北师大版数学八年级上册 轴对称解答题专题练习(解析版)

合集下载

北师大版八年级数学上册期末压轴题专题训练(带答案)

北师大版八年级数学上册期末压轴题专题训练(带答案)

北师大版八年级上册期末压轴题系列11、如图,已知:点D是△ABC的边BC上一动点,且AB=AC,DA=DE,∠BAC=∠ADE=α.⑴如图1,当α=60°时,∠BCE= ;⑵如图2,当α=90°时,试判断∠BCE的度数是否发生改变,若变化,请指出其变化范围;若不变化,请求出其值,并给出证明;AAAE B D CB D CB DDEE图2(图1)(图图21)(图33)⑶如图3,当α=120°时,则∠BCE= ;2、如图1,在平面直角坐标系xoy中,直线y x 6与x轴交于A,与y轴交于B,BC⊥AB交x轴于C。

①求△ABC的面积。

如图2,②D为OA延长线上一动点,以BD为直角边做等腰直角三角形BDE,连结EA.求直线EA的解析式.yyEB BA O C x D A O x③点E是y轴正半轴上一点,且∠OAE=30°,OF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,是判断是否存在这样的点M、N,使得OM+NM的值最小,若存在,请写出其最小值,并加以说明.yEFA O x3. 如图,直线l1与x轴、y轴分别交于A、B两点,直线l2与直线l1关于x轴对称,已知直线l1的解析式为y x 3,(1)求直线l2的解析式;yl1BA0xC(2)过A点在△ABC的外部作一条直线l3请画出图形并求证:BE+CF=EF ,过点B作BE⊥l3于E,过点C作CF⊥l3l2于F分别,yBA0xC(3)△ABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,与y轴相交与点M,且BP=CQ,在△ABC平移的过程中,①OM为定值;②MC为定值。

在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。

yBP0xAMCQ4. 如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点.OA、OB的长度分别为a和b,且满足a22a b b20.⑴判断△AOB的形状.①⑵如图②,正比例函数y kx(k 0)的图象与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=9,BN=4,求MN的长.y②N BQMA O x⑶如图③,E为AB上一动点,以AE为斜边作等腰直角△ADE,P为BE的中点,连结PD、PO,试问:线段PD、PO是否存在某种确定的数量关系和位置关系?写出你的结论并证明.yP B③DEA O x5、如图,已知△ABC和△ADC是以AC为公共底边的等腰三角形,E、F分别在AD和CD上,已知:∠ADC+∠ABC=180°,∠ABC=2∠EBF;(1)求证:EF=AE+FC(2)若点E、F在直线AD和BD上,则是否有类似的结论?6、操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN.(1)探究线段BM、MN、NC之间的关系,并加以证明;(2)若点M、N分别是射线AB、CA上的点,其它条件不变,请你再探线段BM,MN,NC之间的关系,在图④中画出图形,并说明理由.(3)求证:CN-BM=MN图②图③图①图④北师大版八年级上册期末压轴题5答案;1、⑴如图1,当α=60°时,∠BCE=120°;⑵证明:如图,过D作DF⊥BC,交CA或延长线于F。

北师大版八年级上册数学期末解答题专项训练及答案二

北师大版八年级上册数学期末解答题专项训练及答案二

北师大版八年级上册数学期末解答题专项训练及答案二、解答题19.(每小题4分,共8分)计算:-20.(每小题4分,共8分)解下列方程组:(1)430210x yx y-=⎧⎨-=-⎩(2)134342x yx y⎧-=⎪⎨⎪-=⎩21.(本题8分)九年级甲、乙两名同学期末考试的成绩(单位:分)如下:根据表格中的数据,回答下列问题:(1)甲的总分为522分,则甲的平均成绩是__________分,乙的总分为520分,________的成绩好一些. (填“甲”或者“乙”)(2)经过计算知22=7.67=5.89S S甲乙,. 你认为__________不偏科;(填“甲”或者“乙”)(3)中招录取时,历史和体育科目的权重是0.3,其它科成绩权重是1,请问谁的成绩更好一些?请说明理由.22.(本题8分)如图,在正方形网格中,每个小正方形的边长为l,格点三角形(顶点是网格线的交点)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A'B'C';(3)B'的坐标为__________;(4)△ABC的面积为__________.23.(每小题6分,共12分)(1)如图,已知DE∥BC,∠D:∠DBC=2:1,∠1=∠2.求∠DEB 的度数.(2)“三等分一个任意角”是数学史上一个著名问题,今天人们已经知道,仅用圆规直尺是不可能做出的。

在探索中,有人曾利用过如图所示的图形,其中,ABCD是长方形(AD∥CB,F是DA延长线上一点,G是CF上一点,并且∠ACG=∠AGC,∠GAF=∠F,你能证明∠ECB=1∠ACB吗?324.(本题10分)今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.25.(本题12分)上周六上午8点,小颖同爸爸妈妈一起从济南出发回青岛看望姥姥,途中他们在一个服务区休息了0.5小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离y(千米)与他们路途所用的时间x(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30分钟后,距姥姥家还有80千米,问小颖一家当天几点到达姥姥家?26.(本题12分)如图,一次函数y=-x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数32y x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积;(3)在直线OP上是否存在异与点P的另一点C,使得△OBC与△OBP的面积相等?若存在,请求出C点的坐标;若不存在,请说明理由.解答题(21题8分,22,25题每题9分,23,24题每题7分,其余每题10分,共60分)21.(1)计算:24×13-4×18×(1-2)0+32.(2)解方程组:⎩⎨⎧x 2-y +13=1,3x +2y =10.22.如图,在正方形网格中,每个小正方形的边长为1,△ABC 的顶点A ,C 的坐标分别为A (-4,5),C (-1,3).(1)请在网格平面内作出平面直角坐标系(不写作法);(2)请作出△ABC 关于y 轴对称的△A ′B ′C ′(A ,B ,C 的对应点分别为A ′,B ′,C ′); (3)分别写出点A ′,B ′,C ′的坐标.23.如图,CF 是∠ACB 的平分线,CG 是△ABC 的外角∠ACE 的平分线,FG ∥BC ,且FG 交CG 于点G .已知∠A =40°,∠B =60°,求∠FGC 与∠FCG 的度数.24.某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),下表为每辆汽车装运甲、乙两种家电的台数.若用8辆汽车装运甲、乙两种家电190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?25.如图,一辆小汽车在一条限速70 km/h的街路上沿直道行驶,某一时刻刚好行驶到路面车速检测仪A的正前方60 m处的C点,过了5 s后,测得小汽车所在的B点与车速检测仪A之间的距离为100 m.(1)求B,C间的距离.(2)这辆小汽车超速了吗?请说明理由.26.张明、王成两名同学对自己八年级10次数学测试成绩(成绩均为整数,且个位数为0)进行统计,统计结果如图所示.(1)根据图中提供的数据填写下表:(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是__________; (3)结合以上数据,请你分析,张明和王成两名同学谁的成绩更稳定.27.如图,在平面直角坐标系中,直线y =-x +6与x 轴和y 轴分别交于点B 和点C ,与直线OA 相交于点A (4,2),动点M 在线段OA 和射线AC 上运动. (1)求点B 和点C 的坐标. (2)求△OAC 的面积.(3)是否存在点M ,使△OMC 的面积是△OAC 面积的14若存在,求出此时点M的坐标;若不存在,请说明理由.解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.(1)计算:(5-1)(5+1)-⎝ ⎛⎭⎪⎫-13-2+|1-2|-(π-2)0+8.(2)解方程组:20.如图,在正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)点B′的坐标为__________;(4)△ABC的面积为________.21.在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1 800元,该店的商品按原价的几折销售?22.如图,∠1=∠2,∠BAE=∠BDE,EA平分∠BEF.(1)求证:AB∥DE.(2)BD平分∠EBC吗?为什么?23.甲、乙两名队员参加射击训练,成绩分别被制成如下两个统计图:根据以上信息,整理分析数据如上表:(1)写出表格中a,b,c的值.(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?24.甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后,按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为________千米/时.(2)求线段DE所表示的y与x之间的函数表达式.(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.25.如图,在平面直角坐标系中,过点B (6,0)的直线AB 与直线OA 相交于点A (4,2),直线AB 与y 轴的交点为C ,动点M 在线段OA 和射线AC 上运动. (1)求直线AB 对应的函数表达式. (2)求△OAC 的面积.(3)是否存在点M ,使△OMC 的面积是△OAC 面积的14若存在,求出此时 点M 的坐标;若不存在,说明理由.参考答案 解答题19.(每小题4分,共8分)计算:(1)334 (2)26 20.(每小题4分,共8分)解下列方程组:(1)⎩⎨⎧==1010y x (2)⎩⎨⎧==46y x21.(1)87;甲. ……2分(2)乙 ……4分(3)甲:75+93+85+84×0.3+95+90×0.3=400.2(分) ……5分乙:85+85+91+85×0.3+89+85×0.3=401(分) ……6分400.2<401答:乙的成绩更好一些. ……8分 22. 解:(1)如图所示:……2分 (2)如图所示:……4分 (3)B ′(2,1);……6分 (4)4.……8分 23.(1)解:∵ DE ∥BC∴ ∠D +∠DBC =180°∵ ∠D : ∠DBC=2 : 1∴ ∠D =2∠DBC∴ 2∠DBC+∠DBC =180°即 ∠DBC =60°……4分∵ ∠1=∠2∴ ∠1=∠2=30°∵ DE ∥BC∴ ∠DEB =∠1=30°……6分(2)解:∵AD ∥CB∴∠FCB=∠F ……2分∵∠AGC 是△AGF 的外角,∴∠AGC=∠GAF+∠F=2∠F ……4分又∵∠ACG=∠AGC∠ACB=∠ECB+∠ACG=∠F+2∠F=3∠F=3∠ECB ∴∠ECB=31∠ACB ……6分 24.解:设该市去年外来人数为x 万人,外出旅游的人数为y 万人,由题意得,()()20130%120%226x y x y -=⎧⎪⎨+++=⎪⎩……5分 解得:10080x y =⎧⎨=⎩……7分 则今年外来人数为:100×(1+30%)=130(万人),今年外出旅游人数为:80×(1+20%)=96(万人).答:该市今年外来人数为130万人,外出旅游的人数为96万人.……10分25.解:(1)设直线AB 所对应的函数关系式为y=kx+b ,把(0,320)和(2,120)代入y=kx+b 得:3202120b k b =⎧⎨+=⎩,解得:100320kb=-⎧⎨=⎩,∴直线AB所对应的函数关系式为:y=﹣100x+320;……4分(2)设直线CD所对应的函数关系式为y=mx+n,把(2.5,120)和(3,80)代入y=mx+n得:2.5120380m nm n+=⎧⎨+=⎩,解得:80320mn=-⎧⎨=⎩,∴直线CD所对应的函数关系式为y=﹣80x+320,……8分当y=0时,x=4,∴小颖一家当天12点到达姥姥家.……12分28.解:(1)∵点P(2,n)在正比例函数y=32x图象上,∴n=32×2=3,∴点P的坐标为(2,3).∵点P(2,3)在一次函数y=﹣x+m的图象上,∴3=﹣2+m,解得:m=5,∴一次函数解析式为y=﹣x+5.∴m的值为5,n的值为3.……4分(2)当x=0时,y=﹣x+5=5,∴点B的坐标为(0,5),∴S△POB=12OB•x P=12×5×2=5.……8分(3)存在.∵S△OBC=12OB•|x C|=S△POB=5,∴x C=﹣2或x C=2(舍去).当x=﹣2时,y=32×(﹣2)=﹣3.∴点C的坐标为(﹣2,﹣3).……12分三、21.解:(1)原式=24×13-4×24×1+42=22-2+42=5 2.(2)整理得⎩⎨⎧3x -2y =8,①3x +2y =10.②①+②,得6x =18,解得x =3.把x =3代入②,得9+2y =10,解得y =12.所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =12. 22.解:(1)平面直角坐标系如图所示.(2)△A ′B ′C ′如图所示.(3)点A ′,B ′,C ′的坐标分别为(4,5),(2,1),(1,3).23.解:∵CF ,CG 分别是∠ACB ,∠ACE 的平分线,∴∠ACF =∠BCF =12∠ACB ,∠ACG =∠ECG =12∠ACE .∴∠ACF +∠ACG =12(∠ACB +∠ACE )=12×180°=90°,即∠FCG =90°.∵∠ACE =∠A +∠B =40°+60°=100°,∴∠GCE =12∠ACE =50°.∵FG ∥BC ,∴∠FGC =∠GCE =50°.24.解:设装运甲种家电的汽车有x 辆,装运乙种家电的汽车有y 辆.根据题意,得⎩⎨⎧x +y =8,20x +30y =190,解得⎩⎨⎧x =5,y =3.答:装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆.25.解:(1)在Rt △ABC 中,由AC =60 m ,AB =100 m ,且AB 为斜边,根据勾股定理可得BC =AB 2-AC 2=80 m.即B ,C 间的距离为80 m.(2)这辆小汽车没有超速.理由:因为80÷5=16(m/s),16 m/s =57.6 km/h ,576<70,所以这辆小汽车没有超速.26.解:(1)平均成绩:80;80 中位数:80众数:90 方差:60(2)王成(3)两人平均成绩相同,而张明成绩的方差较小,故张明的成绩更稳定.27.解:(1)在y =-x +6中,令y =0,则x =6;令x =0,则y =6.故点B 的坐标为(6,0),点C 的坐标为(0,6).(2)S △OAC =12OC ×|x A |=12×6×4=12.(3)存在点M 使S △OMC =14S △OAC .设点M 的坐标为(a ,b ),直线OA 的表达式是y =mx .∵A (4,2),∴4m =2,解得m =12.∴直线OA 的表达式是y =12x .∵S △OMC =14S △OAC ,∴12×OC ×|a |=14×12.又∵OC =6,∴a =±1.当点M 在线段OA 上时,如图①,则a =1,此时b =12a =12,∴点M 的坐标是⎝ ⎛⎭⎪⎫1,12.当点M 在射线AC 上时,如图②,a =1时,b =-a +6=5,则点M 1的坐标是(1,5);a =-1时,b =-a +6=7,则点M 2的坐标是(-1,7).综上所述,点M 的坐标是⎝ ⎛⎭⎪⎫1,12或(1,5)或(-1,7). 三、19.解:(1)原式=(5)2-1-1⎝ ⎛⎭⎪⎫-132+2-1-1+22=5-1-9+2-1-1+22=-7+3 2.(2)整理,得⎩⎨⎧3x -2y =8,①3x +2y =10.②①+②,得6x =18,解得x =3.把x =3代入②,得9+2y =10,解得y =12.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =12. 20.解:(1)如图所示.(2)如图所示.(3)(2,1) (4)421.解:(1)设跳绳的单价为x 元,毽子的单价为y 元.由题意得⎩⎨⎧30x +60y =720,10x +50y =360,解得⎩⎨⎧x =16,y =4.答:跳绳的单价为16元,毽子的单价为4元.(2)设该店的商品按原价的a 折销售,可得(100×16+100×4)×a 10=1 800,解得a =9.答:该店的商品按原价的9折销售.22.(1)证明:∵∠2与∠ABE 是对顶角,∴∠2=∠ABE .∵∠1=∠2,∴∠1=∠ABE .∴AB ∥DE .(2)解:BD 平分∠EBC .理由如下:∵AB ∥DE ,∴∠AED +∠BAE =180°,∠BEF =∠EBC .∵∠BAE =∠BDE ,∴∠AED +∠BDE =180°.∴AE ∥BD .∴∠AEB =∠DBE .∵EA 平分∠BEF ,∴∠AEB =12∠BEF .∴∠DBE =12∠EBC .∴BD 平分∠EBC .23.解:(1)a =7,b =7.5,c =4.2.(2)从平均成绩看,甲、乙两人的平均成绩相等,均为7环;从中位数看,甲成绩的中位数小于乙;从众数看,甲射中7环的次数最多,而乙射中8环的次数最多;从方差看,甲的成绩比乙的成绩稳定.综合以上各因素,若选派一名队员参赛,可选择乙参赛,因为乙获得较好成绩的可能性更大.24.解:(1)80(2)休息后按原速继续前进,行驶的时间为(240-80)÷80=2(小时),∴点E 的坐标为(3.5,240).设线段DE 所表示的y 与x 之间的函数表达式为y =kx +b ,则⎩⎨⎧1.5k +b =80,3.5k +b =240,解得⎩⎨⎧k =80,b =-40, ∴线段DE 所表示的y 与x 之间的函数表达式为y =80x -40.(3)不能.理由如下:接到通知后,若汽车仍按原速行驶,则全程所需时间为290÷80+0.5=4.125(小时),12时-8时=4小时,4.125>4.故接到通知后,汽车仍按原速行驶不能准时到达.25.解:(1)设直线AB 对应的函数表达式是y =kx +b .根据题意,得⎩⎨⎧4k +b =2,6k +b =0,解得⎩⎨⎧k =-1,b =6,则直线AB 对应的函数表达式是y =-x +6.(2)在y =-x +6中,令x =0,解得y =6,∴C 点的坐标为(0,6).∴S △OAC =12×6×4=12.(3)存在.设直线OA 对应的函数表达式是y =mx ,则4m =2,解得m =12.∴直线OA 对应的函数表达式是y =12x .当点M 在第一象限时,∵△OMC 的面积是△OAC 面积的14,∴点M 的横坐标是14×4=1.在y =12x 中,当x =1时,y =12,则点M 的坐标是⎝ ⎛⎭⎪⎫1,12; 在y =-x +6中,当x =1时,y =5,则点M 的坐标是(1,5). 当点M 在第二象限时,易知点M 的横坐标是-1.在y =-x +6中,当x =-1时,y =7,则点M 的坐标是(-1,7).综上所述,点M 的坐标是⎝ ⎛⎭⎪⎫1,12或(1,5)或(-1,7).。

轴对称与坐标变化(分层练习)(培优练)-八年级数学上册基础知识专项突破讲与练(北师大版)

轴对称与坐标变化(分层练习)(培优练)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题3.11轴对称与坐标变化(分层练习)(培优练)一、单选题(本大题共10小题,每小题3分,共30分)1.(2023秋·九年级课前预习)台风“纳沙”来袭,气象台需要确定台风中心位置,下列说法能确定台风中心位置的是().A .北纬19︒,东经115.4︒B .距离三沙市235nmileC .海南省附近D .北纬19︒,偏东2.(2023春·福建福州·七年级福建省福州第十六中学校考期末)已知点(2,1)A ,(2,4)-B ,点(,)C x y 在线段AB 上运动,当OC OA >时,y 的取值范围为()A .41y -≤<-B .11y -<<C .1y <-D .41y -≤≤-3.(2023·全国·九年级专题练习)点()3,5P 关于第一、三象限的角平分线对称的点为点1P ,关于第二、四象限的角平分线对称的点为点2P ,则点1P ,2P的坐标分别为()A .()3,5,()5,3B .()5,3,()5,3--C .()5,3,()3,5D .()5,3--,()5,34.(2022·四川绵阳·校考二模)已知点P 的坐标为(),m n 2440n n ++=,则点P 关于x 轴的对称点坐标为()A .()4,2-B .()4,2-C .()4,2D .()2,4-5.(2022秋·全国·八年级期中)已知点B (1,0)与点B '关于y 轴对称,直线m 过点B (1,0)且与y 轴平行,点C (4,2)与点C '关于直线m 对称,则B 'C '的长为()A B .C D .6.(2022秋·八年级课时练习)在平面直角坐标系中,P 点坐标为(m ,n ),P '点坐标为(m ,n ),两点关于y 轴对称,则下列选项正确的是()A .m >0,n <0B .m <0,n >0C .m >0,n >0D .m <0,n <07.(2023春·四川内江·七年级统考阶段练习)如图,在锐角三角形ABC 中5AB =,ABC 的面积15,BD 平分ABC ∠交AC 于点D ,若M N 、分别是BD BC 、上的动点,则CM MN +的最小值为()A .3B .4C .5D .68.(2023春·河北邢台·七年级校考期中)有甲、乙、丙三人,他们所在的位置不同,三人都以相同的单位长度和方向建立不同的坐标系.根据甲、丙两人的描述,如果以乙为坐标原点,甲和丙的位置分别是()甲:“以我为坐标原点,乙的位置是()4,3.”丙:“以我为坐标原点,甲的位置是()7,5--.”A .()4,3--,()2,1B .()4,3--,()3,2C .()3,4--,()2,3D .()3,4,()1,4--9.(2023春·全国·七年级期中)下列说法中正确的有()个①坐标平面内的点与有序实数对是一一对应的;②点()22,y --位于第三象限;③点(),N m n 到y 轴的距离为m ;④点()2,A a 和点(),3B b -关于x 轴对称,则+a b 的值为5;⑤若+=0x y ,则点(),P x y 在第一、三象限角平分线上.A .1B .2C .3D .410.(2021秋·全国·八年级专题练习)在平面直角坐标系xOy 中,第一次将△ABC 作原点的中心对称图形得到△A 1B 1C 1,第二次在作△A 1B 1C 1关于x 轴的对称图形得到△A 2B 2C 2,第三次△A 2B 2C 2作原点的中心对称图形得到△A 3B 3C 3,第四次再作△A 3B 3C 3关于x 轴的对称图形得到△A 4B 4C 4,按照此规律作图形的变换,可以得到△A 2021B 2021C 2021的图形,若点C (3,2),则C 2021的坐标为()A .(3,-2)B .(-3,2)C .(3,2)D .(-3,-2)二、填空题(本大题共8小题,每小题4分,共32分)11.(2023春·辽宁大连·七年级统考期中)如图,货轮A 正驶向此刻与它相距10海里的港口B ,如要将港口B 相对于货轮A 的位置表示为(北偏东30︒,10),那么货轮A 相对于港口B 的位置可表示为.12.(2023秋·福建福州·九年级校考开学考试)在平面直角坐标系xOy 中,(20)A -,,()2B m m -,,则AB OB +的最小值是.13.(2020秋·辽宁沈阳·八年级统考期末)已知a 、b 为整数,a b <<,则(),P a b 关于y 轴对称点的坐标为.14.(2023春·陕西西安·七年级陕西师大附中校考期末)如图,在ABC 中,45BAC ∠=︒,点D 是BC 边上一点,连接AD ,M ,N 是线段AD 上两点,8AM =,15AN =,点P ,Q 分别是AB ,AC 边上的动点,连接PM ,PQ ,NQ ,则PM PQ NQ ++的最小值为.15.(2023春·河南周口·,3行排列:36……的位置记为()1,4的位置记为()2,3,则这组数中最大的有理数的位置记为.16.(2020秋·广东潮州·八年级统考期中)如图,在平面直角坐标系中,点()2,3A 、()10B ,在y 轴上取一点P ,使点P 到点A 和点B 的距离之和最小,则点P 的坐标是.17.(2023秋·全国·八年级专题练习)在平面直角坐标系中摆放着一个轴对称图形,其中点()66A -,的对称点A ′坐标为(06),,点()M m n ,为图象上的一点,则点M 在图象上的对称点坐标为.18.(2023春·全国·七年级专题练习)如图,在ABC 中,AD 为BC 边上的高线,且AD BC =,点M 为直线BC 上方的一个动点,且ABC 面积为MBC 的面积2倍,则当MB MC +最小时,MBC ∠的度数为°.三、解答题(本大题共6小题,共58分)19.(8分)(2022秋·山西太原·八年级统考期中)如图,平面直角坐标系中,ABC 的顶点坐标分别为()2,5A -,()5,1B -,()1,2C -.(1)将点A ,B ,C 的横坐标乘1-,纵坐标不变,依次得到点D ,E ,F .请在图中画出DEF ;(2)上面所画DEF 与ABC 的位置关系为______.(3)若DEF 与D E F '''△关于x 轴对称,请画出D E F '''△,此时C ,F '两点之间的距离为______.20.(8分)(2022秋·山东烟台·七年级统考期末)如图所示,平面直角坐标系中网格小正方形的边长都为1,点A 、B 、C 、D 是四边形ABCD 的四个顶点.(1)请你画出四边形ABCD 关于y 轴对称的图形.(2)若点(22,5)P a a -+,且PC //y 轴,求P 点的坐标.(3)若点(22,5)P a a -+在第二象限,且它到x 轴、y 轴的距离相等,求32022+a 的值.21.(10分)(2022秋·辽宁抚顺·八年级校考期中)如图,ABC 三个顶点的坐标是()1,0A ,()3,2B ,()1,1C -,点D 的坐标是()3,2-,E 在坐标平面内,ADE V 与ABC 全等.(1)画出满足条件的所有的ADE V ;(2)写出点E 的坐标.22.(10分)(2022秋·山东东营·七年级校联考期中)如图,是一个简单的平面示意图,已知OA =2km ,OB =6km ,OC =BD =4km ,点E 为OC 的中点,回答下列问题:(1)由图可知,高铁站在小明家南偏西65°方向6km 处.请类似这种方法用方向与距离描述学校、博物馆相对于小明家的位置;(2)图中到小明家距离相同的是哪些地方?(3)若小强家在小明家北偏西60°方向2km 处,请在图中标出小强家的位置.23.(10分)(2023秋·山东德州·八年级统考期末)如图,ABC 的顶点分别为(1,3),(4,5),(1,5)A B C ,先将ABC 以第一象限的角平分线所在直线为对称轴通过轴对称得到A B C ''' ,再将A B C ''' 以x 轴为对称轴通过轴对称得到A B C ''''''.(1)画出A B C ''''''△;(2)写出,,A B C ''''''三点的坐标;(3)一般地,某一点(,)P x y 经过这样的两次轴对称变换后得到的点P ''的坐标为__________.24.(12分)(2022秋·浙江湖州·八年级统考阶段练习)(1)呈现:如图1,等腰直角三角形ABC 的直角顶点C 在直线l 上,分别过点,A B 作AD l ⊥于D ,BE l ⊥于E ,则有ADC △CEB ≌ .请你证明这个结论;(2)应用:如图2,已知()1,1A ,()3,2B ,把线段AB 绕点A 顺时针方向旋转90︒后得到线段AC ,求点C 的坐标;(3)拓展:如图3,直线l ⊥直线m ,垂足为O ,点A 是直线l 上一定点,且3OA =,点B 在直线m 上运动,以AB 为边作等腰Rt ABC △,90BAC ∠=︒(点,,A B C 呈顺时针排列),当点B 在直线m 上运动时,点C 也随之运动.在点C 的运动过程中,OC AC +的最小值为______.参考答案1.A【分析】根据坐标确定位置的相关知识可直接进行分析即可得解.解:A 、北纬19︒,东经115.4︒表示具体坐标,能确定台风中心位置,故符合题意;B 、距离三沙市235nmile ,范围太广,不能确定台风中心位置,故不符合题意;C 、海南省附近,范围太广,不能确定台风中心位置,故不符合题意;D 、北纬19︒,偏东,范围太广,不能确定台风中心的具体位置,故不符合题意;故选∶A .【点拨】本题主要考查坐标表示位置,解题的关键是判断是不是利用坐标来表示位置.2.A【分析】作点A 关于x 轴的对称点A ',则()2,1A '-.再结合图象即可直接确定y 的取值范围.解:如图,作点A 关于x 轴的对称点A ',则()2,1A '-.∵OC OA >,∴点C 在A B '上,且不与A '重合.∵(2,4)-B ,∴y 的取值范围为41y -≤<-.故选A .【点拨】本题考查坐标与图形,轴对称的性质.利用数形结合的思想是解题关键.3.B【分析】分别利用关于第一、三象限的角平分线和关于第二、四象限的角平分线对称的点的坐标特征解决问题即可.解:点()3,5P 关于第一、三象限的角平分线对称的点1P 的坐标为()5,3,关于第二、四象限的角平分线对称的点2P 的坐标为()5,3--.故选:B .【点拨】本题考查坐标与图形变化—对称,点(),a b 关于x 轴对称的点的坐标为(),a b -;点(),a b 关于y 轴对称的点的坐标为(),a b -;点(),a b 关于原点对称的点的坐标为(),a b --;点(),a b 关于第一、三象限的角平分线对称的点的坐标为(),b a ;点(),a b 关于第二、四象限的角平分线对称的点的坐标为(),b a --.解题的关键是掌握轴对称的性质和点对称的坐标特征.4.A【分析】根据二次根式的非负性和完全平方公式求出m ,n 的值,进而即可求解.2440n n ++=,()220n +=,∴20,20m n n -=+=,解得:4,2m n =-=-,∴P 的坐标为()4,2--,∴点P 关于x 轴的对称点坐标为()4,2-.故选:A .【点拨】本题主要考查二次根式与平方的非负性,点的坐标,轴对称变换,根据非负数的性质,求出m ,n 的值是关键.5.A【分析】根据轴对称的性质得到点B '、C '的坐标,再根据勾股定理求出B 'C '的长.解:点B (1,0)与点B '关于y 轴对称,∴B '(-1,0),∵直线m 过点B (1,0)且与y 轴平行,∴直线m 的解析式为x =1,∴点C (4,2)关于直线m 对称的点C '的坐标为(-2,2),∴B 'C '故选:A .【点拨】此题考查了轴对称的性质,勾股定理求线段长度,正确理解轴对称的性质得到点B '、C '的坐标是解题的关键.6.B【分析】根据关于y 轴对称的两点横坐标互为相反数,纵坐标相等,得m =-m ,n =n ,求解即可.解:∵点P 与点P `关于y 轴对称,∴两点横坐标互为相反,纵坐标相等,∴m =-m ,n =n ,即m <0,n >0,故选:B .【点拨】本题考查关于y 轴对称点的坐标特征,绝对值的意义,熟练掌握关于y 轴对称的两点横坐标互为相反数,纵坐标相等是解题的关键.7.D【分析】过C 作CE AB ⊥于点E ,交BD 于点M ',过点M '作M N BC ''⊥于N ',则CE 即为CM MN +的最小值,再根据三角形的面积公式求出CE 的长,即为CM MN +的最小值;解:过C 作CE AB ⊥于点E ,交BD 于点M ',过点M '作M N BC ''⊥于N ',如图:∵BD 平分,ABC ME AB ∠⊥于点,E M N BC ''⊥于N ',∴MN ME =,∴CE CM M E CM M N '''''=+=+是CM MN +最小值,此时M 与M 重合,N 与N '重合,∵三角形ABC 的面积为15,5AB =,∴15152CE ⨯⋅=,∴6CE =,即CM MN +的最小值为6;故选:D【点拨】本题考查三角形中的最短路径,解题的关键是理解CE 的长度即为CM MN +最小值8.B【分析】先根据甲的描述确定甲的位置,再根据丙的描述确定丙和甲的相对位置,进而求出丙的位置.解:以甲为坐标原点,乙的位置是()4,3,则以乙为坐标原点,甲的位置是()4,3--,由“以丙为坐标原点,甲的位置是()7,5--”,可知甲向右移动7个单位长度,再向上移动5个单位长度与丙重合,因此以乙为坐标原点,丙的位置是()47,35-+-+,即()3,2,故选B .【点拨】本题考查用坐标表示位置,解题的关键是根据丙的描述确定丙和甲的相对位置.9.B【分析】根据直角坐标系的特点可判断①正确;举反例即可判断②错误;根据点到坐标轴的距离为非负数即可判断③错误;关于x 轴对称的两点横坐标相等,纵坐标互为相反数,据此可知④正确;由+=0x y 可得y x =-,可知直线是第二、四象限的角平分线,即可判断⑤错误.解:①坐标平面内的点与有序实数对是一一对应的,说法正确;②当20y <时,点()22,y --位于第二象限,故原说法错误;③点(),N m n 到y 轴的距离为m ,故原说法错误;④关于x 轴对称的两点横坐标相等,纵坐标互为相反数,则有:=2b ,()33a =--=,即5a b +=,故说法正确;⑤由+=0x y 可得y x =-,可知直线y x =-是第二、四象限的角平分线,故原说法错误;即正确的有2个,故选:B .【点拨】本题主要考查了直角坐标系的相关知识,涉及点到坐标轴的距离、点坐在象限的判断、关于坐标轴对称的点的性质等知识,充分掌握直角坐标系的相关知识,是解答本题的关键.解答此类题目时要善于举反例求证.10.D【分析】根据题意做出前几次的图像,找出规律,根据规律推出C 2021即可解:根据题意做出如图前四次图像如下:由图像知每四次一个循环,则202145051÷=⋯⋯,即第2021次在第三象限,∵点C (3,2),∴C 2021点坐标为:(-3,-2);故答案选:D【点拨】此题考查坐标变换,属于规律题,根据前几个图像坐标推算出规律是解题关键.11.(南偏西30︒,10)【分析】以点B 为观测点,来描述点A 的方向及距离即可.解:如图,由题意知货轮A 相对于港口B 的位置可表示为(南偏西30︒,10).故答案为:(南偏西30︒,10).【点拨】本题考查了用方向角和距离确定位置,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.12.25【分析】根据点()2B m m -,的坐标可确定点()2B m m -,在直线2y x =-上,可得Rt OCD △是等腰直角三角形,作点O 关于直线2y x =-的对称点O ',连接OO '与CD 交于点E ,连接AO ',可求出点O '的坐标,当点B 在线段AO '时,O B '的值最小,即OB 最小,由此可得AB OB AB O B AO ''+=+=,在Rt ACO '△中,根据勾股定理即可求解.解:当x m =时,2y m =-,∴点()2B m m -,在直线2y x =-的直线上,如图所示,令0x =时,=2y -;令0y =时,2x =;即直线2y x =-与x 轴的交点为(2,0),与y 轴的交点为(0,2)-,∴Rt OCD △是等腰直角三角形,且2OC OD ==,如图所示,作点O 关于直线2y x =-的对称点O ',连接OO '与CD 交于点E ,连接AO ',∴OO CD '⊥,∴OE O E ¢=,即CD 是OO '的垂直平分线,∴2CO CO '==,2OD O D '==,∴(2,2)O '-,∵点O 关于直线2y x =-的对称点O ',∴OB O B '=,当点B 在线段AO '时,O B '的值最小,即OB 最小,如图所示,∴AB OB AB O B AO ''+=+=,在Rt ACO '△中,2(2)4AC =--=,0(2)2O C '=--=,∴AO '===∴AB OB +的最小值是故答案为:【点拨】本题主要考查一次函数与对称轴—对短路径的问题,掌握点关于直线对称的性质,对称性与对短路径的计算方法,勾股定理等知识是解题的关键.13.(),a b -【分析】根据无理数的估算求出,a b 的值,再根据关于y 轴对称的点的特征:横坐标互为相反数,纵坐标相同,进行求解即可.解:∵a b <<,且a ,b 为整数∴3,4a b ≤≥,且a ,b 为整数∴(),P a b 关于y 轴对称点的坐标为(),a b -;故答案为:(),a b -.【点拨】本题考查无理数的估算,坐标与轴对称.解题的关键是掌握夹逼法估算无理数,以及关于y 轴对称的点的特征:横坐标互为相反数,纵坐标相同.14.17【分析】作点M 关于AB 的对称点M ',作点N 关于AC 的对称点N ',连接M N ''分别交AB ,AC ,于点P ,Q ,此时PM PQ NQ ++有最小值,即M N ''的长度.解:作点M 关于AB 的对称点M ',作点N 关于AC 的对称点N ',连接M N ''分别交AB ,AC ,于点P ,Q ,连接AM ',AN ',∵45BAC BAM CAN ∠=∠+∠=︒,由对称性可知,BAM BAM '∠=∠,CAN CAN '∠=∠,∴45BAM CAN ''∠+∠=︒,∴90M AN ∠=''︒,由对称性可得8AM AM '==,15AN AN '==,由勾股定理得,22289M N AM AN ''''=+=,∴17M N ''=,当M 、N 、P 、Q 共线时,PM PQ NQ ++的值最小,即PM PQ NQ ++的最小值为17.【点拨】本题考查了轴对称的最短路径问题,勾股定理,找出P 点的位置是解题的关键.15.(5,3)【分析】每相邻的二次根式的被开方数是3的倍数,故求90330÷=,一行6个数,得5630=÷解:由题意可知,一行6个数,每个数都为3的倍数,可得90330÷=,5630=÷,位于第五行第五个数,记作()5,5,9=,()5,3,故答案为:()5,3.【点拨】本题考查了算术平方根和数字变化规律,掌握算术平方根的定义,根据数字变化规律找出90位于第五行第五个数是解题关键.16.()01,【分析】如图所示,过点A 作AD x ⊥轴于D ,作点B 关于y 轴的对称点C ,连接AC 交y 轴于H ,连接CP BP AP DH ,,,,则()10C -,,利用轴对称的性质推出当A 、C 、P 三点共线时,PA PC +最小,即PA PB+最小,此时点P 与点H 重合,根据ADC HDC HDA S S S =+△△△求出1OH =,由此即可得到答案.解:如图所示,过点A 作AD x ⊥轴于D ,作点B 关于y 轴的对称点C ,连接AC 交y 轴于H ,连接CP BP AP DH ,,,,则()10C -,,∴CP BP =,∴PA PB PA PC +=+,∴当A 、C 、P 三点共线时,PA PC +最小,即PA PB +最小,此时点P 与点H 重合,∵()2,3A 、()10B ,,()10C -,,∴332CD AD OD ===,,,∵ADC HDC HDA S S S =+△△△,∴111222AD CD OH AD OD ⋅=⋅+⋅,∴11133332222OH ⨯⨯=⨯+⨯⨯,∴1OH =,∴()01H ,,即()01P ,,故答案为:()01,.【点拨】本题主要考查了坐标与图形,轴对称最短路径问题,正确作出辅助线是解题的关键.17.()6m n --,【分析】先求出对称轴的表达式,设点M 在图象上的对称点坐标为m n ''(,),根据对应点的连线被对称轴垂直平分即可得出答案.解:∵点()66A -,的对称点A '坐标为(06),,∴对称轴为:3x =-,设点M 在图象上的对称点坐标为m n ''(,),∴'2m m +=-3,n n '=,∴6m m '=--,∴点M 在图象上的对称点坐标为6m n --(,).故答案为:6m n --(,).【点拨】本题考查了坐标与图形变化﹣对称,掌握对应点的连线被对称轴垂直平分是解题的关键.18.45解:如图,作过点M 的直线l ,使得l BC ,作C 关于l 的对称点C ',连接BC ',CC '交l 于点E ,则MB MC +MB MC BC ''=+≥,当,,B M C '三点共线时,取得最小值,过点M 作MN BC ⊥,l BC ∴∥,CC l '∴⊥,∴CC BC '⊥,ABC 中,AD 为BC 边上的高线,ABC 面积为MBC 的面积2倍,AD BC =,1122MN AD BC ∴==,根据平行线间的距离相等,可得CE MN =,则2CC MN '=AD =,∴BCC ' 是等腰直角三角形,45MBC ∴∠=︒.故答案为:45︒.【点拨】本题考查了三角形的高线,等腰直角三角形的性质,平行线的距离,轴对称求线段和的最小值,掌握轴对称的性质是解题的关键.19.(1)见分析;(2)关于y 轴对称;(3)25【分析】(1)求出D ,E ,F 的坐标,描点连线即可;(2)由图象可知关于y 轴对称;(3)由于DEF 与D E F '''△关于x 轴对称,求出各点坐标,描点连线,再根据勾股定理求得两点之间的距离.(1)解:根据题意,2A x =-,5B x =-,1C x =-∴()12D A x x =⋅-=,()15E B x x =⋅-=,()11F C x x =⋅-=∴D ,E ,F 的坐标为()2,5,()5,1,()1,2;DEF 如下图所示:(2)∵2A x =-,2D x =∴0A D x x +=,∴DEF 与ABC 关于y 轴对称(3)∵DEF 与D E F '''△关于x 轴对称,∴对应点的横坐标相等,纵坐标互为相反数,∴5D D y y '=-=-,2E E y y '=-=-,1F F y y '=-=-∴D ¢,E ',F '的坐标为()2,5-,()5,1-,()1,2-;D E F '''△如下图所示:∴()()()()()2222'1122205C F C F CF x x y y ''=-+-=--+--==.【点拨】本题考查了轴对称的特点,用勾股定理求两点之间的距离,根据题意求得对应点的坐标是解题的关键.20.(1)见分析;(2)(4,8)P ;(3)2020【分析】(1)分别画出A ,B ,C ,D 的对应点A ′,B ′,C ′,D ′即可解决问题;(2)确定点C 坐标,根据平行y 轴的直线上点的坐标特征得出方程求解即可;(3)根据点(22,5)P a a -+在第二象限,它到x 轴、y 轴的距离相等,列方程,求出a 的值,再代入计算即可.解:(1)四边形ABCD 关于y 轴的对称图形四边形A ′B ′C ′D ′如图所示;(2)由图知(4,2)C ∵PC //y 轴,∴224a -=解得:3a =∴(4,8)P (3)∵点P 在第二象限,∴220a -<,a +5>0,又∵点P 到x 轴、y 轴的距离相等∴225a a -+=+,解得:1a =-则2022220222020=-+=【点拨】本题考查作图-轴对称变换,坐标与图形等知识,解题的关键是熟练掌握基本知识.21.(1)见分析;(2)()11,1E --,()25,1E -,()32,4E -,()42,2E 【分析】(1)利用关于x 轴对称得到1ADE ABC ≌,画出点1E 关于AD 的垂直平分线的对称点3E ,可得3DAE ABC ≌然后画出点1E 、点3E 关于直线AD 的对称点4E 、2E ,可得4ADE ABC ≌,2DAE ABC ≌,再画图即可;(2)根据(1)的图形,可得E 的坐标.解:(1)如图,利用关于x 轴对称得到1ADE ABC ≌,画出点1E 关于AD 的垂直平分线的对称点3E ,可得3DAE ABC≌然后画出点1E 、点3E 关于直线AD 的对称点4E 、2E ,可得4ADE ABC ≌,2DAE ABC ≌,(2)由(1)得:()11,1E --,()25,1E -,()32,4E -,()42,2E 【点拨】本题考查的是利用轴对称,全等三角形的定义,坐标与图形,熟练的利用轴对称的性质构建全等三角形是解本题的关键.22.(1)学校在小明家北偏东45°方向2km 处,博物馆在小明家南偏东50°方向4km 处;(2)图中到小明家距离相同的是学校和公园和影院;(3)见分析【分析】(1)由图可知,学校在小明家北偏东45°方向2km 处,博物馆在小明家南偏东50方向4km 处;(2)观察图形,根据OA ,OE ,OD 的长度及图中各角度,即可得出结论.(3)作北偏西60°角,取OE =2即可.(1)解:学校在小明家北偏东45°方向2km 处,博物馆在小明家南偏东50°方向4km 处;(2)图中到小明家距离相同的是学校和公园和影院;(3)如图,点F 即为小强家.【点拨】本题考查了方向角,解题的关键是熟练掌握运用方位角及确定位置需要两个元素.23.(1)见分析;(2)(3,1),(5,4),(5,1)A B C ''''''---;(3)(,)y x -【分析】(1)根据题意作图即可;(2)根据(1)所作图形写出对应点的坐标即可;(3)根据点A 到A ''的坐标变化情况求解即可.(1)解:A B C ''''''△的位置如图;(2)解:由图可知:(3,1),(5,4),(5,1)A B C ''''''---;(3)∵点A 坐标为(1,3),(3,1)A ''-,∴一点(,)P x y 经过这样的两次轴对称变换后得到的点P ''的坐标为(,)y x -.【点拨】本题主要考查了坐标与图形变化—轴对称,画轴对称图形,解题的关键在于能够熟练掌握相关知识.24.(1)见分析;(2)(2,1)C -;(3)OC AC +的最小值为【分析】(1)根据AD l ⊥,BE l ⊥,三角形ABC 是等腰直角三角形证明即可;(2)过A 点作AD x ⊥轴,分别过B 、C 作BE AD ⊥,CF AD ⊥,根据(1)中结论即可求解;(3)过A 点作l x ⊥,分别过B 、C 作BE l ⊥,CD l ⊥,作点A 关于CD 的对称点A ',连接CA ',则点A '在直线l 上,当O ,C ,A '三点共线时,OC AC +有最小值.(1)解:∵AD l ⊥,BE l ⊥,三角形ABC 是等腰直角三角形,∴+90ACD DAC ACD CBE ∠+∠∠∠=︒=,AC BC =,∴DAC CBE ∠=∠,∵90ADC CEB ∠=∠=︒,DAC CBE ∠=∠,AC BC =,∴ADC △()AAS CEB ≌;(2)解:过A 点作AD x ⊥轴,分别过B 、C 作BE AD ⊥,CF AD ⊥,如图,由(1)得:ABE CAF ≌,∵()1,1A ,()3,2B ,设2,1BE AF AE CF ====,∴(2,1)C -;(3)解:过A 点作l x ⊥,分别过B 、C 作BE l ⊥,CD l ⊥,如图,90DCA CAD ∠∠+=︒ ,1809090EAB CAD ∠∠+=︒-︒=︒,DCA EBA ∴∠=∠,∵BE l ⊥,CD l ⊥,AC BC =,∴ADC △()AAS AEB ≌,BE AD ∴=,∵3OA =,3AD BE OA ∴===,作点A 关于CD 的对称点A ',连接CA ',则点A '在直线l 上,3DA DA '==,,AC A C '=OC AC OC A C ∴+'+=,OC A C OA +'≥' ,∴当O ,C ,A '三点共线时,OC AC +有最小值OA =',∴OA ==='∴OC AC +的最小值为【点拨】本题考查轴对称一最短路线问题、全等三角形的判定和性质,勾股定理等知识,添加合适的辅助线,构造直角三角形是解题关键.。

八年级上册数学 轴对称填空选择专题练习(解析版)

八年级上册数学 轴对称填空选择专题练习(解析版)

八年级上册数学轴对称填空选择专题练习(解析版)一、八年级数学全等三角形填空题(难)1.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为_____.【答案】12.5【解析】【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=12×5×5=12.5,即可得出结论.【详解】如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB(ASA),∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=12×5×5=12.5,∴四边形ABCD的面积为12.5,故答案为12.5.【点睛】本题主要考查了全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题2.已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD,CE相交于点N,则下列五个结论:①AD=BE;②AP=BM;③∠APM=60°;④△CMN是等边三角形;⑤连接CP,则CP平分∠BPD,其中,正确的是_____.(填写序号)【答案】①③④⑤.【解析】【分析】①根据△ACD≌△BCE(SAS)即可证明AD=BE;②根据△ACN≌△BCM(ASA)即可证明AN=BM,从而判断AP≠BM;③根据∠CBE+∠CDA=60°即可求出∠APM=60°;④根据△ACN≌△BCM及∠MCN=60°可知△CMN为等边三角形;⑤根据角平分线的性质可知.【详解】①∵△ABC和△CDE都是等边三角形∴CA=CB,CD=CE,∠ACB=60°,∠DCE=60°∴∠ACE=60°∴∠ACD=∠BCE=120°在△ACD和△BCE中CA CBACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCE(SAS)∴AD=BE;②∵△ACD≌△BCE∴∠CAD=∠CBE在△ACN和△BCM中ACN BCMCA CBCAN CBM∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACN≌△BCM(ASA)∴AN=BM;③∵∠CAD+∠CDA=60°而∠CAD=∠CBE∴∠CBE+∠CDA=60°∴∠BPD=120°∴∠APM=60°;④∵△ACN≌△BCM∴CN=BM而∠MCN=60°∴△CMN为等边三角形;⑤过C点作CH⊥BE于H,CQ⊥AD于Q,如图∵△ACD≌△BCE∴CQ=CH∴CP平分∠BPD.故答案为:①③④⑤.【点睛】本题主要考查了三角形全等的判定和性质的灵活运用,角的计算及角平分线的判定,熟练掌握三角形全等的证明方法,角平分线的判定及相关辅助线的作法是解决本题的关键.3.如图,∠ACB=90°,AC=BC,点C(1,2)、A(-2,0),则点B的坐标是__________.【答案】(3,-1)【解析】分析:过C和B分别作CD⊥OD于D,BE⊥CD于E,利用已知条件可证明△ADC≌△CEB,再由全等三角形的性质和已知数据即可求出B点的坐标.详解:过C和B分别作CD⊥OD于D,BE⊥CD于E,∵∠ACB=90°,∴∠ACD+∠CAD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ADC和△CEB中,∠ADC=∠CEB=90°;∠CAD=∠BCE,AC=BC,∴△ADC≌△CEB(AAS),∴DC=BE,AD=CE,∵点C的坐标为(1,2),点A的坐标为(−2,0),∴AD=CE=3,OD=1,BE=CD=2,∴则B点的坐标是(3,−1).故答案为(3,−1).点睛:本题主要考查了全等三角形的判定与性质,解题关键在于结合坐标、图形性质和已经条件.4.如图,已知△ABC为等边三角形,点D,E分别在边BC,AC上,且BD=CE,若BE交AD于点F,则∠AFE的大小为_____(度).【答案】60【解析】【分析】根据△ABC为等边三角形得到AB=BC,∠ABD=∠BCE=60°,再利用BD=CE证得△ABD≌△BCE,得到∠BAD=∠CBE,再利用内角和外角的关系即可得到∠AFE=60°.【详解】∵△ABC为等边三角形,点D,E分别在边BC,AC上,且BD=CE,∴AB=BC,∠ABD=∠BCE=60°,在△ABD和△BCE中,AB BCABD BCEBD CE=⎧⎪∠∠⎨⎪=⎩=,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABF+∠CBE=∠ABC=60°,∴∠ABF+∠BAD=60°,∵∠AFE=∠ABF+∠BAD,∴∠AFE=60°,故答案为:60.【点睛】此题考查三角形全等的判定定理及性质定理,题中证明三角形全等后得到∠BAD=∠CBE,再利用外角和内角的关系求∠AFE是解题的关键.5.如图,△ABE,△BCD均为等边三角形,点A,B,C在同一条直线上,连接AD,EC,AD与EB相交于点M,BD与EC相交于点N,下列说法正确的有:___________①AD=EC;②BM=BN;③MN∥AC;④EM=MB.【答案】①②③【解析】∵△ABE,△BCD均为等边三角形,∴AB=BE,BC=BD,∠ABE=∠CBD=60°,∴∠ABD=∠EBC,在△ABD和△EBC中AB BEABD EBCBD BC=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△EBC(SAS),∴AD=EC,故①正确;∴∠DAB=∠BEC,又由上可知∠ABE=∠CBD=60°,∴∠EBD=60°,在△ABM和△EBN中MAB NEBAB BEABE EBN∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABM≌△EBN(ASA),∴BM=BN,故②正确;∴△BMN为等边三角形,∴∠NMB=∠ABM=60°,∴MN∥AC,故③正确;若EM=MB,则AM平分∠EAB,则∠DAB=30°,而由条件无法得出这一条件,故④不正确;综上可知正确的有①②③,故答案为①②③.点睛:本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、AAS、ASA和HL)和性质(即全等三角形的对应边相等,对应角相等).6.如图,52A∠=︒,O是ABC∠、ACB∠的角平分线交点,P是ABC∠、ACB∠外角平分线交点,则BOC∠=______︒,BPC∠=_____︒,联结AP,则PAB∠=______︒,点O____(选填“在”、“不在”或“不一定在”)直线AP上.【答案】116 64 26 在【解析】【分析】∠ABC+∠ACB=180°-∠A,∠OBC+∠OCB=12(∠ABC+∠ACB), ∠BOC=180°-(∠OBC+∠OCB),据此可求∠BOC的度数;∠BCP=12∠BCE=12(∠A+∠ABC),∠PBC=12∠CBF=12(∠A+∠ACB),由三角形内角和定理得:∠BPC=180°-∠BCP-∠PBC,据此可求∠BPC的度数;作PG⊥AB于G,PH⊥AC于H,PK⊥BC于K,利用角平分线的性质定理可证明PG=PH,于是可证得AP平分∠BAC,据此可求∠PAB的度数;同理可证OA平分∠BAC,故点O在直线AP上.【详解】解:∵O点是∠ABC和∠ACB的角平分线的交点,∴∠OBC+∠OCB= 12(∠ABC+∠ACB)= 12(180°-∠A)=90°- 12∠A,∴∠BOC=180°-(∠OBC+∠OCB)=180°-90°+ 12∠A=90°+ 12∠A=90°+26°=116°;如图,∵BP、CP为△ABC两外角的平分线,∴∠BCP= 12∠BCE=12(∠A+∠ABC),∠PBC= 12∠CBF=12(∠A+∠ACB),由三角形内角和定理得:∠BPC=180°-∠BCP-∠PBC=180°- 12[∠A+(∠A+∠ABC+∠ACB)]=180°- 12(∠A+180°)=90°- 12∠A=90°-26°=64°.如图,作PG⊥AB于G,PH⊥AC于H,PK⊥BC于K,连接AP,∵BP、CP为△ABC两外角的平分线,PG⊥AB,PH⊥AC,PK⊥BC,∴PG=PK,PK=PH,∴PG=PH,∴AP平分∠BAC,∠=26°∴PAB同理可证OA平分∠BAC,点O在直线AP上.故答案是:(1) 116 ;(2) 64;(3) 26;(4) 在.【点睛】此题主要考查了角平分线的性质定理和判定定理及三角形内角和定理,熟知定理并正确作出辅助线是解题关键.7.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②AF∥EB;③∠FAN=∠EAM;④△ACN≌△ABM其中正确的有.【答案】①③④【解析】【分析】由∠E=∠F=90°,∠B=∠C,AE=AF,利用“AAS”得到△ABE与△ACF全等,根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等,AE与AF相等,AB与AC相等,然后在等式∠EAB=∠FAC两边都减去∠MAN,得到∠EAM与∠FAN相等,然后再由∠E=∠F=90°,AE=AF,∠EAM=∠FAN,利用“ASA”得到△AEM与△AFN全等,利用全等三角形的对应边相等,对应角相等得到选项①和③正确;然后再∠C=∠B,AC=AB,∠CAN=∠BAM,利用“ASA”得到△ACN与△ABM全等,故选项④正确;若选项②正确,得到∠F与∠BDN相等,且都为90°,而∠BDN不一定为90°,故②错误.【详解】解:在△ABE和△ACF中,∠E=∠F=90°,AE=AF,∠B=∠C,∴△ABE≌△ACF,∴∠EAB=∠FAC,AE=AF,AB=AC,∴∠EAB-∠MAN=∠FAC-∠NAM,即∠EAM=∠FAN,在△AEM和△AFN中,∠E=∠F=90°,AE=AF,∠EAM=∠FAN,∴△AEM≌△AFN,∴EM=FN,∠FAN=∠EAM,故选项①和③正确;在△ACN和△ABM中,∠C=∠B,AC=AB,∠CAN=∠BAM(公共角),∴△ACN≌△ABM,故选项④正确;若AF∥EB,∠F=∠BDN=90°,而∠BDN不一定为90°,故②错误,则正确的选项有:①③④.故答案为①③④8.如图,Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF;⑤S四边形AEDF=14AD2,其中正确结论是_____(填序号)【答案】①②③【解析】【分析】先由ASA证明△AED≌△CFD,得出AE=CF,DE=FD;再由全等三角形的性质得到BE+CF=AB,由勾股定理求得EF与AB的值,通过比较它们的大小来判定④的正误;先得出S四边形AEDF=S△ADC=12AD2,从而判定⑤的正误.【详解】解:∵Rt△ABC中,AB=AC,点D为BC中点,∴∠C=∠BAD=45°,AD=BD=CD,∵∠MDN=90°,∴∠ADE+∠ADF =∠ADF +∠CDF =90°,∴∠ADE =∠CDF .在△AED 与△CFD 中,EAD C AD CDADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AED ≌△CFD (ASA ),∴AE =CF ,ED =FD .故①②正确;又∵△ABD ≌△ACD ,∴△BDE ≌△ADF .故③正确;∵△AED ≌△CFD ,∴AE =CF ,ED =FD ,∴BE +CF =BE +AE =AB =2BD ,∵EF =2ED ,BD >ED ,∴BE +CF >EF .故④错误;∵△AED ≌△CFD ,△BDE ≌△ADF ,∴S 四边形AEDF =S △ADC =12AD 2.故⑤错误. 综上所述,正确结论是①②③.故答案是:①②③.【点睛】 考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,图形的面积等知识,综合性较强,有一定难度.9.如图,OP 平分∠AOB,∠AOP=15°,PC∥OA,PC =4,点D 是射线OA 上的一个动点,则PD 的最小值为_____.【答案】2【解析】【分析】作PE⊥OA 于E ,根据角平分线的性质可得PE =PD ,根据平行线的性质可得∠ACP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE ,即可求得PD .【详解】当PD⊥OA 时,PD 有最小值,作PE⊥OA 于E ,∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,∴PE=PD(角平分线上的点到角两边的距离相等),∵∠BOP=∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ACP=∠AOB=30°,∴在Rt△PCE中,PE=12PC=12×4=2(在直角三角形中,30°角所对的直角边等于斜边的一半),∴PD=PE=2,故答案是:2.【点睛】此题主要考查角平分线的性质和平行线的性质,难度一般,作辅助线是关键.10.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,以下结论:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正确的是__________.(填写序号)【答案】①③④【解析】【分析】根据三角形内角和定理、角平分线的定义、三角形外角的性质、角平分线的性质解答即可.【详解】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣50°﹣60°=70°,①正确;∵BD是∠ABC的平分线,∴∠DBC=12∠ABC=25°,∴∠DOC=25°+60°=85°,②错误;∠BDC=60°﹣25°=35°,③正确;∵∠ABC 的平分线BD 与∠ACE 的平分线CD 相交于点D ,∴AD 是∠BAC 的外角平分线,∴∠DAC =55°,④正确.故答案为①③④.【点睛】本题考查的是角平分线的定义和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.二、八年级数学全等三角形选择题(难)11.如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中①∠DCF =123,1x x ==-∠BCD ;②EF =CF ;③S △BEC =2S △CEF ;④∠DFE =3∠AEF .一定成立的是( )A .①②B .①③④C .①②③D .①②④【答案】D【解析】①∵F 是AD 的中点,∴AF=FD , ∵在?ABCD 中,AD=2AB ,∴AF=FD=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠FCB ,∴∠DCF=∠BCF ,∴∠DCF=12∠BCD ,故此选项正确;延长EF ,交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A=∠MDF ,∵F 为AD 中点,∴AF=FD ,在△AEF和△DFM中,∠A=∠FDMAF=DF∠AFE=∠DFM,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.故正确的有:①②④.故选D.12.如图,已知等腰Rt△ABC和等腰Rt△ADE,AB=AC=4,∠BAC=∠EAD=90°,D是射线BC 上任意一点,连接EC.下列结论:①△AEC△ADB;②EC⊥BC ;③以A、C、D、E为顶点的四边形面积为8;④当BD=时,四边形AECB的周长为10524++;⑤当BD=32B时,ED=5AB;其中正确的有()A.5个 B.4个 C.3 个 D.2个【答案】B【解析】解:∵∠BAC=∠EAD=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△AEC≌△ADB,故①正确;∵△AEC≌△ADB,∴∠ACE=∠ABD=45°,∵∠ACB=45°,∴J IAO ECB=90°,∴EC⊥BC,故②正确; ∵四边形ADCE 的面积=△ADC 的面积+△ACE 的面积=△ADC 的面积+△ABD 的面积=△ABC 的面积=4×4÷2=8.故③正确;∵BD =2,∴EC =2,DC =BC -BD =422-=32,∴DE 2=DC 2+EC 2,=()()22322+=20,∴DE =25,∴AD =AE =252=10.∴AECB 的周长=AB +DC +CE +AE =442210+++=45210++,故④正确;当BD =32BC 时,CD =12BC ,∴DE =221322BC BC ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=10BC =5AB .故⑤错误. 故选B .点睛:此题是全等三角形的判定与性质的综合运用,熟练掌握等腰直角三角形的性质是解答此题的关键.13.如图,Rt ABC ∆中,90C =∠,3,4,5,AC BC AB ===AD 平分BAC ∠.则:ACD ABD S S ∆∆=( )A .3:4B .3:5C .4:5D .2:3【答案】B【解析】 如图,过点D 作DE ⊥AB 于点E ,由角平分线的性质可得出DE=CD ,由全等三角形的判定定理HL 得出△ADC ≌△ADE ,故可得出AE=AC=3,由AB=5求出BE=2,设CD=x ,则DE=x ,BD=4﹣x ,再根据勾股定理知DE 2+BE 2=BD 2,即x 2+22=(4﹣x )2,求出x=32,进而根据等高三角形的面积,可得出:S △ACD :S △ABD =CD :BD=12×32×3:12×32×5=3:5.故选:B .点睛:本题考查的是角平分线的性质,熟知角平分线上的点到角两边的距离相等是解答此题的关键. 14.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是( )A .1+2B .1+2C .2-2D .2-1【答案】B【解析】 第一次折叠后,等腰三角形的底边长为1,腰长为22; 第一次折叠后,等腰三角形的底边长为22,腰长为12,所以周长为112212222++=+. 故答案为B.15.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).A .①②B .①③C .②③D .①②③【答案】D【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠, ∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,∴DF DG =,∴36090260120FDG ∠=︒-︒⨯-︒=︒,又∵120BDC ∠=︒,∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.∴BDF CDG ∠=∠,∵在BDF 和CDG △中,90BFD CGDDF DGBDF CDG∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴BDF≌()CDG ASA,∴DB CD=,∴1(180120)302DBC∠=︒-︒=︒,∴30DBC DBC CBE CBE∠=∠+∠=︒+∠,∵BE平分ABC∠,AE平分BAC∠,∴ABE CBE∠=∠,1302BAE BAC∠=∠=︒,根据三角形的外角性质,30DEB ABE BAE ABE∠=∠+∠=∠+︒,∴DEB DBE∠=∠,∴DB DE=,故②正确.∵DB DE DC==,∴B、C、E三点在以D为圆心,以BD为半径的圆上,∴2BDE BCE∠=∠,故③正确,综上所述,正确结论有①②③,故选:D.点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.16.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④B.①②C.①④D.①②③④【答案】B【解析】【分析】连接AP,由已知条件利用角平行线的判定可得∠1 = ∠2,由三角形全等的判定得△APR≌△APS,得AS=AR,由已知可得∠2 = ∠3,得QP=AQ,答案可得.【详解】解:如图连接AP,PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,AP是∠BAC的平分线,∠1=∠2,△APR≌△APS.AS=AR,又QP/AR,∠2 = ∠3又∠1 = ∠2,∠1=∠3,AQ=PQ,没有办法证明△PQR≌△CPS,③不成立,没有办法证明AC-AQ=2SC,④不成立.所以B选项是正确的.【点睛】本题主要考查三角形全等及三角形全等的性质.17.如图,,,,点D、E为BC边上的两点,且,连接EF、BF则下列结论:≌;≌;;,其中正确的有( )个.A.1B.2C.3D.4【答案】D【解析】【分析】根据∠DAF=90°,∠DAE=45°,得出∠FAE=45°,利用SAS证明△AED≌△AEF,判定①正确;由△AED≌△AEF得AF=AD,由,得∠FAB=∠CAD,又AB=AC, 利用SAS证明≌,判定②正确;先由∠BAC=∠DAF=90°,得出∠CAD=∠BAF,再利用SAS证明△ACD≌△ABF,得出CD=BF,又①知DE=EF,那么在△BEF中根据三角形两边之和大于第三边可得BE+BF>EF,等量代换后判定③正确;先由△ACD≌△ABF,得出∠C=∠ABF=45°,进而得出∠EBF=90°,判定④正确.【详解】‚解:①∵∠DAF=90°,∠DAE=45°,∴∠FAE=∠DAF-∠DAE=45°.在△AED与△AEF中,,∴△AED≌△AEF(SAS),①正确;②∵△AED≌△AEF,∴AF=AD,∵,∴∠FAB=∠CAD,∵AB=AC,∴≌,②正确;③∵∠BAC=∠DAF=90°,∴∠BAC-∠BAD=∠DAF-∠BAD,即∠CAD=∠BAF.在△ACD与△ABF中,,∴△ACD≌△ABF(SAS),∴CD=BF,由①知△AED≌△AEF,∴DE=EF.在△BEF中,∵BE+BF>EF,∴BE+DC>DE,③正确;④由③知△ACD≌△ABF,∴∠C=∠ABF=45°,∵∠ABE=45°,∴∠EBF=∠ABE+∠ABF=90°.④正确.故答案为D.【点睛】本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,解题时要注意仔细分析,有一定难度.=,D、E是斜边BC上两点,且∠DAE=45°,将18.如图,在Rt△ABC中,AB AC△ADC绕点A顺时针旋转90︒后,得到△AFB,连接EF.列结论:+=①△ADC≌△AFB;②△ABE≌△ACD;③△AED≌△AEF;④BE DC DE 其中正确的是( )A.②④B.①④C.②③D.①③【答案】D【解析】解:∵将△ADC绕点A顺时针旋转90︒后,得到△AFB,∴△ADC≌△AFB,故①正确;②无法证明,故②错误;③∵△ADC≌△AFB,∴AF=AD,∠FAB=∠DAC.∵∠DAE=45°,∴∠BAE+∠DAC=45°,∠FA E=∠DAE=45°.在△FAE和△DAE中,∵AF=AD,∠FAE=∠DAE,AE=AE,∴△FAE≌△DAE,故③正确;④∵△ADC≌△AFB,∴DC=BF,∵△FAE≌△DAE,∴EF=ED,∵BF+BE>EF,∴DC+BE>ED .故④错误.故选D.19.如图,在△ABC和△DCB中,AB=DC,AC与BD相交于点E,若不再添加任何字母与辅助线,要使△ABC≌△DCB,则还需增加的一个条件是()A.AC=BD B.AC=BC C.BE=CE D.AE=DE【答案】A【解析】由AB=DC,BC是公共边,即可得要证△ABC≌△DCB,可利用SSS,即再增加AC=DB即可.故选A.点睛:此题主要考查了全等三角形的判定,解题时利用全等三角形的判定:SSS,SAS,ASA,AAS,HL,确定条件即可,此题为开放题,只要答案符合判定定理即可.20.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.【详解】∵∠BCA=∠DCE=60°,∴∠BCA+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,又∵AC=BC,CE=CD,∴△BCD≌△ACE,∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,∴∠BAE=120°,∴∠EAD=60°,②正确,∵∠BCD=90°,∠BCA=60°,∴∠ACD=∠ADC=30°,∴AC=AD,∵CE=DE,∴CE2+AD2=AC2+DE2,④正确,当D点在BA延长线上时,∠BDE-∠BDC=60°,∵∠AEC=∠BDC,∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,∴∠BDE-∠BDC=∠BDC+∠AED∴∠BDE-∠AED=2∠BDC,如图,当点D在AB上时,∵△BCD≌△∠ACE,∴∠CAE=∠CBD=60°,∴∠DAE=∠BAC+∠CAE=120°,∴∠BDE-∠AED=∠DAE=120°,③错误故正确的结论有①②④,故选C.【点睛】此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握21.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,给出以下五个结论:①△PFA≌△PEB,②EF=AP,③△PEF是等腰直角三角形,④当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),S四边形AEPF=12S△ABC,上述结论中始终正确有()A.1个B.2个C.3个D.4个【答案】C【解析】∵AB=AC,∠BAC=90°,P是BC中点,∴AP⊥BC,AP=PB,∠B=∠CAP=45°,∵∠APF+∠FPA=90°,∠ APF+∠BPE=90°,∴∠APF=∠BPE,在△BPE和△APF中,∠B=∠CAP , BP=AP ,∠BPE =∠APF ,∴△PFA ≌△PEB ;故①正确;∵△ABC 是等腰直角三角形点P 是BC 的中点,∴AP=12BC , 又∵EF 不一定是△ABC 的中位线,∴EF≠AP ,故结论②错误;∵△PFA ≌△PEB ,∴PE=PF ,又∵∠EPF=90°,∴△PEF 是等腰直角三角形,故③正确;∵△PFA ≌△PEB ,∴S △PFA =S △PEB ,∴S 四边形AEPF =S △APE +S △APF =S △APE +S △BPE =S △APB =12S △ABC ,故结论④正确; 综上,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A ,B 重合),始终正确的有3个结论.故选:C.点睛:本题意旋转为背景考查了全等三角形的判定和性质,解题时需要运用等腰直角三角形的判定和性质,综合性较强,根据题意得出△PFA ≌△PEB 是解答此题的关键.22.如图,D 为BAC ∠的外角平分线上一点并且满足BD CD =,DBC DCB ∠=∠,过D 作DE AC ⊥于E ,DF AB ⊥交BA 的延长线于F ,则下列结论:①CDE △≌BDF ;②CE AB AE =+;③BDC BAC ∠=∠;④DAF CBD ∠=∠. 其中正确的结论有( ).A .1个B .2个C .3个D .4个【答案】D【解析】 BD=CD,AD 是角平分线,所以FD=DE,∠DFB =∠DEC =90°,所以CDE ≌BDF ;①正确.由全等得BF=CE ,因为FA=AE,FB=AB+FA ,所以CE=AB+AE , ②正确.由全等知,∠DCE=∠FBD,所以∠BAC=∠BDC. ③正确. ∴DBF DCE ∠=∠,∴A 、B 、C 、D 四点共圆,∴DAF CBD ∠=∠,④正确.故选D.23.如图,在等腰△ABC 中,90ACB ︒∠=,8AC =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =,连接DE 、DF 、EF 在此运动变化的过程中,下列结论:(1)DEF 是等腰直角三角形;(2)四边形CDFE 不可能为正方形,(3)DE 长度的最小值为4;(4)连接CF ,CF 恰好把四边形CDFE 的面积分成1:2两部分,则CE =13或143其中正确的结论个数是A .1个B .2个C .3个D .4个【答案】A【解析】【分析】 连接CF ,证明△ADF ≌△CEF ,根据全等三角形的性质判断①,根据正方形的判定定理判断②,根据勾股定理判断③,根据面积判断④.【详解】连接CF ,∵△ABC 是等腰直角三角形,∴∠FCB=∠A=45 ,CF=AF=FB ;∵AD=CE ,∴△ADF ≌△CEF(SAS);∴EF=DF ,∠CFE=∠AFD ;∵∠AFD+∠CFD=90∘,∴∠CFE+∠CFD=∠EFD=90∘,又∵EF=DF∴△EDF 是等腰直角三角形(故(1)正确).当D. E 分别为AC 、BC 中点时,四边形CDFE 是正方形(故(2)错误).由于△DEF 是等腰直角三角形,因此当DE 最小时,DF 也最小;即当DF⊥AC时,DE最小,此时142DF BC== .∴242DE DF== (故(3)错误).∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CDFE=S△AFC,∵CF恰好把四边形CDFE的面积分成1:2两部分∴S△CEF:S△CDF=1:2 或S△CEF:S△CDF=2:1即S△ADF:S△CDF=1:2 或S△ADF:S△CDF=2:1当S△ADF:S△CDF=1:2时,S△ADF=13S△ACF=111684323⨯⨯⨯=又∵S△ADF=1422AD AD ⨯⨯=∴2AD=16 3∴AD=83(故(4)错误).故选:A.【点睛】本题考查了全等三角形,等腰直角三角形,以及勾股定理,掌握全等三角形,等腰直角三角形,以及勾股定理是解题的关键.24.如图,与都是等边三角形,,下列结论中,正确的个数是( )①;②;③;④若,且,则.A.1 B.2 C.3 D.4【答案】C【解析】【分析】利用全等三角形的判定和性质一一判断即可.【详解】解:∵与都是等边三角形∴AD=AB,AC=AE,∠DAB=∠EAC=60°∴∠DAB+∠BAC=∠EAC +∠BAC即∠DAC=∠EAB∴∴,①正确;∵∴∠ADO=∠ABO∴∠BOD=∠DAB=60°,②正确∵∠BDA=∠CEA=60°,∠ADC≠∠AEB∴∠BDA-∠ADC≠∠CEA-∠AEB∴,③错误∵∴∠DAC+∠BCA=180°∵∠DAB=60°,∴∠BCA=180°-∠DAB-∠BAC=30°∵∠ACE=60°∴∠BCE=∠ACE+∠BCA=60°+30°=90°∴④正确故由①②④三个正确,故选:C【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、角平分线的判定定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.如图,点P是AB上任意一点,∠ABC=∠ABD,还应补充一个条件,才能推出△APC≌△APD.从下列条件中补充一个条件,不一定能推出△APC≌△APD的是( )A.BC=BD;B.AC=AD;C.∠ACB=∠ADB;D.∠CAB=∠DAB【答案】B【解析】根据题意,∠ABC=∠ABD,AB是公共边,结合选项,逐个验证得出:A、补充BC=BD,先证出△BPC≌△BPD,后能推出△APC≌△APD,故正确;B、补充AC=AD,不能推出△APC≌△APD,故错误;C、补充∠ACB=∠ADB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故正确;D、补充∠CAB=∠DAB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故正确.故选B.点睛:本题考查了三角形全等判定,三角形全等的判定定理:有AAS,SSS,ASA,SAS.注意SSA是不能证明三角形全等的,做题时要逐个验证,排除错误的选项.26.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④【答案】D【解析】分析:根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.详解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP,∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD,∴PH=PD,故③正确.∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确.故选D.点睛:本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.27.如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC.若BE=7,AB=3,则AD 的长为()A.3 B.5 C.4 D.不确定【答案】C【解析】根据同角的余角相等求出∠ACD=∠E,再利用“角角边”证明△ACD≌△BCE,根据全等三角形对应边相等可得AD=BC,AC=BE=7,然后求解BC=AC-AB=7-3=4.故选:C.点睛:本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法是解题的关键.28.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据周角的定义先求出∠BPC的度数,再根据对称性得到△BPC为等腰三角形,∠PBC即可求出;根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【详解】根据题意,BPC36060290150∠=-⨯-=,BP PC=,()PBC180150215∠∴=-÷=,①正确;根据题意可得四边形ABCD是轴对称图形,④正确;∵∠DAB+∠ABC=45°+60°+60°+15°=180°,∴AD//BC,②正确;∵∠ABC+∠BCP=60°+15°+15°=90°,∴PC⊥AB,③正确,所以四个命题都正确,故选D.【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、等腰三角形的判定与性质、轴对称图形的定义与判定等,熟练掌握各相关性质与定理是解题的关键.29.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【答案】A【解析】试题解析:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,{C CBFCD BDEDC BDF∠=∠=∠=∠,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.考点:1.全等三角形的判定与性质;2.角平分线的性质;3.相似三角形的判定与性质.30.如图,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE交于O,连结AO,则图中共有全等三角形的对数为()A.2对B.3对C.4对D.5对【答案】C【解析】【分析】先根据条件,利用AAS可知△ADB≌△AEC,然后再利用HL、ASA即可判断△AOE≌△AOD,△BOE≌△COD,△AOC≌△AOB.【详解】∵AB=AC,BD⊥AC于D,CE⊥AB于E,∴∠ADB=∠AEC=90°,∵∠A为公共角,∴△ADB≌△AEC,(AAS)∴AE=AD,∠B=∠C∴BE=CD,∵AE=AD,OA=OA,∠ADB=∠AEC=90°,∴△AOE≌△AOD(HL),∴∠OAC=∠OAB,∵∠B=∠C,AB=AC,∠OAC=∠OAB,∴△AOC≌△AOB.(ASA)∵∠B=∠C,BE=CD,∠ODC=∠OEB=90°,∴△BOE≌△COD(ASA).综上:共有4对全等三角形,故选C.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要从已知条件开始结合全等的判定方法逐一验证,由易到难,不重不漏.。

(常考题)北师大版初中数学八年级数学上册第七单元《平行线的证明》测试卷(含答案解析)

(常考题)北师大版初中数学八年级数学上册第七单元《平行线的证明》测试卷(含答案解析)

一、选择题1.下列命题,正确的是( )A .相等的角是内错角B .如果22x y =,那么x y =C .有一个角是60︒的三角形是等边三角形D .角平分线上的点到角两边的距离相等 2.下列四个命题中为真命题的是( )A .两条直线被第三条直线所截,内错角相等B .若1∠和2∠是对顶角,则12∠=∠C .三角形的一个外角大于任何一个内角D .22a b =,则a b =3.如图,在ABC 中,90BAC ∠=︒, AD 是BC 边上的高,BE 是AC 边的中线,CF 是ACB ∠的角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是( ) ①ABE △的面积是ABC 的面积的一半;②BH CH =;③AF AG =;④FAG FCB ∠=∠.A .①②③④B .①②C .①③D .①④ 4.下列选项中,可以用来证明命题“若,a b >则a b >”是假命题的反例是( ) A .1,0a b == B .1,2a b ==- C .2,1a b =-= D .2,1a b ==- 5.下列语句正确的有( )个.①“对顶角相等”的逆命题是真命题.②“同角(或等角)的补角相等”是假命题.③立方根等于它本身的数是非负数.④用反证法证明:如果在ABC 中,90C ∠=︒,那么A ∠、B 中至少有一个角不大于45°时,应假设45A ∠>︒,45B ∠>︒.⑤如果一个等腰三角形的两边长分别是2cm 和5cm ,则周长是9cm 或12cm . A .4 B .3 C .2 D .16.如图,AD 平分∠BAC ,AE ⊥BC ,∠B=45°,∠C=73°,则∠DAE 的度数是( ).A .22°B .16°C .14°D .23°7.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠ 8.下面命题中是真命题的有( )①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A .1个B .2个C .3个D .4个9.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④ 10.如图,O 是直线AB 上一点,OE 平分∠BOD ,OF ⊥OE ,∠D =110°,添加一个条件,仍不能判定AB ∥CD ,添加的条件可能是( )A .∠BOE =55°B .∠DOF =35°C .∠BOE +∠AOF =90°D .∠AOF =35° 11.如图,在四边形ABCD 中,要得到AB CD ∥,只需要添加一个条件,这个条件可以是( )A .13∠=∠B .24∠∠=C .BD ∠=∠D .12180B ∠+∠+∠=︒ 12.下列说法正确的是( ) A .同位角相等 B .相等的角是对顶角C .内错角相等,两直线平行D .互补的两个角一定有一个锐角 二、填空题13.如图,ABC ∆中,60B ∠=︒,55C ∠=︒,点D 为BC 边上一动点.分别作点D 关于AB ,AC 的对称点E ,F ,连接AE ,AF .则EAF ∠的度数等于_______.14.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.15.如图,25AOB ∠=︒,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ α∠=,PQN β∠=,当MP PQ QN ++的值最小时,βα-的大小=__________(度).16.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.17.如图,在△ABC 中,AD 是高,AE 是角平分线,若∠B =72°,∠DAE =16°,则∠C =_____度.18.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的是_____(填序号)19.下列命题是假命题的是有____________①内错角相等 ②同位角相等,两直线平行 ③一个角的余角不等于它本身 ④相等的角是对顶角.20.如图,将ABC 纸片沿DE 折叠,使点A 落在点'A 处,且'A B 平分ABC ∠,'A C 平分ACB ∠,若1268∠+∠=︒,则'BA C ∠的度数是______________.三、解答题21.如图,178∠=︒,2102∠=︒,C D ∠=∠.求证://AC DF .22.如图,已知ABC 与ADG 均为等边三角形,点E 在GD 的延长线上,且GE AC =,连接AE 、BD .(1)求证:AGE DAB ≌△△;(2)F 是BC 上的一点,连接AF 、EF ,AF 与GE 相交于M ,若AEF 是等边三角形,求证://BD EF .23.如图①,ABC 中,BD 平分ABC ∠,且与ABC 的外角ACE ∠的角平分线交于点D .(1)若75ABC ∠=︒,45ACB ∠=︒,求D ∠的度数;(2)若把A ∠截去,得到四边形MNCB ,如图②,猜想D ∠、M ∠、N ∠的关系,并说明理由.24.如图,AD ,AE 和AF 分别是ABC ∆的高、角平分线和中线.(1)对于下面的五个结论:①2BC BF =;②12CAE CAB ∠=∠;③BE CE =;④AD BC ⊥;⑤AFB AFC S S ∆∆=.其中正确的是 (只填序号)(2)若66C ∠=︒,30ABC ∠=︒,求DAE ∠的度数.25.如图,在ABC 中,EF AB ⊥,CD AB ⊥,G 在AC 边上,AGD ACB ∠=∠.求证:(1)12∠=∠;(2)90BCD ADG ∠+∠=︒.26.如图,已知直线//AB CD ,100A C ∠=∠=︒,E 、F 在CD 上,且满足DBF ABD ∠=∠,BE 平分CBF ∠.(1)直线AD 与BC 有何位置关系?请说明理由.(2)求DBE ∠的度数.(3)若平行移动AD ,在平行移动AD 的过程中,存在使BEC ADB ∠=∠的情况,求ADB ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据各个选项中的说法,可以利用内错角的定义,数的开方,等边三角形的判定及角平分线的性质进行判断是否为真命题,即可得出结论.【详解】解:A 、相等的角不一定是内错角.故原命题是假命题,故此选项不符合题意;B 、如果22x y =,那么x y =.如()2222-=,但()22-≠,此命题是假命题,故此选项不符合题意;C 、有一个角为60°的三角形不一定是等边三角形,如一个三角形的三个角是60°,50°,70°,此命题是假命题,故此选项不符合题意;D 、角平分线上的点到角两边的距离相等,此命题是真命题,故此选项符合题意. 故选:D .【点睛】本题考查了命题与定理,明确题意,灵活运用所学知识判断出各个选项中的命题的真假是解答本题的关键.2.B解析:B【分析】根据平行线的性质、对顶角相等、三角形外角定理、乘方的性质逐项判断即可求解.【详解】解:A. “两条直线被第三条直线所截,内错角相等”,缺少两直线平行这一条件,判断错误,是假命题,不合题意;B. “若1∠和2∠是对顶角,则12∠=∠”,是真命题,符合题意;C. “三角形的一个外角大于任何一个内角”,应为“三角形的一个外角大于任何一个和它不相邻的内角”,判断错误,是假命题,不合题意;D. “22a b =,则a b =,”是假命题,a 和b 也可以互为相反数,不合题意.故选:B【点睛】本题考查了平行线的性质、对顶角相等、三角形外角定理、乘方的性质、真假命题等知识,熟知相关知识是解题关键.3.C解析:C【分析】根据三角形的面积公式进行判断①,根据等腰三角形的判定判断②即可,根据三角形的内角和定理求出∠AFG=∠AGF ,再根据等腰三角形的判定判断③即可,根据三角形的内角和定理求出∠FAG=∠ACB ,再判断④即可.【详解】解:∵BE 是AC 边的中线,∴AE=CE 12=AC , ∵△ABE 的面积12=×AE×AB ,△ABC 的面积12=×AC×AB , ∴△ABE 的面积等于△ABC 的面积的一半,故①正确;根据已知不能推出∠HBC=∠HCB ,即不能推出HB=HC ,故②错误;∵在△ACF 和△DGC 中,∠BAC=∠ADC=90°,∠ACF=∠FCB ,∴∠AFG=90°-∠ACF ,∠AGF=∠DGC=90°-∠FCB ,∴∠AFG=∠AGF ,∴AF=AG ,故③正确;∵AD 是BC 边上的高,∴∠ADC=90°,∵∠BAC=90°,∴∠DAC+∠ACB=90°,∠FAG+∠DAC=90°,∴∠FAG=∠ACB ,∵CF 是∠ACB 的角平分线,∴∠ACF=∠FCB ,∠ACB=2∠FCB ,∴∠FAG=2∠FCB ,故④错误;即正确的为①③,故选:C .【点睛】本题考查了角平分线的定义,三角形的面积,三角形的中线,三角形的高,三角形内角和定理等知识点,能综合运用定理进行推理是解此题的关键.4.B解析:B【分析】需要证明一个结论不成立,可以举反例证明;【详解】∵当1a =,2b =-时,1<2-,∴证明了命题“若,a b >则a b >”是假命题;故答案选B .【点睛】本题主要考查了命题与定理,准确分析判断是解题的关键.5.D解析:D【分析】先写出逆命题,进而即可判断;根据补角的性质,即可判断②;根据立方根的性质,即可判断③;根据反证法的定义,即可判断④根据等腰三角形的定义和三角形三边长关系,即可判断⑤.【详解】①“对顶角相等”的逆命题是“相等的角是对顶角”,是假命题,故该小题错误;②“同角(或等角)的补角相等”是真命题,故该小题错误;③立方根等于它本身的数是0,±1,故该小题错误;④用反证法证明:如果在ABC 中,90C ∠=︒,那么A ∠、B 中至少有一个角不大于45°时,应假设45A ∠>︒,45B ∠>︒,故该小题正确;⑤如果一个等腰三角形的两边长分别是2cm 和5cm ,则周长是12cm ,故该小题错误. 故选D .【点睛】本题主要考查补角的性质,真假命题,反证法以及等腰三角形的定义,掌握反证法的定义,等腰三角形的定义是解题的关键.6.C解析:C【分析】根据∠DAE=∠DAC-∠CAE,只要求出∠DAC,∠CAE即可.【详解】解:∵∠BAC=180°-∠B-∠C,∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠DAC=1∠BAC=31°,2∵AE⊥BC,∴∠AEC=90°,∴∠CAE=90°-73°=17°,∴∠DAE=31°-17°=14°,故选:C.【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识.7.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A、正确,符合不等式的性质;B、正确,符合不等式的性质.C、正确,符合不等式的性质;D、错误,例如a=2,b=0;故选D.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.8.C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.9.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.10.C解析:C【分析】根据平行线的判定定理判断即可.【详解】解:∵OE平分∠BOD,∠BOE=55°,∴∠BOD=2∠BOE=110°,∵∠D=110°,∴∠BOD=∠D,∴CD∥AB,故A不符合题意;∵OF⊥OE,∴∠FOE=90°,∠DOF=35°,∴∠DOE=55°,∵OE平分∠BOD,∴∠DOB=2∠DOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故B不符合题意;∵∠BOE+∠AOF=90°,∴∠EOF=90°,但不能判断AB∥CD,故C符合题意;∵OF⊥OE,∴∠FOE=90°,∠AOF=35°,∴∠BOE=55°,∵OE平分∠BOD,∴∠DOB=2∠BOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故D不符合题意;故选:C.【点睛】本题考查了角平分线的性质和平行线的判定定理,熟练掌握平行线的判定定理即可得到结论.11.B解析:B【解析】A不可以;∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行),不能得出AB∥CD,∴A不可以;B可以;∵∠2=∠4,∴AB∥CD(内错角相等,两直线平行);∴B可以;C、D不可以;∵∠B=∠D,不能得出AB∥CD;∵∠1+∠2+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行),不能得出AB∥BC;∴C、D不可以;故选B.12.C解析:C【分析】直接利用平行线的性质、判定以及对顶角的定义、补角的特征分别判断得出答案.【详解】A 、两直线平行,同位才能角相等,此项错误;B 、相等的角不一定是对顶角,此项错误;C 、内错角相等,两直线平行,此项正确;D 、互补的两个角不一定有一个锐角,有可能是两个直角,此项错误;故选:C .【点睛】本题考查了平行线的性质、判定以及对顶角的定义等,掌握平行线与相交线的相关知识是解题关键.二、填空题13.130°【分析】利用轴对称的性质可知:∠EAB =∠BAD ∠FAC =∠CAD 再求出∠BAC 的度数即可求解【详解】连接AD ∵D 点分别以ABAC 为对称轴的对称点为EF ∴∠EAB =∠BAD ∠FAC =∠CAD解析:130°【分析】利用轴对称的性质可知:∠EAB =∠BAD ,∠FAC =∠CAD ,再求出∠BAC 的度数,即可求解.【详解】连接AD ,∵D 点分别以AB 、AC 为对称轴的对称点为E 、F ,∴∠EAB =∠BAD ,∠FAC =∠CAD ,∵60B ∠=︒,55C ∠=︒,∴∠BAC =∠BAD +∠DAC =180°−60°−55°=65°,∴∠EAF =2∠BAC =130°,故答案是:130°.【点睛】此题考查轴对称的性质,关键是利用轴对称的性质解答.14.【分析】根据翻折变换的性质得出∠ACD=∠BCD ∠CDB=∠CDB′进而利用三角形内角和定理得出∠BDC=∠B′DC 再利用平角的定义即可得出答案【详解】解:∵将Rt △ABC 沿CD 折叠使点B 落在AC 边解析:40︒【分析】根据翻折变换的性质得出∠ACD=∠BCD ,∠CDB=∠CDB′,进而利用三角形内角和定理得出∠BDC=∠B′DC ,再利用平角的定义,即可得出答案.【详解】解:∵将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B′处,∴∠ACD=∠BCD ,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°-25°=65°,∴∠BDC=∠B′DC=180°-45°-65°=70°,∴∠ADB′=180°-70°-70°=40°.故答案为:40°.【点睛】此题主要考查了翻折变换的性质以及三角形内角和定理,得出∠BDC 和∠B′DC 的度数是解题关键.15.50【分析】作M 关于OB 的对称点N 关于OA 的对称点连接交OB 于点P 交OA 于点Q 连接MPQN 可知此时最小此时再根据三角形外角的性质和平角的定义即可得出结论【详解】作M 关于OB 的对称点N 关于OA 的对称点 解析:50【分析】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,可知此时MP PQ QN ++最小,此时OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,再根据三角形外角的性质和平角的定义即可得出结论.【详解】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,如图所示.根据两点之间,线段最短,可知此时MP PQ QN++最小,即MP PQ QN M N ''++=, ∴OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,∵MPQ PQN αβ∠=∠=,, ∴11(180)(180)22QPN OQP αβ∠=︒-∠=︒-,, ∵QPN AOB OQP ∠=∠+∠,25AOB ∠=︒,∴11(180)25(180)22αβ︒-=︒+︒- , ∴50βα-=︒ . 故答案为:50.【点睛】本题考查轴对称-最短问题、三角形内角和,三角形外角的性质等知识,灵活运用所学知识解决问题是解题的关键,综合性较强.16.5°【分析】根据角平分线的定义可得再根据折叠的性质可得再根据平分可得进而可得【详解】解:∵的角平分线为∴又∵与关于对称∴∵与关于对称∴又∵平分∴又∵为折痕∴∵∴又∵∴∴又∵∴故答案为:675°【点睛 解析:5°.【分析】根据角平分线的定义可得1FBE ∠=∠,再根据折叠的性质可得1MBF FBE ∠=∠=∠,NBF FBD ∠=∠,CBA CBF ∠=∠, 再根据BN 平分CBM ∠可得CBN NBM ∠=∠,进而可得318067.58ABC ∠=⨯=. 【详解】解:∵FBD ∠的角平分线为BE ,∴1FBE ∠=∠, 又∵BM 与BE 关于BF 对称,∴1MBF FBE ∠=∠=∠, ∵BN 与BD 关于BF 对称,∴NBF FBD ∠=∠FBE EBD =∠+∠11=∠+∠21=∠,又∵BN 平分CBM ∠,∴CBN NBM ∠=∠,又∵BC 为折痕,∴CBA CBF ∠=∠CBN NBF =∠+∠21NBM =∠+∠,∵NBM NBF MBF ∠=∠-∠211=∠=∠1=∠,∴31CBA ∠=∠,又∵180CBA CBF FBD ∠+∠+∠=,∴3112121180∠+∠+∠+∠=,∴81180∠=,又∵31ABC ∠=∠, ∴318067.58ABC ∠=⨯=, 故答案为:67.5°.【点睛】 本题考查了折叠的性质,角平分线的定义,平角的定义,解题的关键是理解题意,找到31808ABC ∠=⨯. 17.40【分析】根据三角形的内角和得出再利用角平分线得出利用三角形内角和解答即可【详解】是高是角平分线故答案为40【点睛】本题考查了三角形的内角和定理熟悉直角三角形两锐角互余和三角形的内角和等于是解题的 解析:40【分析】根据三角形的内角和得出18BAD ∠=,再利用角平分线得出68BAC ∠=,利用三角形内角和解答即可. 【详解】AD 是高,72B ∠=,18BAD ∴∠=,181634BAE ∴∠=+=,AE 是角平分线,68BAC ∴∠=,180726840C ∴∠=--=.故答案为40.【点睛】本题考查了三角形的内角和定理,熟悉直角三角形两锐角互余和三角形的内角和等于180是解题的关键.18.①③【解析】分析:分别根据平行线的性质对顶角及邻补角的定义平行公理及推论对各小题进行逐一分析即可详解:①符合对顶角的性质故①正确;②两直线平行内错角相等故②错误;③符合平行线的判定定理故③正确;④如解析:①③【解析】分析:分别根据平行线的性质、对顶角及邻补角的定义、平行公理及推论对各小题进行逐一分析即可.详解:①符合对顶角的性质,故①正确;②两直线平行,内错角相等,故②错误;③符合平行线的判定定理,故③正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故④错误.故答案为①③.点睛:本题考查的是平行线的性质、对顶角及邻补角的定义、平行公理及推论,熟知以上各知识点是解答此题的关键.19.①③④【分析】根据平行线的判定与性质判断①②利用反证法证明③④即可【详解】①应该是两直线平行内错角相等故①是假命题;②同位角相等两直线平行正确故②是真命题;③直角的余角等于它本身故③是假命题;④相等解析:①③④【分析】根据平行线的判定与性质判断①②,利用反证法证明③④即可.【详解】①应该是两直线平行,内错角相等,故①是假命题;②同位角相等,两直线平行,正确,故②是真命题;③直角的余角等于它本身,故③是假命题;④相等的角不一定是对顶角,故④是假命题.故答案为:①③④.【点睛】本题主要考查判断命题的真假,解此题的关键在于熟练掌握各个基本知识点.20.107°【详解】【考点】几何图形翻折变换(折叠问题)四边形内角和定理平角的定义三角形的两条内角平分线所夹的角与顶角的关系【分析】将纸片沿折叠使点落在点处可知根据四边形内角和等于可得而所以所以根据可求 解析:107°【详解】【考点】几何图形翻折变换(折叠问题)、四边形内角和定理、平角的定义、三角形的两条内角平分线所夹的角与顶角的关系.【分析】将ABC ∆纸片沿DE 折叠,使点A 落在点'A 处,可知A DA E ∠=∠' .根据四边形内角和等于360︒,可得360A DA E ADA AEA ︒''∠+∠+∠+∠=' .而1180ADA ︒'∠+∠=,2180AEA ︒'∠+∠=,所以12360ADA AEA ︒∠+∠+∠+='∠',所以12A ∠+∠=∠+2DA E A '+∠=∠ .根据1268︒∠+∠=,可求出68234A ︒︒∠=÷= .根据'A B 平分ABC ∠,'A C 平分ACB ∠ 可知,'BA C ∠是两条内角平分线所夹的角,根据公式有'BA C ∠190902A ︒︒=+∠= 1341072︒︒+⨯= . 【解答】解:根据折叠可得A DA E ∠=∠',根据四边形内角和等于360︒,可得360A DA E ADA AEA ︒''∠+∠+∠+∠=' . 根据平角的定义有1180ADA ︒'∠+∠=,2180AEA ︒'∠+∠=12360ADA AEA ︒''∴∠+∠+∠+∠=122A DA E A ∴∠+∠=∠+='∠∠'A B 平分ABC ∠,'A C 平分ACB ∠∴'BA C ∠1190903410722A ︒︒︒︒=+∠=+⨯= 故答案为:107︒ .三、解答题21.证明见解析【分析】先根据已给的角度判断BD//CE ,从而可得∠ABD=∠C ,再根据等量代换可得∠ABD=∠D ,从而可证//AC DF .【详解】证明:∵178∠=︒,2102∠=︒,∴∠1+∠2=78°+102°=180°,∴BD//CE ,∴∠ABD=∠C ,∵C D ∠=∠,∴∠ABD=∠D ,∴//AC DF .【点睛】本题考查平行线的性质和判定.熟练掌握平行线的性质和判定定理,并能正确识别同位角、同旁内角是解题关键.22.(1)见解析;(2)见解析.【分析】(1)由等边三角形的性质,解得60BAC DAG ∠=∠=︒,,AB BC AC AD DG AG ====,结合GE AC =,可证明ABD ≅()GEA SAS ; (2)由等边三角形的性质,解得60ABC AGD ∠=∠=︒,60ABC AEF ∠=∠=︒继而根据同位角相等,两直线平行判定//GE BC ,由两直线平行,内错角相等解得EFC GEF ∠=∠,接着由全等三角形的对应角相等得到ABD GEA ∠=∠,最后由角的和差解得DBF GEF ∠=∠整理得DBF EFC ∠=∠据此解题即可.【详解】解:(1)ABC 与ADG 均为等边三角形,60BAC DAG ∴∠=∠=︒,,AB BC AC AD DG AG ==== GE AC =∴GE AB =在DAB 与AGE 中,AD AG BAD EGA AB GE =⎧⎪∠=∠⎨⎪=⎩ABD ∴≅()GEA SAS ;(2)ABC 与ADG 均为等边三角形,60ABC AGD ∴∠=∠=︒//GE BC ∴EFC GEF ∴∠=∠ABD ≅()GEA SASABD GEA ∴∠=∠若AEF 是等边三角形,60ABC AEF ∴∠=∠=︒ABC ABD AEF GEA ∴∠-∠=∠-∠即DBF GEF ∠=∠DBF EFC ∴∠=∠//BD EF ∴.【点睛】本题考查等边三角形的性质、全等三角形的判定与性质、平行线的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.23.(1)30D ∠=︒;(2)()11802D M N ∠=∠+∠-︒,理由见解析 【分析】(1)根据三角形内角和定理以及角平分线定义,先求出∠D 、∠A 的等式,推出∠A=2∠D ,最后代入求出即可;(2)根据(1)中的结论即可得到结论.【详解】解:ACE A ABC ∠=∠+∠, ACD ECD A ABD DBE ∴∠+∠=∠+∠+∠,DCE D DBC ∠=∠+∠,又∵BD 平分ABC ∠,CD 平分ACE ∠,ABD DBE ∴∠=∠,ACD ECD ∠=∠,()2A DCE DBC ∴∠=∠-∠,D DCE DBC ∠=∠-∠,2A D ∴∠=∠,75ABC ∠=︒,45ACB ∠=︒,60A ∴∠=︒,30D ∴∠=︒;(2)()11802D M N ∠=∠+∠-︒; 理由:延长BM 、CN 交于点A , 则180A BMN CNM ∠=∠+∠-︒,由(1)知,12D A ∠=∠, ()11802D M N ∴∠=∠+∠-︒.【点睛】此题考查三角形内角和定理以及角平分线的定义的综合运用,解此题的关键是求出∠A=2∠D .24.解:(1)①②④⑤;(2)18DAE ∠=︒【分析】(1)根据三角形的高、角平分线和中线的定义即可得到AD ⊥BC ,∠CAE=12∠CAB ,BC=2BF ,S △AFB =S △AFC .(2)先根据三角形内角和得到∠CAB=180°-∠ABC-∠C=84°,再根据角平分线与高线的定义得到∠CAE=12∠CAB=42°,∠ADC=90°,则∠DAC=90°-∠C=24°,然后利用∠DAE=∠CAE-∠DAC 计算即可.【详解】(1)∵AD ,AE 和AF 分别是△ABC 的高、角平分线和中线, ∴AD ⊥BC ,∠CAE=∠BAE=12∠CAB ,BF=CF ,BC=2BF , ∵S △AFB =12BF•AD ,S △AFC =12CF•AD , ∴S △AFB =S △AFC ,故①②④⑤正确,③错误,故答案为①②④⑤;(2)∵∠C=66°,∠ABC=30°,∴∠CAB=180°-∠ABC-∠C=84°,∴∠CAE=12∠CAB=42°, ∵∠ADC=90°,∠C=66°,∴∠DAC=24° ∴∠DAE=∠CAE-∠DAC=42°-24°=18°.【点睛】本题考查了三角形的高、角平分线和中线的定义,三角形内角和为180°.也考查了三角形的面积.正确的识别图形是解题的关键.25.(1)见解析;(2)见解析【分析】(1)根据同位角相等证得//DG BC ,根据垂直得到同位角相等进而得到//FE DC ,然后根据平行线的性质,利用等量代换即可证明;(2)根据90CDB ∠=︒,得到190ADG ∠+∠=︒,结合(1)中结论12∠=∠和1DCB ∠=∠,利用等量代换即可证明.【详解】(1)∵AGD ACB ∠=∠∴//DG BC∴1DCB ∠=∠∵EF AB ⊥,CD AB ⊥∴//FE DC∴2DCB =∠∠∴12∠=∠(2)由(1)得1DCB ∠=∠∵CD AB ⊥∴90CDB ∠=︒∴190ADG ∠+∠=︒又∵1DCB ∠=∠∴90BCD ADG ∠+∠=︒【点睛】本题考查了平行的判定和性质,等量代换,熟练掌握平行线的判定和性质是本题的关键. 26.(1)直线AD 与BC 互相平行,理由见解析;(2)40DBE ∴∠=︒(3)存在,60BEC ADB ∠=∠=︒.【分析】(1)根据平行线的性质,以及等量代换证明180ADC C ∠+∠=︒,即可证得//AD BC ; (2)由直线//AB CD ,根据两直线平行,同旁内角互补,即可求得ABC ∠的度数,又由12DBE ABC ∠=∠,即可求得DBE ∠的度数. (3)首先设ABD DBF BDC x ∠=∠=∠=︒,由直线//AB CD ,根据两直线平行,同旁内角互补与两直线平行,内错角相等,可求得BEC ∠与ADB ∠的度数,又由BEC ADB ∠=∠,即可得方程:4080x x ︒+︒=︒-︒,解此方程即可求得答案.【详解】解:(1)直线AD 与BC 互相平行,理由://AB CD ,180A ADC ∴∠+∠=︒,又A C ∠=∠180ADC C ∴∠+∠=︒,//AD BC ∴;(2)//AB CD ,18080ABC C ∴∠=︒-∠=︒,DBF ABD ∠=∠,BE 平分CBF ∠,11140222DBE ABF CBF ABC ∴∠=∠+∠=∠=︒; (3)存在.设ABD DBF BDC x ∠=∠=∠=︒.//AB CD ,40BEC ABE x ∴∠=∠=︒+︒;//AB CD ,18080ADC A ∴∠=︒-∠=︒,80ADB x ∴∠=︒-︒.若BEC ADB ∠=∠,则4080x x ︒+︒=︒-︒,得20x ︒=︒.∴存在60BEC ADB ∠=∠=︒.【点睛】此题主要考查了平行线的性质与判定.解题的关键是注意掌握两直线平行,同旁内角互补与两直线平行,内错角相等定理的应用,注意数形结合与方程思想的应用.。

北师大版八年级(上)期末数学压轴题系列专题练习(含答案)

北师大版八年级(上)期末数学压轴题系列专题练习(含答案)

图3EDBA图2EDCBA图1EDCBA2018-2019学年北师大版八年级数学(上)八年级数学期末试题北师大版八年级上册期末压轴题系列11、如图,已知:点D 是△ABC 的边BC 上一动点,且AB =AC ,DA =DE ,∠BAC =∠ADE =α.⑴如图1,当α=60°时,∠BCE = ;⑵如图2,当α=90°时,试判断∠BCE 的度数是否发生改变,若变化,请指出其变化范围;若不变化,请求出其值,并给出证明;(图1) (图2) (图3)⑶如图3,当α=120°时,则∠BCE = ;2、如图1,在平面直角坐标系xoy 中,直线6y x =+与x 轴交于A ,与y 轴交于B ,BC ⊥AB 交x 轴于C 。

①求△ABC 的面积。

如图2,②D 为OA 延长线上一动点,以BD 为直角边做等腰直角三角形BDE ,连结EA .求直线EA 的解析式.③点E 是y 轴正半轴上一点,且∠OAE =30°,上一动点,是判断是否存在这样的点M 、N ,使得OM +NM 的值最小,若存在,请写出其最小值,并加以说明.3. 如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+,(1)求直线2l 的解析式;(2)过A 点在△ABC 的外部作一条直线3l ,过点B 作BE ⊥3l 于E ,过点C 作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF =EF(3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。

在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。

4. 如图①,直线AB 与x 轴负半轴、y 轴正半轴分别交于A 、B 两点.OA 、OB 的长度分别为a 和b ,且满足2220a ab b -+=.⑴判断△AOB 的形状.⑵如图②,正比例函数(0)y kx k =<的图象与直线AB 交于点Q ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM =9,BN =4,求MN 的长.⑶如图③,E 为AB 上一动点,以AE 为斜边作等腰直角△ADE ,P 为BE 的中点,连结PD 、PO ,试问:线段PD 、PO 是否存在某种确定的数量关系和位置关系?写出你的结论并证明.①OQ NMyxBA②OPy xE DBA③5、如图,已知△ABC 和△ADC是以AC为公共底边的等腰三角形,E、F分别在AD和CD上,已知:∠ADC+∠ABC=180°,∠ABC=2∠EBF;(1)求证:EF=AE+FC(2)若点E、F在直线AD和BD上,则是否有类似的结论?6、操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN.(1)探究线段BM、MN、NC之间的关系,并加以证明;(2)若点M、N分别是射线AB、CA上的点,其它条件不变,请你再探线段BM,MN,NC之间的关系,在图④中画出图形,并说明理由.(3)求证:CN-BM=MN图①图②图③图④EDCBAF北师大版八年级上册期末压轴题5答案; 1、⑴如图1,当α=60°时,∠BCE =120°;⑵证明:如图,过D 作DF ⊥BC ,交CA 或延长线于F 。

北师大版八年级数学上册第五章《二元一次方程组 》章末复习题含答案解析 (33)

北师大版八年级数学上册第五章《二元一次方程组 》章末复习题含答案解析 (33)

一、选择题1. 如图,直角坐标系 xOy 中,A (0,5),直线 x =−5 与 x 轴交于点 D ,直线 y =38x −398与 x轴及直线 x =−5 分别交于点 C ,E ,点 B ,E 关于 x 轴对称,连接 AB ,下列结论正确的个数是 ( )① C (−13,0),E (−5,−3); ②直线 AB 的解析式为:y =513x +5;③面积的和 S =S △CDE +S 四边形ABDO ,则 S =32;④设直线 CE 与 y 轴相交于点 F ,则 S △COF =S △CDE +S 四边形ABDO .A . 1 个B . 2 个C . 3 个D . 4 个2. 在等腰 △ABC 中,AB =BC ,点 A (0,m ),B (n,12−2n ),C (2m −1,0),0<m <n <6,O 为坐标原点,若 OB 平分 ∠AOC ,则 m +n 的值 ( ) A . 5 B . 7 C . 5 或 7 D . 4 或 53. 天虹商场现销售某种品牌运动套装,上衣和裤子一套售价 500 元.若将上衣价格下调 5%,将裤子价格上调 8%,则这样一套运动套装的售价提高 0.2%.设上衣和裤子在调价前单价分别为 x 元和 y 元,则可列方程组为 ( ) A . {x +y =500,(1+5%)x +(1−8%)y =500×(1+0.2%)B . {x +y =500,(1−5%)x +(1+8%)y =500×0.2%C . {x +y =500,(1−5%)x +(1+8%)y =500×(1+0.2%)D . {x +y =500,5%x +8%y =500×(1+0.2%)4. 已知二元一次方程组 {x −y =−5,x +2y =−2的解为 {x =−4,y =1, 则在同一平面直角坐标系中,两函数 y =x +5 与 y =−12x −1 的图象的交点坐标为 ( ) A . (−4,1)B . (1,−4)C . (4,−1)D . (−1,4)5. 用加减法解方程组 {2x +3y =3,3x −2y =11 时,有下列四种变形,其中正确的是 ( )A . {4x +6y =3,9x −6y =6B . {6x +3y =9,6x −2y =22C . {4x +6y =6,9x −6y =33D . {6x +9y =3,6x −4y =116. 已知直线 l:y =kx +b (k >0) 过点 (−√3,0) 且与 x 轴相交夹角为 30∘,P 为直线 l 上的动点,A(√3,0),B(3√3,0) 为 x 轴上两点,当 PA +PB 时取到最小值时 P 点坐标为 ( ) A . (√3,2)B . (1,√3)C . (√3,3)D . (2,√3)7. 已知实数 x ,y 满足方程组 {3x −2y =1,x +y =2, 则 x 2−2y 2 的值为 ( )A . −1B . 1C . 3D . −38. 已知 a ,b 满足方程组 {a +2b =82a +b =7,则 a −b 的值为 ( )A . −1B . 0C . 1D . 29. 已知 A (x 1,y 1),B (x 2,y 2) 为一次函数 y =2x +1 的图象上的两个不同的点,且 x 1x 2≠0 .若 M =y 1−1x 1,N =y 2−1x 2,则 M 与 N 的大小关系是A .M >NB .M <NC .M =ND .不确定10. 某公司有生手工和熟手工两个工种的工人,已知一个生手工每天制造的零件比一个熟手工少 30个,一个生手工与两个熟手工每天共可制造 180 个零件,求一个生手工与一个熟手工每天各能制造多少个零件?设一个生手工每天能制作 x 个零件,一个熟手工每天能制造 y 个零件,根据题意可列方程组为 ( ) A . {y −x =30,x +2y =180B . {x −y =30,x +2y =180C . {y −x =30,2x +y =180D . {x −y =30,2x +y =180二、填空题11. 在平面直角坐标系 xOy 中,函数 y 1=x (x <m ) 的图象与函数 y 2=x 2(x ≥m ) 的图象组成图形 G .对于任意实数 n ,过点 P (0,n ) 且与 x 轴平行的直线总与图形 G 有公共点.写出一个满足条件的实数 m 的值为 (写出一个即可).12. 一次函数 y =kx +b 的图象经过点 (1,2),(−2,6),则 k = .13. “驴友”小明分三次从 M 地出发沿着不同的线路(A 线,B 线,C 线)去 N 地.在每条线路上行进的方式都分为穿越丛林、涉水行走和攀登这三种.他涉水行走 4 小时的路程与攀登 6 小时的路程相等.B 线、 C 线路程相等,都比 A 线路程多 32%,A 线总时间等于 C 线总时间的 12,他用了 3 小时穿越丛林、 2 小时涉水行走和 2 小时攀登走完 A 线,在 B 线中穿越丛林、涉水行走和攀登所用时间分别比 A 线上升了 20%,50%,50%,若他用了 x 小时穿越丛林、 y 小时涉水行走和 z 小时攀登走完 C 线,且 x ,y ,z 都为正整数,则 yx+z = .14. 已知方程组 {5x +y =3,ax +5y =4 和 {x −2y =5,5x +by =1 有相同的解,则 12a 2−2ab +2b 2 的值为 .15. 研究二元一次方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2的解与两直线 l 1:a 1x +b 1y =c 1 与 l 2:a 2x +b 2y =c 2(其中 6 个常数均不为零)位置关系的联系.(每小题前一个空选填“有一组”“无”或“有无数组”;后一个空选填“相交”“平行”或“重合”)(1)当 a 1a 2≠b1b 2时,从“数”看,方程组 解;从“形”看,l 1 与 l 2 .(2)当 a 1a 2=b 1b 2≠c1c 2 时,从“数”看,方程组 解;从“形”看,l 1 与 l 2 .(3)当 a 1a 2=b 1b 2=c1c 2时,从“数”看,方程组 解;从“形”看,l 1 与 l 2 .16. 若 {x =2−t,y =4−t 2, 则 y 与 x 满足的关系式为 .17. 已知 {2x +y =7,x +2y =8, 则 x−yx+y = .三、解答题18. 解下列方程(组):(1) {2a +b =4,3a −2b =13;(2) 21−x +1=x1+x .19. 解二元一次方程组:{2x −3y =1,x +2y =4.20. 如图 1,在平面直角坐标系中,直线 l 1 与 x 轴、 y 轴交点分别为点 A 和点 B (0,6),与直线l 2:y =x 交于点 C(3√3−3,y 0),点 D 是线段 OB 的中点,点 P ,Q ,M 分别是直线 l 1,x 轴、 y 轴上的动点.(1) 求直线 l 1 的解析式以及线段 OC 的长度.(2) 求当 △DPQ 周长最小时,使得 ∣PM −QM∣∣ 的值最大的点 M 的坐标. (3) 如图 2,将 △BCO 沿直线 BC 翻折,得到点 O 的对应点 Oʹ,再将 △BCOʹ 绕点 Oʹ 旋转,旋转过程中直线 BOʹ 分别与直线 l 1,和直线 l 2,交于点 E 和点 F ,直线 COʹ 分别与直线 l 1 和直线 l 2,交于点 G 和点 H ,是否存在点 Oʹ 与 E ,F ,G ,H 四点中不同时在直线 l 1 或直线 l 2 上的两点组成的三角形是等腰直角三角形,若存在,请直接写出点 E 的坐标,若不存在,请说明理由.21. 在平面直角坐标系 xOy 中,如果点 P (x,y ) 坐标中 x ,y 的值是关于二元一次方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2的解,那么称点 P (x,y ) 为该方程组的解坐标.如 (−1,−2) 是二元一次方程组 {x −y =1,x +y =−3的解坐标,求: (1) 二元一次方程组 {2x +3y =5,x +3y =1的解坐标为 .(2) 已知方程组 {x +y =1,x −y =3 与方程组 {ax +by =1,ax −by =2的解坐标相同,求 a ,b 的值.(3) 当 m ,n 满足什么条件时,关于 x ,y 的二元一次方程组 {2x +y =n −3,mx −2y =2.①不存在解坐标. ②存在无数多个解坐标.22. 学校准备添置一批计算机.方案 1:到商家直接购买,每台需要 7000 元;方案 2:学校买零部件组装,每台需要 6000 元,另外需要支付安装工工资等其它费用合计 3000 元.设学校需要计算机 x 台,方案 1 与方案 2 的费用分别为 y 1,y 2 元. (1) 分别写出 y 1,y 2 的函数关系式.(2) 当学校添置多少台计算机时,两种方案的费用相同? (3) 采用哪一种方案较省钱?说说你的理由.23. 为响应绿色出行号召,越来越多的市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额 y (元)与骑行时间 x (小时)之间的函数关系,根据图象回答下列问题:(1) 求:当 x ≥0.5 时,手机支付金额 y (元)与骑行时间 x (小时)的函数表达式; (2) 李老师经常骑共享单车出行,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.24. 为了积极推进轨道交通建设,某城市计划修建总长度 36 千米的有轨电车.该任务由甲、乙两工程队先后接力完成甲工程队每天修建 0.06 千米,乙工程队每天修建 0.08 千米,两工程队共需修建 500 天.根据题意,小明和小华两名同学分别列出尚不完整的方程组如下:小明:{x +y =⋯,0.06x +0.08y =⋯小华:{x +y =⋯,x 0.06+y 0.08=⋯(1) 根据两名同学所列的方程组,请你分别指出未知数 x 表示的意义.小明:x 表示 ; 小华:x 表示 .(2) 求甲、乙两工程队分别修建有轨电车多少千米?25. 某水果店 11 月份购进甲、乙两种水果共花费 1800 元,其中甲种水果 10 元/千克,乙种水果16 元/千克.12 月份,这两种水果的进价上调为:甲种水果 13 元/千克,乙种水果 18 元/千克.(1) 若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款400元,求该店11月份购进甲、乙两种水果分别是多少千克?(2) 若12月份将这两种水果进货总量减少到130千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3) 在(2)的条件下,若甲种水果不超过80千克,则12月份该店需要支付这两种水果的货款最少应是多少元?答案一、选择题1. 【答案】B【解析】∵在直线y=−38x−398中,令y=0,则有0=−38x−398,∴x=−13,∴C(−13,0),令x=−5,则有y=−38×(−5)−398=−3,∴E(−5,−3),故①正确;∵点B,E关于x轴对称,∴B(−5,3),∵A(0,5),∴设直线AB的解析式为y=kx+5,∴−5k+5=3,∴k=25,∴直线AB的解析式为y=25x+5,故②错误;由①知,E(−5,−3),∴DE=3,∵C(−13,0),∴CD=−5−(−13)=8,∴S△CDE=12CD×DE=12,由题意知,OA=5,OD=5,BD=3,∴S四边形ABDO =12(BD+OA)×OD=20,∴S=S△CDE+S四边形ABDO=12+20=32,故③正确;④由③知:S△CDE+S四边形ABDO=32,在y=38x−398中,令x=0,y=−398,∴F(0,−398),∴S △COF =12⋅OF ⋅OC =12×398×12=50716=31.6875.∴ ④错误.综上所述,正确的结论有 2 个.【知识点】坐标平面内图形的面积、一次函数的解析式2. 【答案】C【解析】如图,连接 BA ,BC , ∵OB 平分 ∠AOC , ∴ 点 B 在直线 y =x 上, ∴n =12−2n , ∴n =4, ∴B (4,4),∵AB =BC ,OB =OB ,当 △AOB ≌△COB 时,OA =OC ,则有 m =2m −1,解得 m =1, ∴m +n =5,当 △AOB 与 △COB 不全等时,作 BH ⊥y 轴 于 H , 则有 4−(m −4)=2m −1, 解得 m =3, ∴m +n =7.【知识点】几何问题、一次函数的解析式3. 【答案】C【解析】依题意可列方程为 {x +y =500,(1−5%)x +(1+8%)y =500×(1+0.2%).【知识点】经济问题4. 【答案】A【解析】方程组的解就是两个相应的一次函数图象的交点坐标,故交点坐标为 (−4,1),故选A . 【知识点】一次函数与二元一次方程(组)的关系5. 【答案】C【解析】 {2x +3y =3, ⋯⋯①3x −2y =11. ⋯⋯②① ×2,得 4x +6y =6,故A 错误;① ×3,得 6x +9y =9,故B ,D 错误; ② ×3,得 9x −6y =33,故C 正确. 【知识点】加减消元6. 【答案】A【解析】如图.∵ 直线 l:y =kx +b (k >0) 过点 (−√3,0) 且与 x 轴相交夹角为 30∘, ∴OM =√3, ∴ON =√33OM =1,MN =√32=2,∴ 直线 l 为 y =√33x +1,∵OM =OA =√3, ∴AN =MN =2,过 A 点作直线 l 的垂线,交 y 轴于 Aʹ,则 ∠OAAʹ=60∘, ∴OAʹ=√3OA =3, ∴AʹN =2, ∴AʹN =AN , ∵AʹA ⊥ 直线 l , ∴ 直线 l 平分 AAʹ,∴Aʹ 是点 A 关于直线 l 的对称点,连接 AʹB ,交直线 l 于 P ,此时 PA +PB =AʹB ,PA +PB 时取到最小值, ∵OAʹ=3, ∴Aʹ(0,3),设直线 AʹB 的解析式为 y =mx +n ,把 Aʹ(0,3),B(3√3,0) 代入得 {n =3,3√3m +n =0, 解得 {m =−√33,n =3,∴ 直线 AʹB 的解析式为 y =−√33x +3由 {y =√33x +1,y =−√33x +3解得 {x =√3,y =2,∴P 点的坐标为 (√3,2).【知识点】轴对称之最短路径、一次函数与二元一次方程(组)的关系、一次函数的解析式7. 【答案】A【知识点】加减消元8. 【答案】A【知识点】加减消元9. 【答案】C【解析】因为 y 1=2x 1+1,y 2=2x 2+1,分别代入 M =y 1−1x 1,N =y 2−1x 2,得M =2x 1+1−1x 1=2,N =2x 2+1−1x 2=2.所以 M =N .【知识点】一次函数的解析式10. 【答案】A【解析】设一个生手工每天能制作 x 个零件,一个熟手工每天能制造 y 个零件, 根据题意得:{y −x =30,x +2y =180,故选:A .【知识点】工程问题二、填空题11. 【答案】答案不唯一,如:1(0≤m ≤1)【知识点】二次函数与方程12. 【答案】 −43【知识点】一次函数的解析式13. 【答案】 16【解析】 ∵ 他涉水行走 4 小时的路程与攀登 6 小时的路程相等,∴ 可以假设涉水行走的速度为 3n km/h 与攀登的速度为 2n km/h ,穿越丛林的速度为 m km/h . 由题意:{(3m +6n +4n )×1.32=3.6m +9n +6n,3.6m +9n +6n =mx +3ny +2nz,可得 m =5n ,5x +3y +2z =33, ⋯⋯① ∵x +y +z =14, ⋯⋯②由①②消去 z 得到:3x +y =5, ∵x ,y 是正整数, ∴x =1,y =2,z =11,∴y x+z =212=16.【知识点】二元一次方程(组)的应用14. 【答案】 50【解析】由题意得方程组 {5x +y =3, ⋯⋯①x −2y =5, ⋯⋯② ① ×2+ ②得 11x =11,∴x =1,把 x =1 代入①得 y =−2,∴{5x +y =3,x −2y =5的解为 {x =1,y =−2, 把 {x =1,y =−2 代入 {ax +5y =4,5x +by =1 得 {a −10=4,5−2b =1,解得 {a =14,b =2. ∴12a 2−2ab +2b 2=12(a −2b )2=12×(14−4)2=50.【知识点】加减消元15. 【答案】有一组;相交;无;平行;有无数组;重合【解析】(1)当 a 1a 2≠b 1b 2 时,两直线 l 1:a 1x +b 1y =c 1 与 l 2:a 2x +b 2y =c 2 相交,∴ 方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2有唯一解.故答案为有一组,相交. (2)当 a 1a 2=b 1b 2≠c1c 2 时,两直线 l 1:a 1x +b 1y =c 1 与 l 2:a 2x +b 2y =c 2 平行, ∴ 方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2无解.故答案为无,平行. (3)当 a 1a 2=b 1b 2=c1c 2 时,两直线 l 1:a 1x +b 1y =c 1 与 l 2:a 2x +b 2y =c 2 重合, ∴ 方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2有无数组解.故答案为无数组,重合. 【知识点】一次函数与二元一次方程(组)的关系16. 【答案】 y =−x 2+4x【解析】由 x =2−t ,可得:t =2−x ,把 t =2−x 代入 y =4−t 2,可得:y =−x 2+4x ,故答案为:y =−x 2+4x .【知识点】含参二元一次方程组17. 【答案】 −15 【知识点】加减消元三、解答题18. 【答案】(1) {2a +b =4, ⋯⋯①3a −2b =13. ⋯⋯②① ×2+ ②得:7a =21.解得:a =3.把 a =3 代入①得:b =−2.则方程组的解为{a =3,b =−2.(2) 去分母得:2+2x +1−x 2=x −x 2.解得:x =−3.经检验 x =−3 是分式方程的解.【知识点】去分母解分式方程、加减消元19. 【答案】由方程②得x =4−2y,代入到方程①中得:2(4−2y )−3y =1,解得y =1,x =2,所以方程组的解为{x =2,y =1.【知识点】代入消元20. 【答案】(1) 将 C(3√3−3,y 0) 代入 y =x ,得 C 点坐标为 (3√3−3,3√3−3).依题意可设 l 1:y =kx +6.将 C(3√3−3,3√3−3) 代入 y =kx +6,得 3√3−3=(3√3−3)k +6,解得 k =−√3,∴l 1:y =−√3x +6.OC =√(3√3−3)2+(3√3−3)2=3√6−3√2,∴ 直线 l 1 的解析式为 y =−√3x +6,线段 OC 的长度为 3√6−3√2.(2) 如图 1:作点 D 关于 l 1 的对称点 Dʹ,关于 x 轴的对称点 Dʺ,连接 DʹDʺ,DʹDʺ 交 l 1 于点 P ,交 x 轴于点 Q ,此时 △DPQ 的周长最小,直线 PQ 与 y 轴交于 M 点此时 ∣PM −QM∣∣ 的值最大,此时 M 与 Dʺ 重合, ∴M (0,−3).(3) 当点 E (3√32,32) 或 E (3√3−32,3+3√32) 符合条件.【解析】(3) ① △OʹGF 是等腰直角三角形时,GO =GOʹ,∠FGOʹ=90∘,此时 F 与 O 重合(如备用图②),可求 Oʹ(3√3,3),∵OB =OʹB =OOʹ=6,∴E 是 OOʹ 的中点,∴E (3√32,32). ② △OʹEH 是等腰直角三角形时,EH =EOʹ,∠HEOʹ=90∘,此时 H 与 O 重合(如备用图③),∵OOʹ=6,∴OE =3√2,设 E(m,−√3m +6),∴m =3√3−32, ∴E (3√3−32,3+3√32), ∴ 当点 E (3√32,32) 或 E (3√3−32,3+3√32) 符合条件.【知识点】一次函数的解析式、两点间距离公式、找动点,使距离之和最小、一次函数与三角形的综合21. 【答案】(1) (4,−1)(2) {x +y =1, ⋯⋯④x −y =3. ⋯⋯⑤将④ + ⑤得,2x =4,x =2,将④ − ⑤得,2y =−2,y =−1,将 x =2,y =−1 代入 {ax +by =1,ax −by =2得, {2a −b =1, ⋯⋯⑥2a +b =2. ⋯⋯⑦将⑥ + ⑦得,4a =3,a =34,将⑦ − ⑥得,2b =1,b =12,∴{a =34,b =12.(3) ① {2x +y =n −3,mx −2y =2,若要不存在解坐标,即无解,需要 {m =k ⋅2,−2=k ⋅1,2≠k (n −3),即 {m =−4,n ≠2. ②若要有无数解坐标,即有无数解,需要 {m =k ⋅2,−2=k ⋅1,2=k (n −3),即 {m =−4,n =2. 【解析】(1) {2x +3y =5, ⋯⋯①x +3y =1. ⋯⋯② 将① − ②得 x =4, ⋯⋯③将③代入②得,4+3y =1,y =−1,∴ 方程组解为 {x =4,y =−1,∴ 解坐标为 (4,−1).【知识点】含参二元一次方程组、加减消元22. 【答案】(1) y 1=7000x ,y 2=6000x +3000.(2) 当 y 1=y 2 时 7000x =6000x +3000,解得:x =3,则当学校添置 3 台计算机时,两种方案的费用相同.(3) 7000x >6000x +3000,解得:x <3,则当 x <3 时,选择到商家直接购买省钱; 7000x <6000x +3000,解得:x >3,则当 x >3 时,选择买零部件组装省钱.【知识点】一次函数的应用23. 【答案】(1) 当 x ≥0.5 时,设手机支付金额 y (元)与骑行时间 x (时)的函数关系式是 y =kx +b ,则 {0.5k +b =0,1×k +b =0.5, 解得 {k =1,b =−0.5,即当 x ≥0.5 时,手机支付金额 y (元)与骑行时间 x (时)的函数关系式是 y =x −0.5.(2) 设会员卡支付对应的函数解析式为 y =ax ,则 0.75=a ×1,得 a =0.75,即会员卡支付对应的函数解析式为 y =0.75x (x ≥0),令 0.75x =x −0.5,得 x =2,由图象可知,当 x >2 时,会员卡支付便宜.答:当 0<x <2 时,李老师选择手机支付比较合算;当 x =2 时,李老师选择两种支付一样;当 x >2 时,李老师选择会员卡支付比较合算.【知识点】一次函数的应用24. 【答案】(1) 甲工程队修建的天数;甲工程队修建的长度(2) 设甲工程队修建 x 千米,乙工程队修建 y 千米,由题意得:{x +y =36,x 0.06+y 0.08=500.解得{x =12,y =24.答:甲工程队修建 12 千米,乙工程队修建 24 千米. 【解析】(1) 小明:x 表示甲工程队修建的天数;小华:x 表示甲工程队修建的长度.故答案为:甲工程队修建的天数;甲工程队修建的长度.【知识点】工程问题25. 【答案】(1) 设该店 11 月份购进甲种水果 x 千克,购进乙种水果 y 千克,根据题意得:{10x +16y =1800,13x +18y =1800+400,解得 {x =100,y =50.答:该店 11 月份购进甲种水果 100 千克,购进乙种水果 50 千克.(2) 设购进甲种水果 a 千克,需要支付的货款为 w 元,则购进乙种水果 (130−a ) 千克, 根据题意得:w =10a +20(130−a )=−10a +2600.(3) 根据题意得,a ≤80,由(2)得,w =−10a +2600,因为 −10<0,w 随 a 的增大而减小,所以 a =80 时,w 有最小值 w 最小=−10×80+2600=1600(元).答:12 月份该店需要支付这两种水果的货款最少应是 1600 元.【知识点】其他实际问题、经济问题。

3.3 轴对称与坐标变化—2022-2023学年北师大版数学八年级上册堂堂练(含答案)

3.3 轴对称与坐标变化—2022-2023学年北师大版数学八年级上册堂堂练(含答案)

3.3轴对称与坐标变化—2022-2023学年北师大版数学八年级上册堂堂练1.在平面直角坐标系xOy中,点关于x轴对称的点的坐标是( )A. B. C. D.2.在平面直角坐标系中,点关于y轴对称的点的坐标为( )A. B. C. D.3.如图1,将的三个顶点坐标的横坐标都乘-1,并保持纵坐标不变,则所得图形与原图形的关系是( )A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位4.如图,的顶点都在正方形网格格点上,点A的坐标为.将沿y轴翻折到第一象限,则点C的对应点的坐标是( )A. B. C. D.5.在平面直角坐标系中,已知点在第四象限,则点P关于直线对称的点的坐标是( )A. B. C. D.6.李华同学在求点关于y轴对称的点的坐标时,看成了求关于x轴对称的点的坐标,求得结果是,那么正确的结果应该是___________.7.如图,点与点关于l(直线)对称,则的立方根为___________.8.如图,在平面直角坐标系中,三个顶点的坐标分别为,,.(1)请在图中作出关于y轴对称的图形(A、B、C的对称点分别是D、E、F),并直接写出D、E、F的坐标;(2)求的面积.答案以及解析1.答案:C解析:点关于x轴对称的点的坐标是.2.答案:B解析:关于y轴对称的对称点,纵坐标相等,横坐标互为相反数,点关于y轴对称的点的坐标是.故选B.3.答案:B解析:将的三个顶点坐标的横坐标都乘-1,纵坐标不变,则横坐标互为相反数,纵坐标相等,所得图形与原图形关于y轴对称,故选B.4.答案:A解析:由点A坐标,得.由翻折,得与C关于y轴对称,故.故选A.5.答案:C解析:设关于直线的对称点为,则有,,,故选C.6.答案:解析:点关于x轴对称的点的坐标为,点,点P关于y轴对称的点的坐标为.7.答案:解析:P与Q关于l(直线)对称,两点的横坐标相同,P到l的距离等于Q到l的距离,,,则,-5的立方根.8.答案:(1)如图所示,,,.(2)的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版数学八年级上册轴对称解答题专题练习(解析版)一、八年级数学轴对称解答题压轴题(难)1.(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(2)已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系.【答案】(1)图形见解析(2) ∠ABC与∠C之间的关系是∠ABC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.【解析】试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.试题解析:(1)如图①②(共有2种不同的分割法).(2)设∠ABC=y,∠C=x,过点B的直线交边AC于点D.在△DBC中,①若∠C是顶角,如图,则∠CBD=∠CDB=90°-12x,∠A=180°-x-y.故∠ADB=180°-∠CDB=90°+12x>90°,此时只能有∠A=∠ABD,即180°-x-y=y-1902x⎛⎫-⎪⎝⎭,∴3x+4y=540°,∴∠ABC=135°-34∠C.②若∠C是底角,第一种情况:如图,当DB=DC时,∠DB C=x.在△ABD中,∠ADB=2x,∠ABD=y-x.若AB=AD,则2x=y-x,此时有y=3x,∴∠ABC=3∠C.若AB=BD,则180°-x-y=2x,此时有3x+y=180°,∴∠ABC=180°-3∠C.若AD=BD,则180°-x-y=y-x,此时有y=90°,即∠ABC=90°,∠C为小于45°的任意锐角.第二种情况:如图,当BD=BC时,∠BDC=x,∠ADB=180°-x>90°,此时只能有AD=BD,∴∠A=∠ABD=12∠BDC=12∠C<∠C,这与题设∠C是最小角矛盾.∴当∠C 是底角时,BD =BC 不成立.综上所述,∠ABC 与∠C 之间的关系是∠ABC=135°-34∠C 或∠ABC=3∠C 或∠ABC=180°-3∠C 或∠ABC=90°,∠C 是小于45°的任意锐角. 点睛:本题考查了等腰三角形的性质;第(1)问是计算与作图相结合的探索.本问对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质等基础知识解决问题的能力都有较高的要求.第(2)问在第(1)问的基础上,由“特殊”到“一般”,“分类讨论”把直角三角形分成两个等腰三角形的各种情形并结合“方程思想”探究角与角之间的关系.本题不仅趣味性强,创造性强,而且渗透了由“特殊”到“一般”、“分类讨论”、“方程思想”、“转化思想”等数学思想,是一道不可多得的好题.2.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)【答案】(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥, ∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.3.已知:三角形ABC 中,∠A=90°,AB=AC,D 为BC 的中点.(1)如图,E 、F 分别是AB 、AC 上的点,且BE=AF,求证:△DEF 为等腰直角三角形.(2)若E 、F 分别为AB,CA 延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF 是否仍为等腰直角三角形?画出图形,写出结论不证明.【答案】(1)见解析;(2)见解析【解析】 【分析】(1)先连接AD ,构造全等三角形:△BED 和△AFD .AD 是等腰直角三角形ABC 底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD ,而∠B=∠C=45°,所以∠B=∠DAF ,再加上BE=AF ,AD=BD ,可证出:△BED ≌△AFD ,从而得出DE=DF ,∠BDE=∠ADF ,从而得出∠EDF=90°,即△DEF 是等腰直角三角形;(2)根据题意画出图形,连接AD,构造△DAF ≌△DBE.得出FD=ED ,∠FDA=∠EDB,再算出∠EDF=90°,即可得出△DEF 是等腰直角三角形.【详解】解:(1)连结AD ,∵AB=AC ,∠BAC=90° ,D 为BC 中点 ,∴AD ⊥BC ,BD=AD ,∴∠B=∠BAD=∠DAC=45°,又∵BE=AF ,∴△BDE ≌△ADF (SAS ),∴ED=FD ,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,∴△DEF 为等腰直角三角形.(2)连结AD∵AB=AC ,∠BAC=90° ,D 为BC 中点 ,∴AD=BD ,AD ⊥BC ,∴∠DAC=∠ABD=45° ,∴∠DAF=∠DBE=135°,又∵AF=BE ,∴△DAF ≌△DBE (SAS ),∴FD=ED ,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF 为等腰直角三角形.【点睛】本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定.4.已知:AD 是ABC ∆的高,且BD CD =.(1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.图1. 图2. 图3.【答案】(1)见解析,(2)BFC ∠=60(3)8=CF .【解析】【分析】(1)根据等腰三角形三线合一,易得AB=AC ,BAD CAD ∠=∠;(2)在图2中,连接CE ,可证得BCE ∆是等边三角形,60BEC ∠= ,30BED ∠=且由折叠性质可知1'2ABE A BE ABF ∠=∠=∠,可得BFC FAB ABF ∠=∠+∠ ()2BAD ABE =∠+∠ 260BED =∠=;(3)连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N ,可证得Rt BEM Rt CEN ∆≅∆,BM CN =,BF FM CF CN -=+,可得线段CF 的长.【详解】解:(1)证明:如图1,AD BC ⊥,BD CD =AB AC ∴=BAD CAD ∴∠=∠;图1(2)解:在图2中,连接CEED BC ⊥,BD CD = BE CE ∴= 又BE BC = BE CE BC ∴== BCE ∴∆是等边三角形60BEC ∴∠= 30BED ∴∠=由折叠性质可知1'2ABE A BE ABF ∠=∠=∠ 2ABF ABE ∴∠=∠ 由(1)可知2FAB BAE ∠=∠BFC FAB ABF ∴∠=∠+∠ ()2BAD ABE =∠+∠ 223060BED =∠=⨯=图2(3)解:连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N'ABE A BE ∠=∠,BAD CAD ∠=∠ EM EH EN ∴==AFE BFE ∴∠=∠ 又60BFC ∠= 60AFE BFE ∴∠=∠=在Rt EFM ∆中,906030FEM ∠=-= 2EF FM ∴=令FM m =,则2EF m = 62FG EG EF m ∴=-=-同理12FN EF m ==,2124CF FG m ==- 在Rt BEM ∆和Rt CEN ∆中,EM EN =,BE CE = Rt BEM Rt CEN ∴∆≅∆ BM CN ∴=BF FM CF FN ∴-=+ 10124m m m ∴-=-+解得1m = 8CF ∴=图3故答案为(1)见解析,(2)BFC ∠= 60(3)8CF =.【点睛】本题考查翻折的性质,涉及角平分线的性质、等腰三角形的性质和判定、等边三角形的判定和性质、含30度角的直角三角形、全等三角形的判定和性质等知识点,属于较难的题型.5.如图,ABC 中,A ABC CB =∠∠,点D 在BC 所在的直线上,点E 在射线AC 上,且AD AE =,连接DE .(1)如图①,若35B C ∠=∠=︒,80BAD ∠=︒,求CDE ∠的度数;(2)如图②,若75ABC ACB ∠=∠=︒,18CDE ∠=︒,求BAD ∠的度数;(3)当点D 在直线BC 上(不与点B 、C 重合)运动时,试探究BAD ∠与CDE ∠的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B 的左侧时,∠ADC=x°-α,②如图2,当点D 在线段BC 上时,∠ADC=y°+α,③如图3,当点D 在点C 右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y x ay x aβ⎧=+⎨=-+⎩①②,①-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴y x ay a xβ⎧=+⎨+=+⎩①②,②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y a xx y aβ︒︒⎧-++=⎨++=⎩①②,②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】考核知识点:等腰三角形性质综合运用.熟练运用等腰三角形性质和三角形外角性质,分类讨论分析问题是关键.6.如图,在ABC ∆中,CE 为三角形的角平分线,AD CE ⊥于点F 交BC 于点D (1)若9628BAC B ︒︒∠=∠=,,直接写出BAD ∠= 度(2)若2ACB B ∠=∠,①求证:2AB CF =②若 ,CF a EF b ==,直接写出BD CD= (用含 ,a b 的式子表示)【答案】(1)34;(2)①见详解;②2b a b- 【解析】【分析】 (1)由三角形内角和定理和角平分线定义即可得出答案;(2)①证明B BCE ∠=∠,得出BE=CE ,过点A 作//AH BC 交CE 与点H ,则,H BCE ACE EAH B ∠=∠=∠∠=∠,得出AH=AC ,H EAH ∠=∠,得出AE=HE ,由等腰三角形的性质可得出HF=CF ,即可得出结论;②证明AHF DCF ≅,得出AH=DC ,求出HF=CF=a ,HE=HF-EF=a-b ,CE=a+b ,由 //AH BC 得出AH AE a b BC BE a b-==+,进而得出结论. 【详解】 解:(1)∵9628BAC B ︒︒∠=∠=,,∴180962856ACB ∠=︒-︒-︒=︒,∵CE 为三角形的角平分线,∴1282ACE ACB ∠=∠=︒, ∵AD CE ⊥,∴902862CAF ∠=︒-︒=︒,∴966234BAD ∠=︒-︒=︒.故答案为:34;(2)①证明:∵22ACB B BCE ∠=∠=∠∴B BCE ∠=∠∴BE CE =过点A 作//AH BC 交CE 与点H ,如图所示:则,H BCE ACE EAH B ∠=∠=∠∠=∠∴AH=AC ,H EAH ∠=∠∴AE=HE∵AD CE ⊥∴HF=CF∴AB=HC=2CF ;②在AHF △和DCF 中,H DCF HF CFAFH DFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AHF DCF ≅∴AH=DC∵,CF a EF b == ∴ HF CF a ==,由①得 AE HE HF EF a b ==-=-, BE CE a b ==+∵ //AH BC ∴AH AE a b BC BE a b -==+ ∴CD a b BC a b -=+ ∴2BD b CD a b=-. 故答案为:2b a b -. 【点睛】本题考查的知识点是全等三角形的判定及其性质、等腰三角形的判定及其性质、三角形的内角和定理、三角形的角平分线定理等,掌握以上知识点是解此题的关键.7.(1)问题发现:如图1, ABC 和ADE 均为等边三角形,点B D E 、、在同一直线上,连接.CE①求证: BD CE =; ②求BEC ∠的度数.(2)拓展探究:如图2, AB C 和ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,点B D E 、、在同一直线上AF ,为ADE 中DE 边上的高,连接.CE①求BEC ∠的度数:②判断线段AF BE CE 、、之间的数量关系(直接写出结果即可).()3解决问题:如图3,AB 和ADE 均为等腰三角形,BAC DAE n ∠=∠=,点B D E 、、在同一直线上,连接CE .求AEC ∠的度数(用含n 的代数式表示,直接写出结果即可).【答案】(1)①证明见解析;②60°;(2)①90°;②BE =CE+2AF ;(3)∠AEC =90°+12n ︒. 【解析】【分析】(1)根据等边三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=60°,根据SAS 进一步证明△BAD ≌△CAE,依据其性质可得 BD CE =,再根据对应角相等求出BEC ∠的度数;(2)根据等腰直角三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=90°,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出BEC ∠的度数;因为DE=2AF,BD=EC,结合线段的和差关系得出结论;(3)根据等腰三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=n °,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出得出∠ADB=BEC ∠的度数,结合内角和用n 表示∠ADE 的度数,即可得出结论.【详解】(1)①∵△ABC和△ADE均为等边三角形(如图1),∴ AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS)∴ BD=CE.②由△CAE≌△BAD,∴∠AEC=∠ADB=180°-∠ADE=120°.∴∠BEC=∠AEC-∠AED=120°-60°=60°.(2)①∵△ABC和△ADE均为等腰直角三角形(如图2),∴ AB=AC,AD=AE,∠ADE=∠AED=45°,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴ BD=CE,∠AEC=∠ADB=180°-∠ADE=135°.∴∠BEC=∠AEC-∠AED=135°-45°=90°.② BE=CE+2AF.(3)如图3:∠AEC=90°+12n ,理由如下,∵△ABC和△ADE均为等腰直角三角形,∴ AB=AC,AD=AE,∠ADE=∠AED=n°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴∠AEC=∠ADB=180°-∠ADE=180°-1801809022n n.∴∠AEC=90°+12n .【点睛】本题考查等边三角形、等腰直角三角形的性质及旋转型三角形全等,掌握全等常见模型及由特殊到一般找出解题规律是解答此题的关键.8.已知等边△ABC的边长为4cm,点P,Q分别是直线AB,BC上的动点.(1)如图1,当点P从顶点A沿AB向B点运动,点Q同时从顶点B沿BC向C点运动,它们的速度都为lcm/s,到达终点时停止运动.设它们的运动时间为t秒,连接AQ,PQ.①当t=2时,求∠AQP的度数.②当t为何值时△PBQ是直角三角形?(2)如图2,当点P在BA的延长线上,Q在BC上,若PQ=PC,请判断AP,CQ和AC之间的数量关系,并说明理由.【答案】(1)①∠AQP=30°;②当t=43秒或t=83秒时,△PBQ为直角三角形;(2)AC=AP+CQ,理由见解析.【解析】【分析】(1)①由△ABC是等边三角形知AQ⊥BC,∠B=60°,从而得∠AQB=90°,△BPQ是等边三角形,据此知∠BQP=60°,继而得出答案;②由题意知AP=BQ=t,PB=4﹣t,再分∠PQB=90°和∠BPQ=90°两种情况分别求解可得.(2)过点Q作QF∥AC,交AB于F,知△BQF是等边三角形,证∠QFP=∠PAC=120°、∠BPQ=∠ACP,从而利用AAS可证△PQF≌△CPA,得AP=QF,据此知AP=BQ,根据BQ+CQ=BC=AC可得答案.【详解】解:(1)①根据题意得AP=PB=BQ=CQ=2,∵△ABC是等边三角形,∴AQ⊥BC,∠B=60°,∴∠AQB=90°,△BPQ是等边三角形,∴∠BQP=60°,∴∠AQP=∠AQB﹣∠BQP=90°﹣60°=30°;②由题意知AP=BQ=t,PB=4﹣t,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得:4﹣t=2t,解得t=43;当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),解得t=83;∴当t=43秒或t=83秒时,△PBQ为直角三角形;(2)AC=AP+CQ,理由如下:如图所示,过点Q作QF∥AC,交AB于F,则△BQF是等边三角形,∴BQ=QF,∠BQF=∠BFQ=60°,∵△ABC为等边三角形,∴BC=AC,∠BAC=∠BFQ=60°,∴∠QFP=∠PAC=120°,∵PQ=PC,∴∠QCP=∠PQC,∵∠QCP=∠B+∠BPQ,∠PQC=∠ACB+∠ACP,∠B=∠ACB,∴∠BPQ=∠ACP,在△PQF和△CPA中,∵BPQ ACPQFP PACPQ PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PQF≌△CPA(AAS),∴AP=QF,∴AP=BQ,∴BQ+CQ=BC=AC,∴AP+CQ=AC.【点睛】考核知识点:等边三角形的判定和性质.利用全等三角形判定和性质分析问题是关键.9.探究题:如图,AB⊥BC,射线CM⊥BC,且BC=5cm,AB=1cm,点P是线段BC(不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.(1)如图1,若BP=4cm,则CD=;(2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并说明理由;(3)若△PDC是等腰三角形,则CD=cm.(请直接写出答案)【答案】(1)4cm;(2)PB=PC,理由见解析;(3)4【解析】【分析】(1)根据AAS定理证明△ABP≌△PCD,可得BP=CD;(2)延长线段AP、DC交于点E,分别证明△DPA≌△DPE、△APB≌△EPC,根据全等三角形的性质解答;(3)根据等腰直角三角形的性质计算.【详解】解:(1)∵BC=5cm,BP=4cm,∴PC=1cm,∴AB=PC,∵DP⊥AP,∴∠APD=90°,∴∠APB+∠CPD=90°,∵∠APB+∠CPD=90°,∠APB+∠BAP=90°,∴∠BAP=∠CPD,在△ABP和△PCD中,B CBAP CPDAB PC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABP≌△PCD,∴BP=CD=4cm;(2)PB=PC,理由:如图2,延长线段AP、DC交于点E,∵DP平分∠ADC,∴∠ADP=∠EDP.∵DP⊥AP,∴∠DPA=∠DPE=90°,在△DPA和△DPE中,ADP EDPDP DPDPA DPE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DPA≌△DPE(ASA),∴PA=PE.∵AB⊥BP,CM⊥CP,∴∠ABP=∠ECP=Rt∠.在△APB和△EPC中,ABP ECPAPB EPCPA PE∠=∠⎧⎪∠=⎨⎪=⎩,∴△APB≌△EPC(AAS),∴PB=PC;(3)∵△PDC是等腰三角形,∴△PCD为等腰直角三角形,即∠DPC=45°,又∵DP ⊥AP ,∴∠APB =45°,∴BP =AB =1cm ,∴PC =BC ﹣BP =4cm ,∴CD =CP =4cm ,故答案为:4.【点睛】本题考查了三角形的全等的证明、全等三角形的性质以及等腰三角形的性质.做出辅助线证明三角形全等是本题的关键.10.如图,在 ABC 中,已知 AB AC =,AD 是 BC 边上的中线,点 E 是 AB 边上一动点,点 P 是 AD 上的一个动点.(1)若 37BAD ∠=,求 ACB ∠ 的度数;(2)若 6BC =,4AD =,5AB =,且 CE AB ⊥ 时,求 CE 的长;(3)在(2)的条件下,请直接写出 BP EP + 的最小值.【答案】(1)53ACB ∠=.(2)245CE =.(3) 245. 【解析】【分析】(1)由已知得出三角形ABC 是等腰三角形,ACB ABC ∠∠=,AD 是BC 边的中线,有AD BC ⊥,求出ABC ∠的度数,即可得出ACB ∠的度数.(2)根据三角形ABC 的面积可得出CE 的长(3)连接CP ,有BP=CP ,BP+EP=EP+CP ,当点E ,P ,C 在同一条直线上时BP+EP 有最小值,即CE 的长度.【详解】解:(1)AB AC =,ACB ABC ∴∠=∠,AD 是 BC 边上的中线, 90ADB ∴∠=,37BAD ∠=,903753ABC ∴∠=-=,53ACB ∴∠=.(2) CE AB ⊥,1122ABC SBC AD AB CE ∴=⋅=⋅, 6BC =,4=AD ,5AB =, 245CE ∴=. (3) 245【点睛】本题考查的知识点主要有等腰三角形的“三线合一”,三角形的面积公式等,充分利用等腰三角形的“三线合一”是解题的关键.。

相关文档
最新文档