只作围绕轴线的振动,就称为角振动。
扭转振动:弹性体绕其纵轴产生扭转变形的振动。
5 简谐振动与谐波分析用时间t的正弦或余弦函数表示的运动规律称为简谐振动。
一般的周期振动可以借助傅里叶级数表示成一系列简谐振动的叠加,该过程称为谐波分析.6 简谐振动的振幅与相位角振幅:振动物体离开平衡位置的最大距离叫振动的振幅.相位角:某一物理量随时间(或空间位置)作正弦或余弦变化时,决定该量在任一时刻(或位置)状态的一个数值。
7 简谐振动的周期与频率一次振动循环所需的时间T称为周期;单位时间内振动循环的次数f称为频率.8 简谐振动的旋转矢量与复指数描述方法(书P4页图1-2 公式1—6)9 幅值谱与相位谱在信号的频域描述中,以频率作为自变量,以组成信号的各个频率成分的幅值作为因变量,这样的频率函数称为幅值谱,它表征信号的幅值随频率的分布情况。
相位谱,指的是相位随频率变化的曲线,是信号的重要特征之一。
10粘性阻尼与等效粘性阻尼粘性阻尼,是振动系统的运动受大小与运动速度成正比而方向相反的阻力所引起的能量损耗。
等效粘性阻尼:11临界阻尼与阻尼比任何一个振动系统,当阻尼增加到一定程度时,物体的运动是非周期性的,物体振动连一次都不能完成,只是慢慢地回到平衡位置就停止了.当阻力使振动物体刚能不作周期性振动而又能最快地回到平衡位置的情况,称为“临界阻尼”。
《振动力学》习题集(含答案)

《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
《振动力学》作业资料(含答案解析)

《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解:系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得:()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得:()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解:系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222121212121θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
振动力学习题集含答案

解:
,
动量守恒:
,
平衡位置:
,
,
故:
故:
2.4在图E2.4所示系统中,已知m, , , 和 ,初始时物块静止且两弹簧均为原长。求物块运动规律。
图E2.4答案图E2.4
解:
取坐标轴 和 ,对连接点A列平衡方程:
即:
(1)
对m列运动微分方程:
即:
(2)
由(1),(2)消去 得:
图E2.7
解:
,
s=1时共振,振幅为:
(1)
远离共振点时,振幅为:
(2)
由(2)
由(1)
, ,
故:
2.7求图T 2-7中系统的固有频率,悬臂梁端点的刚度分别是 及 ,悬臂梁的质量忽略不计。
图T 2-7答案图T 2-7
解:
和 为串联,等效刚度为: 。(因为总变形为求和)
和 为并联(因为 的变形等于 的变形),则:
图E1.9答案图E1.9
解:
利用动量矩定理得:
,
,
,
,
1.12面积为S、质量为m的薄板连接于弹簧下端,在粘性流体中振动,如图E1.12所示。作用于薄板的阻尼力为 ,2S为薄板总面积,v为速度。若测得薄板无阻尼自由振动的周期为 ,在粘性流体中自由振动的周期为 。求系数 。
图E1.12
解:
平面在液体中上下振动时:
和 为串联(因为总变形为求和),故:
故:
2.9如图T 2-9所示,一质量m连接在一刚性杆上,杆的质量忽略不计,求下列情况系统作垂直振动的固有频率:
(1)振动过程中杆被约束保持水平位置;
(2)杆可以在铅锤平面内微幅转动;
(3)比较上述两种情况中哪种的固有频率较高,并说明理由。
振动力学习题集含答案

解:
利用动量矩定理得:
,
,
,
,
面积为S、质量为m的薄板连接于弹簧下端,在粘性流体中振动,如图所示。作用于薄板的阻尼力为 ,2S为薄板总面积,v为速度。若测得薄板无阻尼自由振动的周期为 ,在粘性流体中自由振动的周期为 。求系数 。
图
解:
平面在液体中上下振动时:
,
,
图所示系统中,已知m,c, , , 和 。求系统动力学方程和稳态响应。
(2)
若取下面为平衡位置,求解如下:
,
图T 2-17所示的系统中,四个弹簧均未受力,k1=k2=k3=k4=k,试问:
(1)若将支承缓慢撤去,质量块将下落多少距离?
(2)若将支承突然撤去,质量块又将下落多少距离?
图T 2-17
解:
(1) ,
(2) ,
如图T 2-19所示,质量为m2的均质圆盘在水平面上可作无滑动的滚动,鼓轮绕轴的转动惯量为I,忽略绳子的弹性、质量及各轴承间的摩擦力,求此系统的固有频率。
因此有:
图所示阶梯杆系统中已知m,ρ,S,E和k。求纵向振动的频率方程。
图
解:
模态函数的一般形式为:
题设边界条件为:
,
边界条件可化作:
,
导出C2= 0及频率方程:
,其中
长为l、密度为ρ、抗扭刚度为GIp的的等直圆轴一端有转动惯量为J的圆盘,另一端连接抗扭刚度为k的弹簧,如图所示。求系统扭振的频率方程。
《振动力学》习题集(含答案)
质量为m的质点由长度为l、质量为m1的均质细杆约束在铅锤平面内作微幅摆动,如图所示。求系统的固有频率。
图
解:
系统的动能为:
其中I为杆关于铰点的转动惯量:
《振动力学》作业资料(含答案解析)

《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解:系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得:()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得:()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解:系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222121212121θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概念题
1、ritz法和releiy法是求解振动系统固有频率的两种近似法,简述其基本思路。
瑞兹法:是将连续系统离散为有限个自由度的系统,再根据机械能守恒定律进行计算,并用拉式方程建立微分方程,得到系统的振型函数,由此得到系统的固有频率以及振型。
瑞利法:主要用来估算系统的基频,它的依据的是机械能守恒定律,即T MAX=U MAX,对任一个连续系统,只能近似给出第一阶振型函数,且要求满足系统的端点条件,再计算系统的动能和势能,即估算出系统的基频。
2说明矩阵迭代法求解多自由度系统第一阶固有频率的基本步骤以及思路(P91)。
基本思路:KA-w2MA=0 也可以写成:1/w2A=ɸMA
令D=ɸM, λ=1/w2 则:DA=λA
基本步骤:
1)求第一阶固有频率以及振型
(1)任意假设一个初始振型A
(2)按下列格式计算位形列降序列A m
A1=DA0 A2=DA1 。
`A n=DA n-1
当n足够大的时候,A n趋近于A1,1/λ1=ω12
3轴向力对梁横向振动有何影响?(拉压)
振动方程为:(P122)
轴向拉力可以提高梁横向振动的固有频率;
轴向压力可以降低梁横向振动的固有频率;
4造成非线性恢复力的原因有?
1)几何非线性,即大位移,超出了小变形范围;
2)物理非线性,即结构材料的性质和及结构强度性能超出弹性范围;
5简述求解无阻尼多自由度系统对初始激励响应的基本步骤
1)建立振动微分方程,确定系统的质量矩阵以及刚度矩阵;
2) 求固有频率以及振型
3)求主振型矩阵和正则振型矩阵
4)将外激励再转化为正则坐标下的激励(初始条件)
5)求正则坐标下的系统响应
6)求广义坐标下的系统响应
6在建立梁的横向振动力学模型时,梁的力学模型分为哪三种?
1) 欧拉-伯努利梁:只考虑弯曲变形,不计剪切变形及转动惯量的影响。
2)瑞利梁:考虑弯曲和转动惯量,不计剪切变形的影响。
3)铁木辛柯梁:弯曲变形,转动惯量,剪切变形都考虑。
7隔震分哪几种?机理是什么?举例说明
1)隔震分为主动隔振和被动隔振两种。
2)主动隔振:机器是振动根源,使他与地基隔开,以减少对周围环境的影响。
如
把机器放在软大基础上,在机器与地基之间设置若干橡胶隔振器。
3)被动隔振:振源来自地基的振动,为了使外界振动少传到系统中来所采取的的措施,如TMD控制。
8 工程实际中所研究和需要解决的问题可分为哪几种?其研究内容是?
1) 分类:响应分析系统设计系统识别环境预测
2)响应分析:已知系统激励和系统参数的情况下,求系统响应,包括位移,加速度,速度,力的响应
系统设计:已知系统激励的情况下,设计合理的系统参数,满足动态响应或其他输出要求。
系统识别:已知系统激励和系统响应的情况下,求系统参数,了解系统特性。
环境预测:已知系统输出以及参数情况下,确定系统的输入,判别系统的环境特性。
9什么是随机振动?举2工程实例简单说明。
1)激励响应事先不能用时间的确定函数描述,这类不确定的振动称为随机振动。
可用概率或者统计的方法研究随机振动的规律。
例1:车辆的随机振动问题,道路不平顺对车辆的位移以及速度的扰动。
2:地震载荷下的结构振动问题。
地震波传至地面时产生的垂向振动以及两个方向的水平振动。
3:风载荷作用下的振动问题。
4:船舶在风浪中的横摆问题。