流体流动状态与能量损失

合集下载

流体在管道中对流动规律——流动能量损失的确定.

流体在管道中对流动规律——流动能量损失的确定.

流体在管道中对流动规律——流动能量损失的确定流体流动时会产生能量损失,只有知道流体流动过程的能量损失,才能用柏努利方程解决流体输送中的实际问题。

流体流动过程的能量损失一般简称为流体阻力。

一、流体阻力的产生原因1.黏度理想流体在流动时不会产生流体阻力,因为理想流体是没有黏性的,实际流体流动时会产生流体阻力,是因为实际流体有黏性。

流体的黏性是流体流动时产生能力损失的根本原因,而流体层与层之间、流体和壁面之间的相对运动是产生内磨擦阻力,引起能量损失的必要条件。

流体黏性的大小用黏度来表示,其数值越大,在同样的流动条件下,流体阻力就会越大。

流体黏度的定义为:两层流体之间单位面积上的内磨擦与速度梯度为之比,用符号μ表示,其单位是:Pa ·s液体的黏度随温度升高减小,气体的黏度则随温度升高而增大。

压力变化时,液体的黏度基本不变;气体的黏度随压力的增加而增加得很少,在一般工程计算中可忽略,只有在极高或极低的压力下,才需要考虑压力对气体黏度的影响。

某些常用流体的黏度,可以从有关手册中查得。

流体流动时产生的能量损失除了与流体的黏性、流动距离有关外,还取决于管内流体的流速等因素。

流速对能量损失的影响与流体在流道内的流动形态有关。

2.流体的流动型态1883年著名的科学家雷诺用实验揭示了流体流动的两种截然不同的流动型态。

实验装置:图1-36,在1个透明的水箱内,水面下部安装1根带有喇叭形进口的玻璃管,管的下游装有阀门以便调节管内水的流速。

水箱的液面依靠控制进水管的进水和水箱上部的溢流管出水维持不变。

喇叭形进口处中心有一针形小管,有色液体由针管流出,有色液体的密度与水的密度几乎相同。

实验现象:①当玻璃管内水的流速较小时,管中心有色液体不扩散,呈现一根平稳的细线流,沿玻璃管的轴线向前流动(如图1-36(a)所示)。

②随着水的流速增大至某个值后,有色液体的细线开始抖动,弯曲,呈现波浪形(如图1-36(b)所示)。

③速度增大到一定程度后,有色液体的细线扩散,使管内水的颜色均匀一致(如图1-36(c )所示)。

流体力学第四章:流体阻力及能量损失

流体力学第四章:流体阻力及能量损失
减小摩擦阻力的方法
优化物体表面粗糙度、使用润滑剂、改变流体的流速和方 向等。
形状阻力
形状阻力
由于物体形状的不同,流体在绕过物体时产生的阻力。
形状阻力公式
$F_s = frac{1}{2} rho u^2 A C_s$,其中$C_s$为形状阻力系数, 与物体形状、流体性质和流速有关。
减小形状阻力的方法
详细描述
汽车设计中的流体阻力优化主要包括车身形 状设计和空气动力学套件的应用。设计师会 采用流线型设计来减小空气阻力,同时也会 采用导流板、扰流板等空气动力学套件来调 整汽车周围的空气流动,以提高汽车的行驶
稳定性、减小风噪,并降低燃油消耗。
THANKS FOR WATCHING
感谢您的观看
详细描述
船舶航行中的流体阻力主要来自船体与水之间的摩擦力以及水对船体的冲击力。为了减小流体阻力, 船舶设计师通常会采用流线型设计,优化船体表面的光滑度,以及减少不必要的突出物,从而提高航 行效率。
管道流动中的能量损失
总结词
管道中流体流动时,由于流体与管壁之 间的摩擦以及流体内部的湍流等效应, 会产生能量损失。
根据伯努利方程、欧拉方程等计算公式,结合物体的形状、速度和流体密度等 参数进行计算。
02 流体阻力现象
摩擦阻力
摩擦阻力
由于流体与物体表面的相对运动产生摩擦而形成的阻力。
摩擦阻力公式
$F_f = frac{1}{2} rho u^2 A C_f$,其中$rho$为流体密 度,$u$为流速,$A$为流体与物体接触的表面积,$C_f$ 为摩擦阻力系数。
流体力学第四章流体阻力及能量损 失
目录
• 流体阻力的概念 • 流体阻力现象 • 能量损失原理 • 流体阻力的减小方法 • 实际应用案例

流体力学 第4章流动阻力和能量损失

流体力学 第4章流动阻力和能量损失

雷诺的实验装置如图 4.1 所示,水箱 A 内水位保持不变,阀门 C 用于调节流量,容器 D 内盛有容重与相近的颜色水,容器 E 水位也保持不变,经细管 E 流入玻璃管 B,用以演 示水流流态,阀门 F 用于控制颜色水流量。
图 4.1 雷诺实验装置 ·73·
·74·
流体力学
当 B 管内流速较小时,管内颜色水成一股细直的流速,这表明各液层间毫不相混。这 种分层有规则的流动状态称为层流。如图 4.1(a)所示。当阀门 C 逐渐开大流速增加到某一 临界流速 vk 时,颜色水出现摆动,如图 4.1(b)所示。继续增大 B 管内流速,则颜色水迅速 与周围清水相混,如图 4.1(c)所示。这表明液体质点的运动轨迹是极不规则的,各部分流体 互相剧烈掺混,这种流动状态称为紊流或湍流。 能量损失在不同的流动状态下规律如何呢?雷诺在上述装置的管道 B 的两个相距为 L 的断面处加设两根测压管,定量测定不同流速时两测压管液面之差。根据伯努利方程,测 压管液面之差就是两断面管道的沿程损失,实验结果如图 4.2 所示。
流体力学
Z1 +
由均匀流的性质:
p1
γ
+
ห้องสมุดไป่ตู้
α 1v12
2g
=
= Z2 +
2 α 2 v2
p2
γ
+
2 α 2 v2
2g
+ hl1−2
α 1v12
2g
代入上式,得:
2g
hl = h f
⎛ p1 ⎞ ⎛ p2 ⎞ (4-11) ⎜ + Z1 ⎟ ⎟−⎜ ⎜ ⎟ + Z2 ⎟ hf = ⎜ ⎝γ ⎠ ⎝ γ ⎠ 上式说明,在均匀流条件下,两过流断面间的沿程水头损失等于两过流断面测压管水 头的差值,即流体用于克服阻力所消耗的能量全部由势能提供。考虑所取流段在流向上的 受力平衡条件。设两断面间的距离为 L,过流断面面积 A1=A2=A,在流向上,该流段所受 的作用力有:重力分量 γ Alcosα、断面压力 p1A 和 p2A、管壁切力 τ0.l.2πr0(τ0 为管壁切应力, r0 为圆管半径)。

流体阻力和能量损失

流体阻力和能量损失
H L V 2 d 2g
f
第二节 流动阻力和能量损失
一、 能量损失的两种形式:
2.局部水头损失:
hj

V 2 2g
写成压力损失的形式,则为:
Hj
V
2
2g
式中: L—管长 [米]; d—管径 [米]; V—断面平均流速[米/秒]; λ—沿程阻力系数(无因次参数); ζ—局部阻力系数(无因次参数)。
雷诺数之所以能判别流态,正是因为它反映了惯性力和粘性力 的对比关系。因此,当管中流体流动的雷诺数小于2320时,其粘性 起主导作用,层流稳定。当雷诺数大于2320时,在流动核心部分的 惯性力克服了粘性力的阻滞而产生涡流,掺混现象出现,层流向紊流 转化。
第二节 流动阻力和能量损失
三、单位摩阻R及沿程阻力的计算
第二节 流动阻力和能量损失
二、 层流、紊流和雷诺实验
实际流体运动存在着两种不同的状态,即层流和紊流。这两种流 动状态的沿程损失规律大不相同。 ㈠ 雷诺实验
第二节 流动阻力和能量损失
二、 层流、紊流和雷诺实验
液体沿管轴方向流动时,流束之间或流体层与层之间彼此不相 混杂,质点没有径向的运动,都保持各自的流线运动。这种流动状 态,称为层流运动。 管中流速再稍增加,或有其它外部干扰振动,则有色液体将破 裂、混杂成为一种紊乱状态。这种运动状态,称为紊流运动
第一章 流体力学基础
第二节 流动阻力和能量损失
第二节 流动阻力和能量损失
能量损失一般有两种表示方法: 通常用单位重量流体的能量损失(或称水头损失)h1来表示,用 液柱高度来量度; 用液柱高度来量度;对于气体,则常用单位体积流体的能量损失 (或称压力损失)H损来表示,用压力来量度。 它们之间的关系为: H损=γh1 流体阻力是造成能量损失的原因。 产生阻力的内因是流体的粘性和惯性,外因是固体壁面对流体 的阻滞作用和扰动作用。

层流的能量损失与流速的关系

层流的能量损失与流速的关系

层流的能量损失与流速的关系
层流是一种流体流动模式,其中流体在管道中沿着平行的层流动。

在这种模式下,流体在管道中的速度和流量分布是稳定的,但是随着流速的增加,会发现能量损失也会增加。

这是因为随着流速的增加,流体的动能增加,从而产生更多的摩擦力和阻力,导致流体的能量损失增加。

具体来说,当流速很小时,层流的能量损失主要来自于摩擦力,它是由于不同层之间的速度差异而产生的。

随着流速的增加,涡流的产生也会增加,它是流体中的旋转流动,会使流体的能量损失增加。

此外,当流速超过一定范围时,层流会变成湍流,这时能量损失会更加严重。

因此,为了减少层流的能量损失,可以采取降低流速的方法。

这可以通过增加管道的直径、增加管道长度或使用流道更加平滑的管道等方法来实现。

当然,减少能量损失也可以通过采用更加高效的流体传输系统来实现,例如使用涡轮流量计等流量计来减少涡流的产生。

- 1 -。

4流体力学第三章流动阻力与能量损失

4流体力学第三章流动阻力与能量损失

二、能量损失的计算公式—长期工程经验总结
液体:沿程水头损失(达西公式):
L v hf d 2g
均流速
2
(3-1)
λ—沿程阻力系数;L—管道长度;d—管道直径;v—平
v2 局部水头损失: hj 2g
气体:沿程压强损失: 局部压强损失: 核心问题: 和 的计算。
(3-2)
L v pf d 2
第一节 流动阻力与能量损失的两种 形式
一、流动阻力和能量损失的分类 根据流动的边界条件,能量损失分:沿程能量损失 和局部能量损失 ㈠沿程阻力及沿程能量损失 ◆沿程阻力—当束缚流体流动的固体边壁沿程不变, 流动为均匀流时,流层与流层之间或质点之间只存 在沿程不变的切应力,称为沿程阻力。 ◆沿程能量损失—沿程阻力作功引起的能量损失称 之这沿程能量损失。特点:沿管路长度均匀分布, 即沿程水头损失hf ∝ l。
层流区 不稳定区
紊流区
二、沿程水头损失与流态的关系
层流区:
紊流区:
hf v
hf v
1.75: 2.0
不稳定区:关系不稳定。
三、流动型态的判断标准
●雷诺数: 雷诺等人进一步实验表明:流态不仅和流速v有关, 还和管径d、流体的动力粘度μ和密度ρ有关。 以上四个参数组合成一个无因次数,叫雷诺数,用 Re表示。
㈡时均化
紊流运动要素围绕它上下波动的平均值称为时均值。 时均速度的定义:
u x AT u x Adt
0
T
1 T u x u x dt T 0
瞬时速度
(3-20)
' x
ux ux u
二、紊流阻力
由两部分组成: ①流体各层因时均流速不同而存在相对运动,故 流层间产生因粘滞性所引起的摩擦阻力。 粘性切应力τ1按牛顿内摩擦定律计算。 ②由于脉动现象,流层间质点的动量交换形成的 紊流附加切应力τ2。 其大小由普朗特的混合长度理论计算。见式 (3-21)。 Re较小时,τ1为主要; Re足够大时,τ2为主要。

流体流动过程中能量损失和管道计算

流体流动过程中能量损失和管道计算

流体流动过程中能量损失和管道计算摩擦损失是由于流体与管道壁面的摩擦而产生的能量损失。

流体在管道中流动时,与管道壁面发生摩擦,使得流体的动能转化为内能和热能,从而使流体的总能量逐渐减少。

根据流体力学的基本方程,可以推导出摩擦损失的计算公式。

其中,流体的粘性、管道内径和长度、管壁的光滑程度等因素都会影响摩擦损失的大小。

局部阻力是由于管道中存在的凸起、弯曲、收缩等不规则形状所导致的能量损失。

这些不规则形状会使流体的流速产生变化,从而导致流体的能量损失。

局部阻力可以通过流量系数来表示,通过实验和经验公式可以估算出不同形状的局部阻力系数。

除了摩擦损失和局部阻力外,流体流动过程中还会发生一些其他的能量损失,例如流体受到的外力、液体的汽蚀和气蚀等。

这些能量损失的计算通常需要根据具体情况进行分析和估算。

管道计算是指根据流体的流量、压力、温度等参数,计算流体在管道中的流速、压力损失、温度变化等相关参数的过程。

在管道计算中,需要考虑流体的物性参数、管道的几何形状、流动条件和所需的精度等因素。

管道计算通常包括流速计算、压力损失计算和温度变化计算。

流速计算可以根据流量和管道截面积的关系得出流速值。

在压力损失计算中,需要考虑管道长度、流体的粘性、流过的局部阻力等因素,可以通过经验公式和流体力学的基本方程进行计算。

而温度变化计算则需要综合考虑流体的物性参数、管道的材料热传导性能等因素,可以使用简单的热传导方程进行计算。

综上所述,流体流动过程中能量损失和管道计算是流体力学中的重要内容。

通过对流体的摩擦损失、局部阻力以及其他能量损失的分析,可以对流体流动过程中的能量变化进行评估。

同时,通过管道计算可以得出流体在不同条件下的流速、压力损失和温度变化等参数,为工程设计和实际应用提供重要参考。

流体流动的能量损失与节能技术

流体流动的能量损失与节能技术

流体流动的能量损失与节能技术引言流体流动是工业生产和生活中的常见现象,但在流体流动的过程中,会伴随着能量的损失。

这种能量损失不仅会导致资源的浪费,还会增加能源消耗和环境污染。

因此,研究流体流动的能量损失机理以及开发相应的节能技术对于提高能源利用效率和减少环境负荷具有重要意义。

流体流动的能量损失机理流体流动的能量损失主要包括以下几个方面:摩擦损失流体在管道或机械设备中流动时,会与管壁或机械设备表面发生摩擦,摩擦力会导致流体的能量损失。

摩擦损失是流体流动中最主要的能量损失来源。

惯性损失当流体在管道中发生弯曲或分流等流动方式改变时,由于惯性的作用,流体会发生能量损失。

这种损失与流体的密度、速度以及管道的形状等因素有关。

尾迹损失尾迹损失是指流体在管道或设备中流动时产生的涡流或旋转流,这些旋转流会增加流体的内能损失,导致流体的能量损失。

节能技术为了减少流体流动的能量损失,提高能源利用效率,人们提出了一系列的节能技术。

以下是几种常见的节能技术:管道优化设计通过优化管道的设计,减少摩擦损失是降低流体流动能量损失的重要途径。

例如采用光滑的内壁材料,减少管道弯曲和分流等,都能减少流体的摩擦损失。

流量调节技术合理地调节流体流动的流量可以减少惯性损失。

通过采用流量调节阀、节流装置等控制措施,可以实现流体流动的节能调节。

能量回收技术利用一些设备或装置将流体流动中的能量损失转化为其他形式的能量,例如压力能、动能等的回收利用,可以有效降低能量损失。

先进的液压传动技术在液压传动系统中,通过采用先进的液压元件和控制技术,可以减少流体在传动过程中的能量损失,提高液压系统的能源利用效率。

结论流体流动中的能量损失是我们所面临的一个重要问题。

通过研究流体流动的能量损失机理,开发相应的节能技术,可以提高能源利用效率,减少环境负荷,实现可持续发展。

因此,我们应当重视流体流动的能量损失问题,并积极采取措施进行节能,推动流体流动领域的可持续发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
hw hj hf
常见的短管如矿井排水管路、锅炉送风管路等。
二、简单管路
1.短管的水力计算 Q vs S 2gH0
1)自由出流 Q S 2gH
2)淹没出流
Q vS cS 2gH0

v0 0 ,则
H 0 H ,于是
Q cS 2gH
流量系数 c 与自由出流的流量系数
计算公式不同,但数值上是相等的。
淹没出流
2.长管水力计算 长管分为简单管和复杂管
1)简单管的水力计算 H RQ 2
2)复杂管的水力计算
n
H RiQ 2 i 1
本章小结
1.粘性流体具有两种流动状态:层流与紊流。层流状态下,流 体可视为分层流动,流体在层与层之间只有粘性摩擦而无动量交 换;紊流时,流体层与层之间除有粘性摩擦外,还存在着动量交 换,其结果是流体层与层之间产生了附加切应力。雷诺数是判别
三、圆管中的层流与紊流的流速分布
1.圆管中的层流分布
管轴的最大流速为
umax
=
J 4
r02
平均流速为
Q
U S
A udS S
J 8
r02
2.圆管中紊流的流速分布
在紊流状态下,流体质点以无规则的相互混杂的形式流动,所以紊流 实际上是不稳定流,流体质点的流速随时间不断变化。
紊流的流速分布如上图
第二节 流体流动中的能量损失
一、沿程阻力和沿程损失
1.沿程阻力:沿程阻力是流体在过流断面沿程不变的均匀流道中

受的流动阻力。也就是发生在缓变流中的流动阻力。
因沿程阻力所造成的能量损失称为沿程损失,
hf
l
d
v2 2g
--------称为达西公式。
2.沿程阻力系数
1) 尼古拉茨实验
2)莫迪实验
二、局部阻力和局部损失
在流体流动过程中,如果流动方向 或过流断面等有所改变,将会发生漩涡、撞 击,由于在漩涡区的内摩擦力做功和质点交 换,在局部造成损失,称为局部损失。其计 算公式为:
流动状态的准则。一般临界雷诺取2000。 2.流体在做等直径断面、直线段流动时,阻力来自于液体与壁 面的摩擦,称为沿程阻力,由此引起的能量损失称为沿程损失:
3.流体经过过流断面面积突变或总流的方向突变时,所受到的 阻力称为局部阻力,由此引起的能量损失称为局部损失:
4.管路计算 管路按其布置可分为简单管路和复杂管路。 管路按能量损失的比例,管路分为水力长管和水力短管。
第四章 流体流动状态与能量损失
第一节 流体运动的两种形
第一节 流体运动的两种形态
一、雷诺试验
在过渡状态下,层流可以变为紊流,而紊流不能变为层流。
二、流动状态判别准则—雷诺数
雷诺数 R= evd = vd
Re
vd
Rec R'
ec
层流 紊流
hj
v2 2g
三、能量损失的叠加
当一条管路中包含有若干个局部损失时, 管路的总水头损失等于沿程损失与所有管件的 局部损失之和,
hw hf h j
第三节 管路计算
一、管路的分类
1.按管路的布置 按管路的布置分为:简单管路及复杂管路。其中直
径不变而且无分支的管路称为简单管路;否则为复杂管 路。复杂管路是若干简单管路组合。按组合方式不同又 可分为串联管路、并联管路和分支管路 .
2.按能量损失的比例
按管路沿程损失和局部损失在总损失中所占的比例管路分为水 力长管和水力短管。
(1)水力长管:局部损失在总损失中所占的比例小于5%的管路称为 水力长管,简称长管。此时,不再考虑局部损失而将沿程损失近似 看作管路的总损失,即
hw hf
(2)水力短管:局部损失不能忽略的管路称为水力短管,简称短 管。此时
相关文档
最新文档