尺寸链的计算(带实例)

合集下载

装配尺寸链计算方法

装配尺寸链计算方法

8
整理课件
8
封闭环 环
组成环
增环 减环
尺寸链中的每一个尺寸称为环
9
整理课件
9
封闭环、增环、减环
尺寸链封闭环是在装配或加工过程中最 后形成的一环,装配尺寸链中,封闭环是由 机器装配精度决定的;工艺尺寸链中,封闭 环必须在加工顺序确定后才能判断。
若在其他组成环不变的条件下,某一组 成环的尺寸增大,封闭环的尺寸也随之增大, 则该组成环称为增环;某一组成环的尺寸增 大,封闭环的尺寸随之减小,则该组成环称 为减环。
机械制图内部培训
尺寸链计注方法
整理课件
1
尺寸链基本概念
为了保证加工和装配的顺利进行,并达到预定 的工作要求。要在设计与生产过程中,正确分析和 确定零件各部分尺寸或各零部件之间尺寸关系,合 理确定构成零件的各部分尺寸或各有关零部件的几 何精度(尺寸公差、形状和位置公差),它们之间 的关系需用尺寸链来计算和处理。
整理课件
23
整理课件
24
修配法装配计算实例-2
7
整理课件
25
整理课件
26
整理课件
27
整理课件
28
整理课件
29
整理课件
30
修配装配法的主要优缺点
修配装配法的主要优点是:
组成环均能以加工经济精度制造,但却可获得较高 的装配精度。
不足之处是:增加了修配工作量,生产效率低,对 装配工人技术水平要求高。修配装配法常用于单件小 批生产中装配那些组成环数较多而装配精度又要求较 高的机器结构。
5
整理课件
5
尺寸链的分类
按应用范围分
1)装配尺寸链 链中各环属于相互联系的不同零件和部件。

万能平面尺寸链计算公式及其用法举例

万能平面尺寸链计算公式及其用法举例
L AB / X A ﹦ 0.999 ; L AB
/ X B ﹦ 0.999 ; LAB Y A ﹦ 0.0439 ;
7
L AB YB ﹦﹣0.0439
由上述各偏导数值的符号可知, X A 、 X B 和 Y A 是尺寸链的増环,
YB 是减环。
' ' ⑵ 计算公差 d X A 、d X B 、d Y A' 和 d YB' ' ' 由式⑷可得:d LAB ﹦ LAB X A d X A ﹢ LAB X B d X B ﹢ ' L AB Y A d Y A ﹢ LAB YB d YB' ' ' 已知:d LAB ﹦0.18mm ;所以:0.18﹦|0.999|d X A ﹢|0.999|d X B ' ' ﹢|0.0439|d Y A ' ﹢|﹣0.0439|d YB' ;取 d X A ﹦d X B ﹦d Y A' ﹦d YB' ' ' ' ' 则 dXA ﹦d X B ﹦d Y A' ﹦d YB' ﹦0.086mm﹙说明:可以取 d X A 、d X B 、d Y A'
代入上式,即
' 0.18﹦|0.999|d X A ﹢|0.999∣ 0.072﹢∣0.0439∣d Y A' + ' ' |﹣0.0439| 0.072 ;取 d X A ﹦d Y A' ,则 d X A ﹦d Y A' ﹦0.1mm;由于 ' ' dXA 和 d Y A' 小于 d X A 和 d Y A ,所以 d X A 和 d Y A 应取 d X A 和 d Y A' 之值, ' 即 d X A ﹦d Y A ﹦d X A ﹦d Y A' ﹦0.1mm。综上所述,可得:d X B ﹦d YB

尺寸链计算方法

尺寸链计算方法

A
7ቤተ መጻሕፍቲ ባይዱ
2).按各环所在空间位置分 (1)直线尺寸链, 如图12—1所示。 (2)平面尺寸链, 如图12—2所示。 (3)空间尺寸链 组成环位于几个 不平行的平面内
A
8
3).按各环尺寸的几何特征分
(1)长度尺寸链 示。 (2)角度尺寸链
如图12—1,图12—2所 如图12—3所示。
A
9
4、尺寸链的建立

现在要求出工艺规程中的工
序尺寸A及其公差(假定热处
理后内孔的尺寸涨缩较小,
可以忽略不计)。
A
21
解:方法一 按加工路线作
出如图四环工艺 尺寸链。其中尺
46
+0.3 0
40+00.05
A
19.8
+0.05 0
20
+0.025 0
46
+0.30 0
寸46为要保证的
A
封闭环, A和20为 增环,19.8为减环。
TM
T2
N1
T2
mn
A
19
2、 概率解法与极值解法的比较:
极值解法:
TM
T T mn N1
N 1
但实际上,由于各组成环通常未必是正态分布曲线,即 Ki>1 ,故实际所求得的扩大倍数比 N1小些。
A
20
四、举例:工艺尺寸的计算
如图所示的某一带键糟的齿轮孔,按使
46
+0.3 0
用性能,要求有一定耐磨性,工艺上需淬火
一个尺寸链至少要由两个组成环组成。
3.画尺寸链线图 为清楚地表达尺
寸链的组成,通常不 需要画出零件或部件 的具体结构,只需将 尺寸链中各尺寸依次 画出,形成封闭的图 形即可,这样的图形 称为尺寸链线图,如 图12-4b所示。

第七章__尺寸链及尺寸链计算

第七章__尺寸链及尺寸链计算

平面尺寸链
3、尺寸链计算
• 尺寸链计算分正计算、反计算和中间计算 –正计算:已知组成环求封闭环; –反计算:已知封闭环求各组成环; –中间计算:已知封闭环及部分组成环组成环,求其余的一 个或几个组成环。 • 尺寸链计算有极值法与统计法两种。用极值法解尺寸链是从 尺寸链各环均处于极值条件来求解封闭环尺寸与组成环尺寸 之间关系的。用统计法解尺寸链则是运用概率论理论来求解 封闭环尺寸与组成环尺寸之间关系的。
2.统计互换装配法
• 统计互换装配法又称不完全互换装配法,其 实质是将组成环的制造公差适当放大,使零 件容易加工。 • 统计互换装配方法适于在大批大量生产中装 配那些装配精度要求较高且组成环数又多的 机器结构。 • 不足之处是:装配后有极少数产品达不到规 定的装配精度要求,须采取另外的返修措施。
(二)分组装配法
修配装配法的优、缺点
优点 • 组成环均能以加工经济精度制造,但却可获得很高 的装配精度。 缺点 • 增加了修配工作量,生产效率低;对装配工人的技 术水平要求高。 • 修配装配法常用于单件小批生产中装配那些组成环 数较多而装配精度又要求较高的机器结构。
(四)调整装配法
• 装配时用改变调整件在机器结构中的相对位 置或选用合适的调整件来达到装配精度的装 配方法。 • 除调整环外各组成环均以加工经济精度制造, 由于扩大组成环制造公差累积造成的封闭环 过大的误差,通过调节调整件相对位置的方 法消除,最后达到装配精度要求。
4、极值法解尺寸链的计算公式
(1)封闭环基本尺寸
A0 = ∑ Ap −
p =1
k
m q = k +1
∑A
q
ห้องสมุดไป่ตู้
– 式中,m—组成环数;k—增环数;

公差尺寸链计算公式

公差尺寸链计算公式

公差尺寸链计算公式公差尺寸链公差尺寸链是指由一系列零件组成的装配体系中,各零件之间的公差关系。

在机械设计和生产过程中,正确的计算和控制公差尺寸链是确保装配质量的重要因素。

下面列举一些相关的计算公式,并给出解释和例子。

1. 最大材料条件与最小材料条件最大材料条件(MMC)是指零件或特征的最大尺寸,而最小材料条件(LMC)是指零件或特征的最小尺寸。

根据这两个条件,在公差尺寸链的计算中,我们可以得到以下两个公式:•最大材料条件下公差尺寸:T = MMC - 低限制公差•最小材料条件下公差尺寸:T = LMC - 高限制公差以螺纹为例,最大材料条件下,螺纹轴的最大尺寸为25 mm,低限制公差为- mm,那么螺纹轴的最大材料条件下公差尺寸为 mm(25 + (-))。

2. 链公差法则在公差尺寸链的计算中,使用链公差法则可以将公差传递从装配体到各个零件,下面是链公差法则的一般形式:T(a, b) = T(a) + T(b) + |∑L|其中,T(a, b)是装配体尺寸的公差,T(a)和T(b)分别是零件a和b的公差,∑L是两个零件直接的公差和(所有相邻公差的代数和),也称为“累加和”。

以一个简单的装配体为例,该装配体由两个零件a和b组成,零件a的公差为 mm,零件b的公差为 mm。

两个零件的直接公差和为 mm。

根据链公差法则,装配体的公差尺寸为:T(a, b) = + + || = mm3. 频率分布法则在公差尺寸链的计算中,使用频率分布法则可以根据具体的公差分布情况,计算出装配体尺寸的公差。

以下是频率分布法则的一般形式:T = ΔD × K其中,ΔD是公差限制域(公差分布范围的一半),K是概率累积函数曲线的系数。

以一个简单的零件为例,假设公差限制域为 mm,概率累积函数曲线的系数为。

那么该零件的公差尺寸为:T = × = mm总结•最大材料条件与最小材料条件可用于计算公差尺寸。

•链公差法则可用于将公差传递到装配体。

尺寸标注公差配合和尺寸链

尺寸标注公差配合和尺寸链
遗漏,不重复。 清晰:尺寸布置要整齐、清晰,便于阅读。 合理:标注的尺寸要符合设计要求及工艺要求。
11
(三)尺寸标注方法
一、基本方法 形体分析法 将组合体分解为若干个基本体和简单体,在形体分析的基础上标注三类尺
寸。 ⑴ 定形尺寸
确定各基本体形状和大小的尺寸。 ⑵ 定位尺寸
确定各基本体之间相对位置的尺寸。 要标注定位尺寸,必须先选定尺寸基准。零件有长、宽、高三个方向的尺 寸,每个方向至少要有一个基准。 通常以零件的底面、端面、对称面和轴线作为基准。 ⑶ 总体尺寸 零件长、宽、高三个方向的最大尺寸。 总体尺寸、定位尺寸、定形尺寸可能重合,这时需作调整,以免出现多余 尺寸。
尺寸标注法
简图
偏差计算式
链式
△L=S/(n-1)
阶梯式
△L=S/2
链式与阶梯 混合式
△L=S/2 △L=S/(n-1)
当在一条直线上有很多孔(大于3个)时,偏差值根据尺寸标注的方法 不同,其值也不相同,计算式按上表。
孔数n>3一般不推荐按链式法标注,因偏差值随孔数增加而减少,孔 数愈多,孔间距偏差愈小,加工愈困难,若按阶梯式法标注,其孔间距与 孔数无关。
37
解尺寸链的方法
解尺寸链的方法有极值法、概率法、 分组装配法等。
极值法具有完全互换性;概率法又称 为大数互换法,可在生产实践中,放大组 成环公差,使零件易于加工,同时又能满 足封闭环的技术要求。分组装配法只能实 现组内互换,适用于大量生产中要求精度 高、尺寸链环数少、形状简单、测量分组 方便的零件。
在标注不具对称关系的构件尺寸时,应先确定基准, 基准的选择应考虑加工和测量的需要。
15
基准的概念及分类
1.基准的定义: 在零件图上或实际的零件上,用来确定其它点、

写出尺寸链计算的四个公式

写出尺寸链计算的四个公式

尺寸链(dimension chain)计算是在工程和制造领域中常用的方法,用于计算物体的尺寸或特征之间的关系。

以下是尺寸链计算中常用的四个公式:
1.长度链:长度链用于计算物体的长度或距离之间的关系。

常见的长度链公式如下:
L = L₁ + L₂ + L₃ + … + Ln
其中,L 表示总长度或距离,L₁、L₂、L₃等表示各个部分的长度或距离。

2.半径链:半径链用于计算物体的半径或直径之间的关系。

常见的半径链公式如下:
R = R₁ + R₂ + R₃ + … + Rn

D = 2R = 2(R₁ + R₂ + R₃ + … + Rn)
其中,R 表示总半径或直径,R₁、R₂、R₃等表示各个部分的半径或直径。

3.弧长链:弧长链用于计算物体的弧长之间的关系。

通常以角度来度量弧长,常见的弧长链公式如下:
S = S₁ + S₂ + S₃ + … + Sn
其中,S 表示总弧长,S₁、S₂、S₃等表示各个部分的弧长。

4.面积链:面积链用于计算物体的面积之间的关系。

常见的面积链公式如下:
A = A₁ + A₂ + A₃ + … + An
其中,A 表示总面积,A₁、A₂、A₃等表示各个部分的面积。

这些公式表示了尺寸链计算中常见的关系,可用于计算和预测物体的尺寸或特征。

在实际应用中,具体的公式和计算方式可能会根据实际情况和所涉及的几何形状而有所变化。

尺寸链概念及尺寸链计算方法

尺寸链概念及尺寸链计算方法

尺寸链的计算之巴公井开创作时间:二O二一年七月二十九日一、尺寸链的基本术语:1.尺寸链——在机器装配或零件加工过程中,由相互连接的尺寸形成封闭的尺寸组,称为尺寸链.如下图间隙A0与其它五个尺寸连接成的封闭尺寸组,形成尺寸链.2.环——列入尺寸链中的每一个尺寸称为环.如上图中的A0、A1、A2、A3、A4、A5都是环.长度环用年夜写斜体拉丁字母A,B,C……暗示;角度环用小写斜体希腊字母α,β等暗示.3.封闭环——尺寸链中在装配过程或加工过程后自然形成的一尺寸,称为封闭环.如上图中A0.封闭环的下角标“0”暗示.4.组成环——尺寸链中对封闭环有影响的全部尺寸,称为组成环.如上图中A1、A2、A3、A4、A5.组成环的下角标用阿拉伯数字暗示.5.增环——尺寸链中某一类组成环,由于该类组成环的变更引起封闭环同向变更,该组成环为增环.如上图中的A3.6.减环——尺寸链中某一类组成环,由于该类组成环的变更引起封闭环的反向变更,该类组成环为减环.如上图中的A1、A2、A4、A5.7.赔偿环——尺寸链中预先选定某一组成环,可以通过改变其年夜小或位置,使封闭环到达规定的要求,该组成环为赔偿环.如下图中的L2.二、尺寸链的形成为分析与计算尺寸链的方便,通常按尺寸链的几何特征,功能要求,误差性质及环的相互关系与相互位置等分歧观点,对尺寸链加以分类,得出尺寸链的分歧形式.1.长度尺寸链与角度尺寸链①长度尺寸链——全部环为长度尺寸的尺寸链,如图1 ②角度尺寸链——全部环为角度尺寸的尺寸链,如图32.装配尺寸链,零件尺寸链与工艺尺寸链①装配尺寸链——全部组成环为分歧零件设计尺寸所形成的尺寸链,如图4②零件尺寸链——全部组成环为同一零件设计尺寸所形成的尺寸链,如图5③工艺尺寸链——全部组成环为同一零件工艺尺寸所形成的尺寸链,如图6.工艺尺寸指工艺尺寸,定位尺寸与基准尺寸等.装配尺寸链与零件尺寸链统称为设计尺寸链.3.基本尺寸链与派生尺寸链①基本尺寸链——全部组成环皆直接影响封闭环的尺寸链,如图7中尺寸链β.②派生尺寸链——这一尺寸链的封闭环成为另一尺寸链组成环的尺寸链,如图7中γ.4.直线尺寸链,平面尺寸链与空间尺寸链①直线尺寸链——全部组成环平行于封闭环的尺寸链,如图1、图2、图5.②平面尺寸链——全部组成环位于一个或几个平行平面内,但某些组成环不服行于封闭环的尺寸链,如图8.③空间尺寸链——组成环位于几个不服行平面内的尺寸链,如图9.三.尺寸链的极值算法1.分析确定增环及减环①用增环及减环的界说(组成环中的某类环的变更引起封闭环的同向变更为增环,引起封闭环的反向变更的环为减环)确定.如图10中,A3为增环,A1、A2、A4、A5为减环.②用“箭头法”确定:先从任一环起画单向箭头,一个接一个的画,包括封闭环,直到最后一个形成闭合回路,然后按箭头的方向判断,凡是与封闭环箭头同向的为减环,反向的为增环.如图10中A1、A2、A4、A5与封闭环的箭头同向,因此是减环,A3的箭头与封闭环的箭头方向相反,所以是增环.2.求封闭环的基本尺寸封闭环的基本尺寸=所有增环基本尺寸之和减去所有减环基本尺寸之和.A0=A3-(A1+A2+A4+A5) 已知A3=43,A1=30,A2=5,A4=3,A5=5 故A0=43-(30+5+3+5)=0 即封闭环的尺寸A0=03.求封闭环的公差封闭环的公差=所有组成环的公差之和T0=T1+T2+T3+T4+T5 已知T1=0.1,T2=0.05,T3=0.1,T4=0.05,T5=0.05 故T0=0.1+0.05+0.1+0.05+0.05=0.35mm4.求封闭环的极限偏差封闭环上偏差=所有增环上偏差之和减去所有减环下偏差之和(带符号运算)封闭环下偏差=所有增环下偏差之和减去所有减环上偏差之和(带符号运算)已知:增环上偏差ESiy为:+0.20;减环下偏差Eliz为:-0.10,-0.05,-0.05,0.05;增环下偏差Eliy为:+0.10;减环上偏差ESiz为:0,0,0,0.故:封闭环上偏差ES0=+0.20-(-0.10-0.05-0.05-0.05)=+0.45mm 封闭环下偏差E10=+0.10-(0+0+0+0)=+0.10mm 即:封闭环上偏差ES0=+0.45mm;下偏差E10=+0.10mm;封闭环A0=O+0.45+0.10mm,其间隙年夜小为+0.1~0.45mm.时间:二O二一年七月二十九日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

尺 寸 链 的 计 算
一、尺寸链的基本术语:
1.尺寸链——在机器装配或零件加工过程中,由相互连接的尺寸形成封闭的尺寸组,称为尺寸链。

如下图间隙A0与其它五个尺寸连接成的封闭尺寸组,形成尺寸链。

2.环——列入尺寸链中的每一个尺寸称为环。

如上图中的A0、A1、A2、A3、A4、A5都是环。

长度环用大写斜体拉丁字母A,B,C……表示;角度环用小写斜体希腊字母α,β等表示。

3.封闭环——尺寸链中在装配过程或加工过程后自然形成的一环,称为封闭环。

如上图中
A0。

封闭环的下角标“0”表示。

4.组成环——尺寸链中对封闭环有影响的全部环,称为组成环。

如上图中A1、A2、A3、A4、
A5。

组成环的下角标用阿拉伯数字表示。

5.增环——尺寸链中某一类组成环,由于该类组成环的变动引起封闭环同向变动,该组成环
为增环。

如上图中的A3。

6.减环——尺寸链中某一类组成环,由于该类组成环的变动引起封闭环的反向变动,该类组
成环为减环。

如上图中的A1、A2、A4、A5。

7.补偿环——尺寸链中预先选定某一组成环,可以通过改变其大小或位置,使封闭环达到规
定的要求,该组成环为补偿环。

如下图中的L2。

二、尺寸链的形成
为分析与计算尺寸链的方便,通常按尺寸链的几何特征,功能要求,误差性质及环的相互关系与相互位置等不同观点,对尺寸链加以分类,得出尺寸链的不同形式。

1.长度尺寸链与角度尺寸链
①长度尺寸链——全部环为长度尺寸的尺寸链,如图1
②角度尺寸链——全部环为角度尺寸的尺寸链,如图3
2.装配尺寸链,零件尺寸链与工艺尺寸链
①装配尺寸链——全部组成环为不同零件设计尺寸所形成的尺寸链,如图4
②零件尺寸链——全部组成环为同一零件设计尺寸所形成的尺寸链,如图5
③工艺尺寸链——全部组成环为同一零件工艺尺寸所形成的尺寸链,如图6。

工艺尺寸指工艺尺寸,定位尺寸与基准尺寸等。

装配尺寸链与零件尺寸链统称为设计尺寸链。

3.基本尺寸链与派生尺寸链
①基本尺寸链——全部组成环皆直接影响封闭环的尺寸链,如图7中尺寸链β。

②派生尺寸链——这一尺寸链的封闭环成为另一尺寸链组成环的尺寸链,如图7中γ。

4.直线尺寸链,平面尺寸链与空间尺寸链
①直线尺寸链——全部组成环平行于封闭环的尺寸链,如图1、图2、图5。

②平面尺寸链——全部组成环位于一个或几个平行平面内,但某些组成环不平行于封闭环的尺寸链,如图8。

③空间尺寸链——组成环位于几个不平行平面内的尺寸链,如图9。

三.尺寸链的算法
1.分析确定增环及减环
①用增环及减环的定义(组成环中的某类环的变动引起封闭环的同向变动为增环,引起封闭环的反向变动的环为减环)确定。

如图10中,A3为增环,A1、A2、A4、A5为减环。

②用“箭头法”确定:先从任一环起画单向箭头,一个接一个的画,包括封闭环,直到最后一个形成闭合回路,然后按箭头的方向判断,凡是与封闭环箭头同向的为减环,反向的为增环。

如图10中A1、A2、A4、A5与封闭环的箭头同向,因此是减环,A3的箭头与封闭环的箭头方向相反,所以是增环。

2.求封闭环的基本尺寸
封闭环的基本尺寸=所有增环基本尺寸之和减去所有减环基本尺寸之和。

A0=A3-(A1+A2+A4+A5)
已知 A3=43,A1=30,A2=5,A4=3,A5=5
故A0=43-(30+5+3+5)=0
即封闭环的尺寸A0=0
3.求封闭环的公差
封闭环的公差=所有组成环的公差之和
T0=T1+T2+T3+T4+T5
已知T1=0.1,T2=0.05,T3=0.1,T4=0.05,T5=0.05
故T0=0.1+0.05+0.1+0.05+0.05=0.35mm
4.求封闭环的极限偏差
封闭环上偏差=所有增环上偏差之和减去所有减环下偏差之和封闭环下偏差=所有增环下偏差之和减去所有减环上偏差之和
已知:增环上偏差ESiy为:+0.20;
减环下偏差Eliz为:-0.10,-0.05,-0.05,0.05;
增环下偏差Eliy为:+0.10;
减环上偏差ESiz为:0,0,0,0。

故:封闭环上偏差ES0=+0.20-(-0.10-0.05-0.05-0.05)=+0.45mm
封闭环下偏差E10=+0.10-(0+0+0+0)=+0.10mm
即:封闭环上偏差ES0=+0.45mm;
下偏差E10=+0.10mm;
封闭环A0=O+0.45+0.10mm,其间隙大小为+0.1~0.45mm。

例1:如图11所示,滚子与轴之间有一个轴向间隙N,试求最大与最小活动间隙。

解:确定增环和减环
从图10箭头法判断30±0.1和30+0.5+0.3为增环,60±0.1为减环,N为封闭环。

求封闭环基本尺寸
N=30+30-60=0
求封闭环的极限偏差,根据公式:ESo=(+0.1+0.5)-(-0.1)=+0.7
E1o=(-0.1+0.3)-(+0.1)=+0.1
即:N=0+0.7+0.1mm
答:最大间隙为0.7mm,最小间隙为0.1mm。

例2:如图12所示零件,无法直接测量尺6±0.1,改测尺寸X,求X的基本尺寸和极限偏差。

解:确定封闭环和增环与减环
最后保证的尺寸是6±0.1,所以6±0.1是封闭环;100-0.1是减环,X是增环。

求X的基本尺寸
6=X-10
X=16
求X的极限偏差
+0.1=ESX- (-0.1)
X的上偏差ESX=0
-0.1=E1X-0
X的下偏差E1X=-0.1
X160-0.1mm
例3:如图13所示零件,若内外圆的同轴度公差为Φ0.5mm,试求壁厚N的基本尺寸和极限偏差。

解:将直径方向的尺寸变为半径方向尺寸,画尺寸链图,如图13右。

确定封闭环N和增环350-0. 2与减环30+0.250。

求壁厚N基本尺寸
N=35-(30+0)=5mm
求壁厚N的极限偏差
ESo=0-(0+0)=0
E1o=-0.2-(+0.2+0.25)=-0.65
壁厚N=50-0.65。

相关文档
最新文档