高二数学9月月考试题 理
河北省张家口市宣化区宣化第一中学2020-2021学年高二第一学期数学9月月考试题【含解析】

河北省张家口市宣化区宣化第一中学2020-2021学年高二第一学期数学9月月考试题(含解析)一、选择题(本大题共12小题,共60.0分)1.为了研究某班学生的脚长错误!未找到引用源。
单位:厘米错误!未找到引用源。
和身高错误!未找到引用源。
单位:厘米错误!未找到引用源。
的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为错误!未找到引用源。
,已知错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
,该班某学生的脚长为24厘米,据此估计其身高为错误!未找到引用源。
厘米.A. 160B. 163C. 166D. 1702.如图茎叶图记录了在一次数学模拟考试中甲、乙两组各五名学生的成绩错误!未找到引用源。
单位:分错误!未找到引用源。
已知甲组数据的中位数为106,乙组数据的平均数为错误!未找到引用源。
,则x,y的值分别为错误!未找到引用源。
错误!未找到引用源。
A. 5,7B. 6,8C. 6,9D. 8,83.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么下列两个事件是对立事件的是错误!未找到引用源。
A. “至少1名男生”与“至少1名女生”B. “恰好1名男生”与“恰好2名女生”C. “至少1名男生”与“全是男生”D. “至少1名男生”与“全是女生”4.已知错误!未找到引用源。
,则错误!未找到引用源。
A. 2015B. 错误!未找到引用源。
C. 2016D. 错误!未找到引用源。
5.已知条件p:错误!未找到引用源。
;条件q:直线错误!未找到引用源。
与圆错误!未找到引用源。
相切,则错误!未找到引用源。
是错误!未找到引用源。
的错误!未找到引用源。
错误!未找到引用源。
A. 充分必要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件6.有5支彩笔错误!未找到引用源。
除颜色外无差别错误!未找到引用源。
,颜色分别为红、黄、蓝、绿、紫从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为错误!未找到引用源。
2022-2023学年河南省洛阳市新安县第一高级中学高二上学期9月月考数学试题(解析版)

2022-2023学年河南省洛阳市新安县第一高级中学高二上学期9月月考数学试题一、单选题1.直线tan120x =︒的倾斜角是( ) A .60° B .90°C .120°D .不存在【答案】B【分析】根据直线的方程,利用斜率和倾斜角的关系求解.【详解】解:因为直线tan120x =︒= 所以直线的倾斜角是90°, 故选:B2.平面α的斜线l 与它在这个平面上射影l'的方向向量分别为()1,0,1a =,()0,1,1b =,则斜线l 与平面α所成的角为( ) A .30° B .45°C .60°D .90°【答案】C【分析】由题意结合线面角的概念可得a 与b 所成的角(或其补角)即为l 与α所成的角,由cos ,||||a ba b a b ⋅<>=⋅即可得解. 【详解】由题意a 与b 所成的角(或其补角)即为l 与α所成的角, 因为11cos ,,,[0,]2||||2a b a b a b a b π⋅<>===<>∈⋅⨯, 所以,60a b <>=,所以斜线l 与平面α所成的角为60°. 故选:C.【点睛】本题考查了利用空间向量求线面角,考查了运算求解能力,属于基础题. 3.如图,空间四边形OABC 中,点M 在线段OA 上,且2OM MA =,N 为BC 的中点,MN xOA yOB zOC =++,则x ,y ,z 的值分别为( )A .12,23-,12B .23-,12,12C .12,12,23-D .23,23,12-【答案】B【分析】利用空间向量的基本定理求解.【详解】因为12()23MN ON OM OB OC OA =-=+-,211322a b c =-++,所以23x =-,12y =,12z =.故选:B.4.下列条件使M 与A 、B 、C 一定共面的是( ) A .2OM OA OB OC =-+ B .0OM OA OB OC +++= C .121532OM OA OB OC =++D .0MA MB MC ++=【答案】D【分析】利用共面向量定理判断.【详解】A 选项:MA MB MC OA OM OB OM OC OM ++=-+-+-,30OA OB OC OM =++-≠,∴M ,A ,B ,C 四点不共面;B 选项:由0OM OA OB OC +++=,得()OM OA OB OC =-++,系数和不为1, ∴M ,A ,B ,C 四点不共面;C 选项:1211532++≠,∴M ,A ,B ,C 四点不共面;D 选项:0MA MB MC OA OM OB OM OC OM ++=-+-+-=, 即()13OM OA OB OC =++, 所以能使M 与A 、B 、C 一定共面.故选:D.5.直线l 1与l 2为两条不重合的直线,则下列命题: ①若l 1∥l 2,则斜率k 1=k 2; ②若斜率k 1=k 2,则l 1∥l 2; ③若倾斜角12αα=,则l 1∥l 2; ④若l 1∥l 2,则倾斜角α1=α2. 其中正确命题的个数是( ) A .1 B .2C .3D .4【答案】C【分析】①若l 1∥l 2,则分当斜率存在时、当斜率不存在时两种情况,判断命题①错误;②若斜率k 1=k 2,则l 1∥l 2,判断命题②正确;③若倾斜角12αα=,则l 1∥l 2,判断命题③正确;④若l 1∥l 2,则倾斜角12αα=,判断命题④正确即可得到答案.【详解】解:直线l 1与l 2为两条不重合的直线:①若l 1∥l 2,当斜率存在时,则斜率k 1=k 2,当斜率不存在时,两条直线都垂直与x 轴,所以命题①错误;②若斜率k 1=k 2,则l 1∥l 2,所以命题②正确; ③若倾斜角12αα=,则l 1∥l 2,所以命题③正确;④若l 1∥l 2,则倾斜角12αα=,所以命题④正确,所以正确的命题个数共3个. 故选:C.【点睛】本题考查两条直线的位置关系,是基础题.6.经过点()3,0B ,且与直线250x y +-=垂直的直线方程为( ) A .230x y -+= B .260x y +-= C .230x y --= D .230x y +-=【答案】C【分析】由于所求直线与直线250x y +-=垂直,从而可求出所求直线的斜率,再利用点斜式可求出直线方程【详解】因为直线250x y +-=的斜率为2-, 所以与直线250x y +-=垂直的直线的斜率为12,因为所求直线经过点()3,0B ,所以所求直线方程为1(3)2y x =-,即230x y --=,故选:C7.“1a =-”是“直线240x ay ++=与直线(1)20a x y -++=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【分析】根据两直线平行可知:12120A B B A +=求出a ,代入验证,再由充分条件、必要条件的定义即可求解.【详解】解:当两直线平行,∴12(1)0a a ⨯--=,解得2a =或1a =-, 当2a =,两直线重合,舍去; 当1a =-时,两直线平行.所以“1a =-”是“直线240x ay ++=与直线(1)20a x y -++=平行”的充要条件. 故选:C8.下列说法正确的是( )A .斜率和倾斜角具有一一对应的关系B .直线的截距式方程适合于不过原点的所有直线C .经过点()1,1且在x 轴和y 轴上截距都相等的直线方程为20x y +-=D .()()()()121121y y x x x x y y --=--表示经过()11,P x y ,()22,Q x y 的直线方程 【答案】D【分析】根据倾斜角和斜率的定义,以及两点式和截距式的定义,逐个选项进行判断即可. 【详解】对于A ,倾斜角为90时,没有对应斜率,故A 错误;对于B ,直线的截距式方程适合于不过原点,不垂直于x 轴,不垂直于y 轴的所有直线,故B 错误; 对于C ,经过点()1,1且在x 轴和y 轴上截距都相等的直线,还包括y x =这条直线,故C 错误; 对于D ,根据两点式的定义,选项D 明显正确; 故选:D9.若直线l :20(0,0)ax by a b -+=>>过点(1,2)-,当21a b+取最小值时直线l 的斜率为A .2B .12C D .【答案】A【分析】将点带入直线可得212a b+=,利用均值不等式“1”的活用即可求解. 【详解】因为直线l 过点()1,2-,所以220a b --+=,即212a b+=,所以21212141()(4)(44222a b b a a b a b a b ++=+=++≥+= 当且仅当4b aa b=,即2a b =时取等号 所以斜率2ab=,故选 A 【点睛】本题考查均值不等式的应用,考查计算化简的能力,属基础题.10.已知{},,a b c 是空间的一个单位正交基底,向量23p a b c =++,{},,a b a b c +-是空间的另一个基底,向量p 在基底{},,a b a b c +-下的坐标为( ) A .31,,322⎛⎫- ⎪⎝⎭B .31,,322⎛⎫- ⎪⎝⎭C .13,,322⎛⎫- ⎪⎝⎭D .13,,322⎛⎫- ⎪⎝⎭【答案】A【分析】设()()p x a b y a b zc =++-+,根据空间向量基本定理建立关于,,x y z 的方程,解之即可得解.【详解】解:设()()p x a b y a b zc =++-+()()23c a b y a x c x y b z =++-+=++,所以123x y x y z +=⎧⎪-=⎨⎪=⎩,解得32123x y z ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以向量p 在基底{},,a b a b c +-下的坐标为31,,322⎛⎫- ⎪⎝⎭.故选:A.11.如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则下列结论不正确的是( )A .直线1BD ⊥平面11AC DB .三棱锥11P ACD -的体积为定值C .异面直线AP 与1AD 所成角的取值范围是,42ππ⎡⎤⎢⎥⎣⎦D .直线1C P 与平面11AC D 所成角的正弦值的最大值为63【答案】C【分析】对于A ,根据线面垂直的判定定理,结合正方体的性质以及线面垂直的性质定理,可得答案;对于B ,根据三棱锥的体积公式,证明底面11AC D 上的高为定值,利用线面平行判定以及性质定理,可得答案;对于C ,根据异面直线夹角的定义,作图,结合等边三角形的性质,可得答案;对于D ,由题意,建立空间直角坐标系,求得直线的方向向量以及平面的法向量,根据公式,结合二次函数的性质,可得答案. 【详解】对于A ,连接11B D ,记1111AC B D E =,如下图:在正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,111BB AC ∴⊥,在正方形1111D C B A 中,1111AC B D ⊥,1111BB B D B ⋂=,111,B D BB ⊂平面11BB D ,∴11A C ⊥平面11BB D ,1BD ⊂平面11BB D ,111AC BD ∴⊥,同理可得:11DC BD ⊥,1111AC DC C ⋂=,111,A C DC ⊂平面11AC D ,1BD ∴⊥平面11AC D ,故A 正确;对于B ,在正方体1111ABCD A B C D -中,11//CB DA ,1DA ⊂平面11AC D ,1CB ⊄平面11AC D ,1//CB ∴平面11AC D ,则1P CB ∀∈,P 到平面11AC D 的距离相同,即三棱锥11P AC D -中底面11AC D 上的高为一个定值,故B 正确; 对于C ,连接1AB ,AC ,AP ,作图如下:在正方体1111ABCD A B C D -中,易知1ACB 为等边三角形,则1π3APC AB C ∠≥∠=, 11//DA CB ,APC ∴∠为异面直线1DA 与AP 所成角或者补角,则异面直线1DA 与AP 所成角的取值范围ππ,32⎡⎤⎢⎥⎣⎦,故C 错误; 对于D ,在正方体1111ABCD A B C D -中,以D 为原点,分别以1,,DA DC DD 所在直线为,,x y z 轴,建立空间直角坐标系,如下图:设该正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,2,0B ,()0,2,0C ,()12,2,2B ,()10,2,2C ,设()1,01CP CB λλ=≤≤,且(),,P x y z ,则()12,0,2CB =,(),2,CP x y z =-,即2202x y z λλλ=⎧⎪-=⋅⎨⎪=⎩,可得()2,2,2P λλ,则()12,0,22C P λλ=-,由A 可知1BD ⊥平面11AC D ,则平面11AC D 的一个法向量为()12,2,2BD =--, 设直线CP 与平面11AC D 所成角为θ,则12221404444sin 88412432211143222BD CP BD CPλλθλλλλλ⋅-++-====⋅-+⋅⋅-+⎛⎫⋅-+⎪⎝⎭, 由[]0,1λ∈,则当12λ=时,sin θ取得最大值为63,故D 正确. 故选:C.12.如图,在三棱锥-P ABC 中,5AB AC PB PC ====,4PA =,6BC =,点M 在平面PBC 内,且15AM =,设异面直线AM 与BC 所成的角为α,则cos α的最大值为( )A 2B 3C .25D 5【答案】D【分析】设线段BC 的中点为D ,连接AD ,过点P 在平面PAD 内作PO AD ⊥,垂足为点O ,证明出PO ⊥平面ABC ,然后以点O 为坐标原点,CB 、AD 、OP 分别为x 、y 、z 轴的正方向建立空间直角坐标系,设BM mBP nBC =+,其中0m ≥,0n ≥且1m n +≤,求出363m n +-的最大值,利用空间向量法可求得cos α的最大值.【详解】设线段BC 的中点为D ,连接AD ,5AB AC ==,D 为BC 的中点,则AD BC ⊥,6BC =,则3BD CD ==,224AD AB BD ∴=-=,同理可得4PD =,PD BC ⊥,PDAD D =,BC ∴⊥平面PAD ,过点P 在平面PAD 内作PO AD ⊥,垂足为点O ,因为4PA PD AD ===,所以,PAD 为等边三角形,故O 为AD 的中点,BC ⊥平面PAD ,PO ⊂平面PAD ,则BC PO ⊥,PO AD ⊥,AD BC D =,PO ∴⊥平面ABC ,以点O 为坐标原点,CB 、AD 、OP 分别为x 、y 、z 轴的正方向建立如下图所示的空间直角坐标系O xyz -,因为PAD 是边长为4的等边三角形,O 为AD 的中点,则sin 6023OP PA == 则()0,2,0A -、()3,2,0B 、()3,2,0C -、(0,0,23P , 由于点M 在平面PBC 内,可设(()()3,2,236,0,036,2,23BM mBP nBC m n m n m m =+=--+-=---, 其中0m ≥,0n ≥且1m n +≤,从而()()()3,4,036,2,23336,42,23AM AB BM m n m m m n m m =+=+---=---, 因为15AM =()()222336421215m n m m --+-+=, 所以,()()22233616161423m n m m m --=-+-=--+, 故当12m =时,216161m m -+-有最大值3,即()23633m n +-≤, 故33633m n -+-363m n +-3 所以,()6336635cos cos ,615615AM BC m n AM BC AM BCα⋅--=<>==≤=⋅. 故选:D.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.二、填空题13.若()1,1,0a =,()1,0,2b =-,则与a b +反方向的单位向量是______.【答案】0,⎛ ⎝⎭【分析】由与a b +反方向的单位向量为||a ba b +-+代入可得结果. 【详解】∵(1,1,0)a =,(1,0,2)b =-∴(0,1,2)a b +=,2||01a b +=+=∴a b +反方向的单位向量为(0,1,2)(0,||a b a b +-=-=+故答案为:(0,. 14.有一光线从点()3,5A -射到x 轴以后,再反射到点()2,15B ,则这条光线的入射光线所在直线的方程为______. 【答案】4+70x y +=【分析】根据对称性可知:点()2,15B 关于x 轴对称的点在入射光线所在的直线上,求出点()2,15B 关于x 轴对称的点的坐标即可求解.【详解】因为点()2,15B 关于x 轴对称的点的坐标为()2,15B '-,由直线的对称性可知:这条光线的入射光线经过点()3,5A -和()2,15B '-, 所以条光线的入射光线所在直线的方程为51515(2)32y x ++=---, 也即4+70x y +=, 故答案为:4+70x y +=.15.若直线10ax y +-=与连接()()2,3,3,2A B -的线段总有公共点,则a 的取值范围是______.【答案】(]1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭【分析】画出图形,由图可得,要使直线与线段AB 总有公共点,需满足PA a k -≥或PB a k -≤,从而可求得答案【详解】得直线10ax y +-=的斜率为a -,且过定点()0,1P ,则由图可得,要使直线与线段AB 总有公共点,需满足PA a k -≥或PB a k -≤, 11,3PA PB k k ==-,1a -≥或13a -≤-,1a ∴≤-或13a ≥. 故答案为:(]1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭16.点P 是棱长为1的正方体ABCD ﹣A 1B 1C 1D 1的底面A 1B 1C 1D 1上一点,则1PA PC ⋅的取值范围是__.【答案】[﹣12,0]【分析】建立空间直角坐标系,设出点P 的坐标为(x ,y ,z ),则由题意可得0≤x ≤1,0≤y ≤1,z =1,计算PA •1PC =x 2﹣x ,利用二次函数的性质求得它的值域即可.【详解】解:以点D 为原点,以DA 所在的直线为x 轴,以DC 所在的直线为y 轴,以DD 1所在的直线为z 轴,建立空间直角坐标系,如图所示; 则点A (1,0,0),C 1(0,1,1),设点P 的坐标为(x ,y ,z ),由题意可得 0≤x ≤1,0≤y ≤1,z =1; ∴PA =(1﹣x ,﹣y ,﹣1),1PC =(﹣x ,1﹣y ,0),∴PA •1PC =-x (1﹣x )﹣y (1﹣y )+0=x 2﹣x +y 2﹣y 22111222x y ⎛⎫⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭,由二次函数的性质可得,当x =y 12=时,PA •1PC 取得最小值为12-;当x =0或1,且y =0或1时,PA •1PC 取得最大值为0, 则PA •1PC 的取值范围是[12-,0].故答案为:[12-,0].【点睛】本题主要考查了向量在几何中的应用与向量的数量积运算问题,是综合性题目.三、解答题17.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP =.(1)试用,,a b c 表示向量BM ; (2)求BM 的长.【答案】(1)111222b ac -+6【分析】利用空间向量基本定理用基底表示BM ;(2)在第一问的基础上运用空间向量数量积运算法则进行运算.【详解】(1)()1122BM BC CM AD CP AD CB BA AP =+=+=+++111111222222AD AD AB AP b a c =--+=-+ (2)22222111111111222444222BM b a c b a c a b c b a c ⎛⎫=-+=++-⋅+⋅-⋅ ⎪⎝⎭11111131021214422222=++-+⨯⨯⨯-⨯⨯⨯=,所以62BM =BM18.已知ABC 的三个顶点(,)A m n 、(2,1)B 、(2,3)C -. (1)求BC 边所在直线的方程;(2)BC 边上中线AD 的方程为2360x y -+=,BC 边上高线AE 过原点,求点A 的坐标. 【答案】(1)240x y +-=(2)3,32A ⎛⎫ ⎪⎝⎭【分析】(1)利用两点式求得BC 边所在直线方程;(2)由题意可得2360-+=m n ,求出BC 边上高线AE 的方程,将点(,)A m n 代入AE 的方程,解关于,m n 的方程组即可求解.【详解】(1)由()2,1B 、()2,3C -可得311222BC k -==---, 所以BC 边所在直线方程为()1122y x -=--,即240x y +-=. (2)因为BC 边上中线AD 的方程为2360x y -+=, 所以点(,)A m n 在直线2360x y -+=上,可得2360-+=m n , 因为12BC k =-,所以BC 边上高线AE 的斜率2AE k =,因为BC 边上高线AE 过原点,所以AE 的方程为2y x =,可得2n m =, 由23602m n n m -+=⎧⎨=⎩可得:323m n ⎧=⎪⎨⎪=⎩,所以点A 的坐标为3,32⎛⎫⎪⎝⎭.19.如图,在四棱柱1111ABCD A B C D -中,1AA ⊥平面ABCD ,底面ABCD 满足AD ∥BC ,且12AB AD AA BD DC =====,(Ⅰ)求证:AB ⊥平面11ADD A ;(Ⅱ)求直线AB 与平面11B CD 所成角的正弦值. 【答案】(Ⅰ) 证明见解析;(Ⅱ)66【解析】(Ⅰ)证明1AA AB ⊥,根据222AB AD BD +=得到AB AD ⊥,得到证明.(Ⅱ) 如图所示,分别以1,,AB AD AA 为,,x y z 轴建立空间直角坐标系,平面11B CD 的法向量()1,1,2n =,()2,0,0AB =,计算向量夹角得到答案.【详解】(Ⅰ) 1AA ⊥平面ABCD ,AB ⊂平面ABCD ,故1AA AB ⊥.2AB AD ==,22BD =,故222AB AD BD +=,故AB AD ⊥.1AD AA A ⋂=,故AB ⊥平面11ADD A .(Ⅱ)如图所示:分别以1,,AB AD AA 为,,x y z 轴建立空间直角坐标系,则()0,0,0A ,()2,0,0B ,()12,0,2B ,()2,4,0C ,()10,2,2D .设平面11B CD 的法向量(),,n x y z =,则11100n B C n B D ⎧⋅=⎪⎨⋅=⎪⎩,即420220y z x y -=⎧⎨-+=⎩,取1x =得到()1,1,2n =,()2,0,0AB =,设直线AB 与平面11B CD 所成角为θ 故26sin cos ,626n AB n AB n ABθ⋅====⋅. 【点睛】本题考查了线面垂直,线面夹角,意在考查学生的空间想象能力和计算能力. 20.已知直线l :5530ax y a --+=.(1)求证:不论a 为何值,直线l 总经过第一象限; (2)若直线l 的横截距和纵截距绝对值相等,求a 的值. 【答案】(1)证明见解析 (2)1a =±或3【分析】(1)将直线l 的方程化为点斜式,求出直线所过定点,即可证明结论成立;(2)直线l 的横截距和纵截距绝对值相等,分三种情况讨论:①横截距和纵截距为0,②横截距和纵截距相反,③横截距和纵截距相等,分别求出此时a 的值即可. 【详解】(1)解:直线l 的方程可整理为:3155y a x ⎛⎫-=- ⎪⎝⎭, 则l 的斜率为a ,且过定点13,55A ⎛⎫⎪⎝⎭,∵13,55A ⎛⎫⎪⎝⎭在第一象限,所以不论a 取何值,直线l 总经过第一象限. (2)解:由(1)知,直线过定点1355A ⎛⎫⎪⎝⎭,,当直线过原点时,此时,3a =;当直线截距相反且不过原点时,1k =,此时1a =; 当直线截距相等且不过原点时,1k =-,此时1a =-; 综上所述,1a =±或3.21.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求点B 到平面P AM 的距离. 【答案】(1)2 (2)77【分析】(1)建立空间直角坐标系,设2BC a =,写出各点坐标,利用0PB AM ⋅=列出方程,求出22a =,从而得到BC 的长; (2)求出平面P AM 的法向量,利用点到平面的距离公式进行求解.【详解】(1)∵PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,∵PB AM ⊥,则2210PB AM a ⋅=-+=,解得2a = 故22BC a ==;(2)设平面PAM 的法向量为()111,,m x y z =,则2AM ⎛⎫= ⎪ ⎪⎝⎭,()2,0,1AP =-, 由111120220m AM x y m AP x z ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取12x =,可得()2,1,2m =,()0,1,0AB =,∴点B 到平面P AM 的距离177AB m d m⋅===22.如图①,在等腰梯形ABCD 中,//AB CD ,222AB AD CD ===.将ADC △沿AC 折起,使得AD BC ⊥,如图②.(1)求证:平面ADC ⊥平面ABC .(2)在线段BD 上是否存在点E ,使得二面角E AC D --的平面角的大小为π4?若存在,指出点E的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,点E 在线段BD 上靠近点D 的三等分点处.【分析】(1)先证明AC BC ⊥,再由线面垂直的判定定理证明BC ⊥平面ADC ,由面面垂直的判定定理即可证明;(2)以C 为原点,以CA ,CB 所在的直线分别为x 轴、y 轴,建立空间直角坐标系,写出相关点的坐标,然后用坐标法求解即可【详解】(1)在等腰梯形ABCD 中,//AB CD ,222AB AD CD ===, ∴由平面几何知识易得π3ABC ∠=, ∴在ACB △中,222π21221cos 33AC =+-⨯⨯⨯=. 又222AC BC AB +=,∴AC BC ⊥. 在题图②中,∵AD BC ⊥,ADAC A =,∴BC ⊥平面ADC .又BC ⊂平面ABC ,∴平面ADC ⊥平面ABC .(2)在线段BD 上存在点E ,使得二面角E AC D --的平面角的大小为π4. 以C 为原点,以CA ,CB 所在的直线分别为x 轴、y 轴,建立空间直角坐标系,如图.由平面ADC ⊥平面ABC ,ADC △是顶角为2π3的等腰三角形,知z 轴与ADC △底边上的中线平行,又由(1)易得3AC =∴()0,0,0C ,()3,0,0A,()0,1,0B ,312D ⎫⎪⎪⎝⎭,∴()3,0,0CA =,112,23BD ⎛⎫⎪ ⎪⎝=⎭-. 令()01BE tBD t =≤≤,则,,12t E t ⎫⎝-⎪⎪⎭, ∴3,1,22t CE t =-⎛⎫⎪ ⎪⎝⎭. 设平面ACE 的一个法向量为(),,m x y z =,则00CA m CE m ⎧⋅=⎨⋅=⎩,即()0102t t y z =+-+=, ∴()0210x t y tz =⎧⎨-+=⎩,令y t =,则()21z t =-,∴()()0,,21m t t =-. 由(1)知,平面ADC 的一个法向量为()0,1,0n =.要使二面角E AC D --的平面角的大小为π4,则2πcos 4m n m n t ⋅=== 解得23t =或2t =(舍去). ∴在线段BD 上存在点E ,使得二面角E AC D --的平面角的大小为π4,此时点E 在线段BD 上靠近点D 的三等分点处.。
四川省广安市广安中学2021-2022高二数学9月月考试题 文(含解析).doc

四川省广安市广安中学2021-2022高二数学9月月考试题 文(含解析)一、单选题(共12小题,每小题5分,共60分)1.如图,长方体1111ABCD A B C D -中,13,2,1AB BC BB ===,则线段1BD 的长是( )A. 14B. 27C. 28D. 32【答案】A 【解析】【分析】 利用体对角线公式直接计算即可.【详解】2221194114BD AB AD AA =++=++=,故选A.【点睛】本题考查长方体体对角线的计算,属于基础题.2.如图,O A B ∆'''是水平放置的OAB ∆的直观图,则OAB ∆的周长为 ( )A. 10213+B. 32C. 10D. 12【答案】A【解析】【分析】 OAB ∆为直角三角形,且6OA =,4OB =,从而可计算OAB ∆的周长.【详解】因为45A O B '''∠=︒,所以90AOB ∠=︒,因为3A O ''=,4B O ''=,所以6AO =,4BO =,故3616213AB =+=所以周长为6421310213++=+,故选A.【点睛】本题考查斜二测画法,属于基础题.3.已知直线l 是平面a 的斜线,则a 内不存在与l ( )A. 相交的直线B. 平行的直线C. 异面的直线D. 垂直的直线【答案】B【解析】【分析】根据平面的斜线的定义,即可作出判定,得到答案.【详解】由题意,直线l 是平面α的斜线,由斜线的定义可知与平面相交但不垂直的直线叫做平面的斜线,所以在平面α内肯定不存在与直线l 平行的直线.故答案为:B【点睛】本题主要考查了直线与平面的位置关系的判定及应用,其中解答中熟记平面斜线的定义是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.如图,在正方体1111ABCD A B C D -中,P 为1BD 的中点,则PAC 在该正方体各个面上的正投影(实线部分)可能是( )A. ①④B. ①②C. ②③D. ②③【答案】A【解析】【分析】 由题意需要从三个角度对正方体进行平行投影,首先确定关键点P ,A ,C 在各个面上的投影,再把它们连接起来,即得到在各个面上的投影.【详解】从上下方向上看,△PAC 的投影为①图所示的情况;从左右方向上看,△PAC 的投影为④图所示的情况;从前后方向上看,△PAC 的投影为④图所示的情况;故选:A .【点睛】本题考查平行投影和空间想象能力,关键是确定投影图的关键点,如顶点等,再依次连接即可得在平面上的投影图.5.设,m n 是两条不同的直线,αβ,是两个不同的平面,则下列命题中正确的个数为 ①若αβ⊥,,m n αβ⊂⊂,则m n ⊥②若,,m n αβαβ⊂⊂∥,则n m ∥③若,,m n m n αβ⊥⊂⊂,则αβ⊥④若,,m n m n αβ⊥∥∥,则αβ⊥A. 1B. 2C. 3D. 4 【答案】A【解析】【分析】根据面面垂直的定义判断①③错误,由面面平行的性质判断②错误,由线面垂直性质、面面垂直的判定定理判定④正确.【详解】如图正方体1111ABCD A B C D -,平面ABCD 是平面α,平面11BCC B 是平面β,但两直线BC 与1B C 不垂直,①错; 平面ABCD 是平面α,平面1111D C B A 是平面β,但两直线11B C 与AB 不平行,②错; 直线11A B 是直线m ,直线BC 是直线n ,满足m n ⊥,但平面11A B CD 与平面ABCD 不垂直,③错;由,m n m α⊥∥得n α⊥,∵n β,过n 作平面γ与平面β交于直线l ,则//n l ,于是l α⊥,∴αβ⊥,④正确.∴只有一个命题正确.故选A .【点睛】本题考查空间直线与平面、平面与平面的位置关系.对一个命题不正确,可只举一例说明即可.对正确的命题一般需要证明.6.三棱锥P ABC -中,,PA PB PC PO ==⊥平面,ABC O 为垂足,则O 是ABC ∆的( )A. 重心B. 内心C. 外心D. 垂心【答案】C【解析】【分析】连接,,OA OB OC ,可证OA OB OC ==即O 是ABC ∆的外心.【详解】如图,连接,,OA OB OC ,因为PO ⊥平面ABC ,AO ⊂平面ABC ,所以PO AO ⊥,同理PO BO ⊥,因为PA PB =,PO PO =,所以Rt POB Rt POA ∆≅∆,所以OA OB =,同理OA OC =,故O 是ABC ∆的外心.故选C.【点睛】在三棱锥P ABC -中,如果PA PB PC ==,那么P 在平面ABC 内的射影为ABC ∆的外心,如果,PA BC PB AC ⊥⊥,则那么P 在平面ABC 内的射影为ABC ∆的垂心.7.如图,扇形OAB 的圆心角为90︒,半径为1,则该扇形绕OB 所在直线旋转一周得到的几何体的表面积为( )A. 34πB. 2πC. 3πD. 4π【答案】C【解析】【分析】以OB 所在直线为旋转轴将整个图形旋转一周所得几何体是一个半球,利用球面的表面积公式及圆的表面积公式即可求得.【详解】由已知可得:以OB 所在直线为旋转轴将整个图形旋转一周所得几何体是一个半球,其中半球的半径为1,故半球的表面积为:22223r r πππππ+=+=故答案为:C【点睛】本题主要考查了旋转体的概念,以及球的表面积的计算,其中解答中熟记旋转体的定义,以及球的表面积公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.8.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( )D. 4【答案】D【解析】【分析】取AC 的中点N ,连接1C N ,则1//AM C N ,所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角,在1BNC ∆中,利用余弦定理,即可求解.【详解】由题意,取AC 的中点N ,连接1C N ,则1//AM C N ,所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角,设正三棱柱的各棱长为2,则11C N BC BN ===设直线AM 与1C N 所成角为θ,在1BNC ∆中,由余弦定理可得cos θ==,即异面直线AM 与1BC D .【点睛】本题主要考查了异面直线所成角的求解,其中解答中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.9.如图,在正方体1111ABCD A B C D -中,F 是棱11A D 上的动点.下列说法正确的是( )A. 对任意动点,F 在平面11ADD A 内不存在...与平面CBF 平行的直线 B. 对任意动点,F 在平面ABCD 内存在..与平面CBF 垂直的直线 C. 当点F 从1A 运动到1D 的过程中,二面角F BC A --的大小不变..D. 当点F 从1A 运动到1D 的过程中,点D 到平面CBF 的距离逐渐变大..【答案】C【解析】【分析】不论F 在11A D 任意位置,平面CBF 即平面11A D CB ,再求解.【详解】因为AD 在平面11ADD A 内,且平行平面CBF ,故A 错误;平面CBF 即平面11A D CB ,又平面11A D CB 与平面ABCD 斜相交,所以在平面ABCD 内不存在与平面CBF 垂直的直线,故B 错误;平面CBF 即平面11A D CB ,平面11A D CB 与平面ABCD 是确定平面,所以二面角不改变,故C 正确;平面CBF 即平面11A D CB ,点D 到平面11A D CB 的距离为定值,故D 错误.故选C.【点睛】本题考查空间线面关系,属于综合题.本题的关键在于平面CBF 的确定.10.如图所示:在正方体1111ABCDA B C D ﹣中,设直线1A B 与平面11A DCB 所成角为1θ,二面角1A DCA ﹣﹣的大小为2θ,则12θθ,为( )A. 3045o o ,B. 4530o o ,C. 3060o o ,D. 6045o o ,【答案】A【解析】【分析】 连结BC 1,交B 1C 于O ,连结A 1O ,则∠BA 1O 是直线A 1B 与平面A 1DCB 1所成角θ1,由BC⊥DC,B 1C⊥DC,知∠BCB 1是二面角A 1﹣DC ﹣A 的大小θ2,由此能求出结果.【详解】连结BC 1,交B 1C 于O ,连结A 1O ,∵在正方体ABCD ﹣A 1B 1C 1D 1中,BC 1⊥B 1C ,BC 1⊥DC, ∴BO⊥平面A 1DCB 1,∴∠BA 1O 是直线A 1B 与平面A 1DCB 1所成角θ1, ∵BO=12A 1B ,∴θ1=30°;∵BC⊥DC,B 1C⊥DC,∴∠BCB 1是二面角A 1﹣DC ﹣A 的大小θ2, ∵BB 1=BC ,且BB 1⊥BC,∴θ2=45°.故选:A .【点睛】本题考查线面角、二面角的求法,解题时要认真审题,注意空间思维能力的培养,属于中档题.11.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A. 32B. 16C. 323D. 803【答案】D【解析】【分析】 根据三视图可知几何体为一个三棱柱111ABC A B C -切掉一个三棱锥111C A B D -,分别求解出三棱柱和三棱锥的体积,作差即可得到结果.【详解】由三视图可知,几何体为一个三棱柱111ABC A B C -切掉一个三棱锥111C A B D - 如下图所示:则D 为1AA 中点1111444322ABC A B C V -∴=⨯⨯⨯=,1111116424323C A BD V -=⨯⨯⨯⨯= ∴所求几何体体积:11111116803233ABC A B C C A B D V V V --=-=-= 本题正确选项:D【点睛】本题考查多面体体积的求解问题,关键是能够通过割补的方式来进行求解.12.如图,正方体1111ABCD A B C D -的棱长为1,动点E 在线段11A C 上, F ,M 分别是AD ,CD 的中点, 则下列结论中错误的是( )A. 11//FM ACB. BM ⊥平面1CC FC. 三棱锥B CEF -的体积为定值D. 存在点E ,使得平面BEF //平面11CC D D【答案】D【解析】【分析】根据空间中的平行与垂直关系,和三棱锥的体积公式,对选项中的命题判断其真假性即可.【详解】对于A ,连接AC ,易知:11//,//,FM AC AC AC 故11//FM AC ,正确;对于B ,易知:,,90CDF BCM CFD BMC DCF BMC ≅∴∠=∠∴∠+∠= , 1,BM CF BM CC ∴⊥⊥,故BM ⊥平面1CC F ,正确;对于C ,三棱锥B CEF -的体积等于三棱锥E BCF -的体积,此时E 点到平面BCF 的距离为1,底面积为12,故体积为定值,正确; 对于D,BF 与CD 相交,即平面BEF 与平面11CC D D 始终有公共点,故二者相交,错误; 故选:D【点睛】本题考查了空间中的线面位置关系的判断和棱锥的体积计算问题,涉及到三棱锥的体积为定值问题,要考虑到动点(棱锥的顶点)在直线上,而直线与平面(棱锥的底面)平行,这样不论动点怎样移动,棱锥的高都不变,底面积为定值,高为定值,体积就是定值,考查学生的空间想象能力,是综合题.二、填空题(每小题5分,共20分)13.已知球的表面积为4π,则该球的体积为________. 【答案】43π 【解析】【分析】先根据球的表面积公式24S R π=求出半径,再根据体积公式343V R π=求解. 【详解】设球半径为R ,则244S R ππ==,解得1R =,所以34433V R ππ== 【点睛】本题考查球的面积、体积计算,属于基础题.14.如图,有一圆锥形粮堆,其正(主)视图是边长为6m 的正ABC △,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是________________m.【答案】35 【解析】圆锥的底面半径为3m ,周长是6πm,展开图中大圆半径为6m ,则圆心角为6π6π=, 即圆锥侧面展开图的圆心角是180度。
上海市2022高二数学上学期9月月考试题(含解析)

(2)若 ,求 与 .(用反三角函数表示)
【答案】(1) , ;(2) , .
【解析】
【分析】
(1)根据受力平衡可知三个力的和为零向量,根据 及力的夹角,即可求得 、 的大小。
(2)根据边长的比值,可知由三个力的大小构成的三角形为直角三角形。根据三角函数,即可表示出 与 的值。
【详解】因为关于 的方程 在区间 上有三个解,且函数 的最小正周期为 ,再由三角函数的对称性可知:方程 在区间 上的解的最小值与最大值分别为 和 ;
又它们的和为 ,所以中间的解为 ,
所以有 ,即 ,故 ,
又 ,所以 或 .
故答案为 或
【点睛】本题主要考查三角函数的图像与性质,熟记正弦型函数的性质即可,属于常考题型.
由 , , 三点共线可得
即 ,所以
又因为
所以
即
当 时, ,此时
当 与 (或 )点重合时,此时 ,此时
所以
由基本不等式 ,可得
当 或 时,
当x=1且y=1时,x+y=2,xy=1,则
即
【点睛】本题考查了平面向量基本定理、向量共线基本定理的综合应用,注意向量线性运算的转化,属于中档题。
二、选择题
13.已知函数 的图象是由函数 的图象经过如下变换得到:先将 的图象向右平移 个单位长度,再将其图象上所有点的横坐标变为原来的一半,纵坐标不变,则函数 的图象的一条对称轴方程为()
综上, 实数 的取值范围为 .
【点睛】本题考查了分段函数的图像与性质的简单应用,注意端点处的值是否可以取到,属于中档题.
11.设 ,若关于 的方程 在区间 上有三个解,且它们的和为 ,则 ________
【答案】 或
2021北京八一中学高二(上)9月月考数学(教师版)

2021北京八一中学高二(上)9月月考数学考生须知:1.本试卷满分100分。
2.在试卷和答题卡上准确填写学校、班级、姓名和学号。
3.试题答案一律填写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题须用2B铅笔将选中项涂黑涂满,其他试题用黑色字迹签字笔作答。
5.考试结束时,将本试卷、答题卡一并交回。
一、选择题共10小题,每小题3分,共30分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(3分)已知点A(2,﹣1,3)、B(1,2,3),则=()A.(2,﹣1,3)B.(1,2,3)C.(﹣1,3,0)D.(1,﹣3,0)2.(3分)若直线l的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则直线l与平面α的位置关系为()A.平行B.垂直C.在平面内D.斜交3.(3分)如图,在直三棱柱ABC﹣A1B1C1中,若,则=()A.B.C.D.4.(3分)已知平面α内有一点A(2,﹣1,2),平面α的一个法向量为,则下列四个点中在平面α内的是()A.P1(1,0,3)B.P2(1,﹣1,1)C.P3(2,﹣3,1)D.P4(﹣2,0,1)5.(3分)如图,已知矩形ABFE与矩形EFCD所成二面角D﹣EF﹣B的平面角为锐角,记二面角D﹣EF﹣B的平面角为α,直线EC与平面ABFE所成角为β,直线EC与直线FB所成角为γ,则()A.β>α,β>γB.α>β,β>γC.α>β,γ>βD.α>γ,γ>β6.(3分)已知=(2,1,﹣3),=(﹣1,2,3),=(7,6,λ),若,,共面,则λ等于()A.﹣3B.3C.﹣9D.97.(3分)四棱锥S﹣ABCD中,=(4,﹣1,0),=(0,3,0),=(﹣3,1,﹣4),则这个四棱锥的高h为()A.1B.2C.3D.48.(3分)在正方体ABCD﹣A1B1C1D1中,点E,F分别是AB,CC1的中点,则下列说法正确的是()A.A1E∥平面BFD1B.A1E⊥平面ADFC.A1,E,B,F四点共面D.二面角D1﹣BF﹣B1的平面角为钝角9.(3分)对于任意非零空间向量,给出下列三个命题:①若a1=a2=a3=1,则为单位向量;②;③=0.其中真命题的个数为()A.0B.1C.2D.310.(3分)如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点P为线段AC1上的动点(包含端点),则下列说法正确的是()A.存在点P使得D1P与B1C不垂直B.不存在点P使得|D1P|+|A1P|=2成立C.不存在点P使得D1P与BC所成角为D.存在点P使得平面BCP与平面DCP所成角为二、填空题共5小题,每小题4分,共20分.11.(4分)如图,已知矩形ABCD中,AD=4,CD=3,P A⊥平面ABCD,并且P A=,则PC的长为.12.(4分)已知=(1,3,m),=(2n,6,﹣4),若∥,则•=.13.(4分)已知空间三点O(0,0,0),A(﹣1,1,0),B(0,2,1),在直线OA上有一点满足BH⊥OA,则点H的坐标为.14.(4分)中国古代数学名著《九章算术•商攻》中,阐述:“斜解立方,得两堵.斜解壍堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.”若称为“鳖臑”的某三棱锥如图所示,P A⊥平面ABC,AB⊥BC,P A=AB =BC=4,则PB与AC所成的角等于;PC与AB之间的距离等于.15.(4分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD为正方形,侧棱AA1⊥底面ABCD,AB=3,AA1=4,P是侧面BCC1B1内的动点,且AP⊥BD1,记AP与平面BCC1B1所成的角为θ,则tanθ的最大值为.三、解答题共5小题,共50分.解答应写出文字说明,演算步骤或证明过程.16.(10分)已知空间向量=(2,4,﹣2),=(﹣1,0,2),=(x,2,﹣1).(Ⅰ)若∥,求;(Ⅰ)若⊥,求cos<,>的值.17.(10分)如图,已知平行六面体ABCD﹣A1B1C1D1中,底面ABCD是边长为1的正方形,AA1=2,∠A1AB=∠A1AD=120°,设.(Ⅰ)求的值;(Ⅰ)求的值.18.(10分)如图所示,在直三棱柱ABC﹣A1B1C1中,CA=4,CB=4,,∠ACB=90°,点M在线段A1B1上.(1)若A1M=3MB1,求异面直线AM和A1C所成角的余弦值;(2)若直线AM与平面ABC1所成角为30°,试确定点M的位置.19.(12分)如图所示,平面ABCD⊥平面BCEF,且四边形ABCD为矩形,四边形BCEF为直角梯形,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.(Ⅰ)求证:AF∥平面CDE;(Ⅰ)求平面CDE与平面AEF所成锐二面角的余弦值;(Ⅰ)求点C到平面AEF的距离.20.(8分)已知集合S n={X|X=(x1,x2,…,x n),x i∈{0,1},i=1,2,…,n}(n≥2),对于A=(a1,a2,…,a n)∈S n,B=(b1,b2,…,b n)∈S n,定义A与B的差为A﹣B=(|a1﹣b1|,|a2﹣b2|,…,|a n﹣b n|);A与B之间的距离为d(A,B)=|a1﹣b1|+|a2﹣b2|+…+|a n﹣b n|.(Ⅰ)写出A=(1,0,1,0)与B=(0,0,1,1)的差A﹣B和距离d(A,B);(Ⅰ)证明:∀A,B,C∈S n,有A﹣B∈S n;证明:d(A﹣C,B﹣C)=d(A,B);(Ⅰ)证明:∀A,B,C∈S n,d(A,B),d(B,C),d(A,C)三个数中至少有一个是偶数.2021北京八一中学高二(上)9月月考数学参考答案一、选择题共10小题,每小题3分,共30分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【分析】利用空间向量坐标运算法则直接求解.【解答】解:∵点A(2,﹣1,3)、B(1,2,3),∴=(﹣1,3,0).故选:C.【点评】本题考查向量的求法,考查空间向量坐标运算法则等基础知识,考查运算求解能力,是基础题.2.【分析】推导出直线l的方向向量和平面α的法向量平行,由此能求出直线l与平面α的位置关系为垂直.【解答】解:直线l的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),∵=﹣2,∴∥,∴直线l与平面α的位置关系为垂直.故选:B.【点评】本题考查直线与平面的位置关系的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.3.【分析】根据空间向量的线性运算法则,计算即可.【解答】解:直三棱柱ABC﹣A1B1C1中,,所以=+=+=﹣﹣=﹣﹣=﹣+﹣.故选:D.【点评】本题考查了空间向量的线性运算应用问题,是基础题.4.【分析】设所求点的坐标为P(x,y,z),由•=0,逐一验证选项,即可.【解答】解:设所求点的坐标为P(x,y,z),则=(x﹣2,y+1,z﹣2),∵平面α的一个法向量为,∴•=3(x﹣2)+(y+1)+2(z﹣2)=3x+y+2z﹣9=0,对于选项A,3x+y+2z﹣9=3×1+0+2×3﹣9=0,符合,对于选项B,3x+y+2z﹣9=3×1﹣1+2×1﹣9≠0,不符合,对于选项C,3x+y+2z﹣9=3×2﹣3+2×1﹣9≠0,不符合,对于选项D,3x+y+2z﹣9=3×(﹣2)+0+2×1﹣9≠0,不符合,故选:A.【点评】本题考查平面的法向量,空间向量数量积的运算,考查运算求解能力,属于基础题.5.【分析】过C作CO⊥平面ABFE,垂足为O,连结EO,则α=∠AED,β=∠CEO,γ=∠CEF,由此能求出结果.【解答】解:过C作CO⊥平面ABFE,垂足为O,连结EO,∵矩形ABFE与矩形EFCD所成二面角D﹣EF﹣B的平面角为锐角,记二面角D﹣EF﹣B的平面角为α,直线EC与平面ABFE所成角为β,直线EC与直线FB所成角为γ,∴α=∠AED,β=∠CEO,γ=∠CEF,∵CF>CO,∴α>β,γ>β.故选:C.【点评】本题考查命题真假的判断,考查线面角、二面角、线线角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.6.【分析】由,,共面,设=m,列方程组能求出λ的值.【解答】解:=(2,1,﹣3),=(﹣1,2,3),=(7,6,λ),∵,,共面,∴设=m,则(2,1,﹣3)=(﹣m+7n,2m+6n,3m+λn),∴,解得m=﹣,n=,解得λ=﹣9.故选:C.【点评】本题考查实数值的求法,考查共面向量定理等基础知识,考查运算求解能力,是基础题.7.【分析】先求出平面ABCD的一个法向量,则在法向量上的投影的绝对值即为这个四棱锥的高.【解答】解:设平面ABCD的法向量为=(x,y,z),则,即,∴,取z=1,则=(0,0,1),∴这个四棱锥的高h==4,故选:D.【点评】本题主要考查了平面的法向量,考查了向量数量积的几何意义,是基础题.8.【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出结果判断A,B.利用异面直线的判断方法判断C,利用D1在面BCC1B1上的射影为C1判断D.【解答】解:设正方体ABCD﹣A1B1C1D1中棱长为2,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,A1(2,0,2),E(2,1,0),B(2,2,0),F(0,2,1),D1(0,0,2),D(0,0,0)对于A,=(﹣2,﹣2,2),=(﹣2,0,1),设平面BFD1的一个法向量=(x,y,z),所以得,令x=1,则z=2,y=1,平面BFD1的一个法向量=(1,1,2),又=(0,1,﹣2),所以=﹣3,所以A1E不平行于面BFD1,所以A错误;对于B,=(2,0,0),=(0,2,1),=(0,1,﹣2),∴,∴A1E⊥DA,A1E⊥DF,∴A1E⊥平面ADF,故B正确;对于C,∵A1E⊂面ABB1A1,BF⊄面ABB1A1,且B∉A1E,所以直线A1E与BF为异面直线,故C错误;对于D,∵D1C1⊥面BCC1B1,所以二面角D1﹣BF﹣B1的平面角为锐角,故D错误.故选:B.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.9.【分析】直接利用单位向量,向量的模,向量的共线和向量的垂直的应用判断①②③的结论.【解答】解:对于任意非零空间向量,对于①:若a1=a2=a3=1,则||=,故该向量不为单位向量,故①错误;对于②:,反之不一定成立,故②错误;对于③:=0,故③正确.故选:B.【点评】本题考查的知识要点:单位向量,向量的共线,向量的垂直,主要考查学生的运算能力和数学思维能力,属于基础题.10.【分析】利用线面垂直的定义易判断A选项,取特殊位置可验证B,C.【解答】解:A:因为P在面D1C1BA内,而B1C⊥面D1C1BA,所以B1C⊥D1P,所以无论P怎么移动,都有B1C⊥D1P,不存在P点使D1P与BC1不垂直,故A错.B:当P在正方体中心时,|O1P|+|A1P|=,当P在A或C1时,|D1P|+|A1P|=1+即:,故存在点P,使|D1P|+|A1P|=2成立,故B错.C:因为BC∥A1D1,即D1P与BC所成的角即D1P与A1D1所成的角,P在C1时,D1P与A1D1的夹角为,P在A时,D1P与A1D1夹角为,而<<,所以存在符合条件的点P,故C错.故选:D.【点评】本题考查了立体几何动态点问题,属于难题.二、填空题共5小题,每小题4分,共20分.11.【分析】连接AC,利用勾股定理求出AC,由线面垂直的性质得到P A⊥AC,由勾股定理求解PC即可.【解答】解:连接AC,在矩形ABCD中,AD=4,CD=3,则AC=,因为P A⊥平面ABCD,AC⊂平面ABCD,则P A⊥AC,在Rt△P AC中,AC=5,P A=,则.故答案为:6.【点评】本题考查了空间中线段长度的求解,线面垂直的性质定理的应用,勾股定理的应用,考查了逻辑推理能力、空间想象能力与运算能力,属于基础题.12.【分析】∥,可得,解得m,n.再利用数量积运算性质即可得出.【解答】解:∵∥,∴,解得m=﹣2,n=1.∴=2+18+(﹣2)×(﹣4)=28.故答案为:28.【点评】本题考查了向量共线定理、数量积运算性质,考查了推理能力与计算能力,属于基础题.13.【分析】根据空间向量的坐标表示与线性运算和数量积运算,求解即可.【解答】解:由O(0,0,0),A(﹣1,1,0),B(0,2,1),∴=(﹣1,1,0),且点H在直线OA上,可设H(﹣λ,λ,0),则=(﹣λ,λ﹣2,﹣1),又BH⊥OA,∴=0,即(﹣λ,λ﹣2,﹣1)•(﹣1,1,0)=0,即λ+λ﹣2=0,解得λ=1,∴点H(﹣1,1,0).故答案为:(﹣1,1,0).【点评】本题考查了空间向量的坐标表示与运算问题,是基础题.14.【分析】由异面直线所成角的定义结合三角形中位线定理找出PB与AC所成的角,求解三角形可得PB与AC 所成的角;再找出PC与AB的公垂线,进一步求解三角形可得PC与AB之间的距离.【解答】解:如图,分别取BC,P A,AB的中点为E,F,H,连接EF,EH,FH,由三角形中位线定理可得,EH∥AC,FH∥PB,则∠EHF(或其补角)即为PB与AC所成的角,∵P A=AB=BC=4,∴PB=AC=,则EH=FH=,AF=2,AE=,EF=,∴cos∠EHF==,∴∠EHF=120°,则PB与AC所成的角等于60°;取PC中点为O,连接CH,PH,AO,BO,由已知求解三角形可得AO=BO=PC=,PH=CH,则OH为异面直线PC与AB的公垂线,∴OH=,即PC与AB之间的距离等于2.故答案为:60°;.【点评】本题考查空间中异面直线所成角及距离的求法,考查空间想象能力与思维能力,考查运算求解能力,是中档题.15.【分析】以D为原点,以DA为x轴,DC为y轴,DD1为z轴建立空间直角坐标系,求出AP与平面BCC1B1所成的角的正弦值的最大值,进一步可得tanθ的最大值.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设P(a,3,c),(0≤a≤3,0≤c≤4),则A(3,0,0),B(3,3,0),D1(0,0,4),=(a﹣3,3,c),=(﹣3,﹣3,4),平面BCC1B1的法向量=(0,1,0),∵AP⊥BD1,∴•=﹣3(a﹣3)﹣9+4c=0,解得c=,∴=(a﹣3,3,),∵AP与平面BCC1B1所成的角为θ,∴sinθ===,∴当a=时,sinθ取最大值为,此时cosθ=,∴tanθ的最大值为:=.故答案为:.【点评】本题考查线面角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,训练了利用空间向量求解空间角,考查运算求解能力,是中档题.三、解答题共5小题,共50分.解答应写出文字说明,演算步骤或证明过程.16.【分析】(Ⅰ)利用空间向量共线定理,列式求解x的值,由向量模的坐标运算求解即可;(Ⅰ)利用向量垂直的坐标表示,求出x的值,从而得到,由空间向量的夹角公式求解即可.【解答】解:(Ⅰ)空间向量=(2,4,﹣2),=(﹣1,0,2),=(x,2,﹣1),因为∥,所以存在实数k,使得,所以,解得x=1,则=;(Ⅰ)因为⊥,则,解得x=﹣2,所以,故cos<,>==.【点评】本题考查了空间向量的坐标运算,空间向量共线定理的应用,向量数量积的坐标运算以及空间向量夹角公式的运用,考查了逻辑推理能力与化简运算能力,属于基础题.17.【分析】(Ⅰ)由图得到=++,再由向量模的运算即可求得答案;(Ⅰ)表示出•=•(﹣),代入数据运算即可.【解答】解:(Ⅰ)由图可得=+=++,所以||²=|++|²=²+²+²+2•+2•+2•=2²+1²+1²+2×2×1×cos120°+2×1×1×cos90°+2×2×1×cos120°=4+1+1﹣2﹣2=2,则||=;(Ⅰ)因为=﹣,所以•=•(﹣)=•﹣•=2×1×cos120°﹣2×1×cos120°=0.【点评】本题考查平面向量数量积的运算性质,考查向量模的求解,数形结合思想,属于中档题.18.【分析】(1)以C为坐标原点,分别以CA,CB,CC1所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,由向量法求出直线AM和A1C所成角的余弦值;(2)点M在线段A1B1上,设,求出平面ABC1所法向量,利用夹角公式求出x,代入求出M 的坐标.【解答】解:(1)以C为坐标原点,分别以CA,CB,CC1所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则C(0,0,0),A(4,0,0),,,因为A1M=3MB1,所以,所以,,所以.所以异面直线AM和A1C所成角的余弦值为;(2)由A(4,0,0),B(0,4,0),,得,,设平面ABC1的法向量为,由得,令a=1,则b=1,,所以平面ABC1的一个法向量为,因为点M在线段A1B1上,设,所以,因为直线AM与平面ABC1所成角为30°,所以,由,得,解得x=2或x=6,为点M在线段A1B1上,所以x=2,即点是线段A1B1的中点.【点评】考查向量法求直线与平面,异面直线所成的角,考查空间想象能力和数学运算能力,中档题.19.【分析】以C为原点,CB所在直线为x轴,CE所在直线为y轴,CD所在直线为z轴建立空间直角坐标系.(Ⅰ)为平面CDE的一个法向量,证明AF∥平面CDE,只需证明=0×2+2×0+(﹣4)×0=0;(Ⅰ)求出平面CDE的一个法向量、平面AEF一个法向量,利用向量的夹角公式,即可求平面CDE与平面AEF 所成锐二面角的余弦值;(Ⅰ)由点到面的距离公式可得.【解答】(Ⅰ)证明:∵四边形BCEF为直角梯形,四边形ABCD为矩形,∴BC⊥CE,BC⊥CD,又∵平面ABCD⊥平面BCEF,且平面ABCD∩平面BCEF=BC,∴DC⊥平面BCEF.以C为原点,CB所在直线为x轴,CE所在直线为y轴,CD所在直线为z轴建立如图所示空间直角坐标系.根据题意我们可得以下点的坐标:A(2,0,4),B(2,0,0),C(0,0,0),D(0,0,4),E(0,4,0),F(2,2,0),则=(0,2,﹣4),=(2,0,0).∵BC⊥CD,BC⊥CE,∴为平面CDE的一个法向量.又=0.AF⊄平面CDE.∴AF∥平面CDE.(Ⅰ)由(I)知=(2,0,0)为平面CDE的一个法向量,由(I)知=(﹣2,4,﹣4),=(0,2,﹣4)设平面AEF的一个法向量=(x,y,z),则,∴,令z=1,则y=2,x=2,∴平面AEF的一个法向量=(2,2,1),cos<>==,平面CDE与平面AEF所成锐二面角的余弦值为;(III)由(I)知=(2,0,4),又平面AEF的一个法向量=(2,2,1),所以点C到平面AEF的距离d==,【点评】本题主要考查空间点、线、面位置关系,二面角及三角函数及空间坐标系等基础知识,考查空间想象能力、运算能力和推理论证能力,考查用向量方法解决数学问题的能力.20.【分析】(Ⅰ)由题中的定义计算距离d(A,B)即可;(Ⅰ)由题中的定义首先证明:∀A,B,C∈S n,有A﹣B∈S n,然后证明d(A﹣C,B﹣C)=d(A,B)即可.(Ⅰ)结合(Ⅰ)中的结论和奇数偶数的性质即可证得题中的结论.【解答】(Ⅰ)解:由题意得,A﹣B=(|0﹣1|,|1﹣1|,|0﹣1|,|0﹣0|,|1﹣0|)=(1,0,1,0,1),d(A,B)=|0﹣1|+|1﹣1|+|0﹣1|+|0﹣0|+|1﹣0|=3.(Ⅰ)证明:设A=(a1,a2,…,a n),B=(b1,b2,…,b n),C=(c1,c2,…,c n)∈S n,因为a i,b i∈{0,1},所以|a i﹣b i|∈{0,1}(i=1,2,n),从而A﹣B=(|a1﹣b1|,|a2﹣b2|,⋯,|a n﹣b n|)∈S n,由题意知a i,b i,c i∈{0,1}(i=1,2,⋯,n),当c i=0时,|a i﹣c i|﹣|b i﹣c i|=|a i﹣b i|,当c i=1时,|a i﹣c i|﹣|b i﹣c i|=|(1﹣a i)﹣(1﹣b i)|=|a i﹣b i|.所以.(Ⅰ)证明:设A=(a1,a2,…,a n),B=(b1,b2,…,b n),C=(c1,c2,…,c n)∈S n,d(A,B)=k,d(A,C)=l,d(B,C)=h,记0=(0,0,…,0)∈S n,由(Ⅰ)可知:,因为|a i﹣b i|∈{0,1},,所以|b i﹣a i|(i=1,2,⋯,n)中1的个数为k,|c i﹣a i|(i=1,2,⋯,n)中1的个数为l,设t是使|b i﹣a i|=|c i﹣a i|=1成立的i的个数.则h=l+k﹣2t,由此可知,k,l,h三个数不可能都是奇数,即d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数.【点评】本题主要考查数列中的新定义及其应用,反证法及其应用等知识,属于中等题.。
2022-2023学年广西玉林市北流市实验中学高二上学期9月月考数学试题(解析版)

2022-2023学年广西玉林市北流市实验中学高二上学期9月月考数学试题一、单选题1.直线220x y -+=在x 轴上的截距是( ) A .1- B .1 C .2- D .2【答案】A【分析】根据截距的概念运算求解.【详解】令0y =,则2020x -+=,解得1x =- ∴直线220x y -+=在x 轴上的截距是1- 故选:A.2.过点(2,3)A 且平行于直线250x y +-=的直线的方程为( ) A .240x y -+= B .270x y +-= C .280x y +-= D .4250x y +-=【答案】B【分析】根据平行设直线方程为20x y C ++=,代入点计算得到答案.【详解】设直线方程为20x y C ++=,将点(2,3)A 代入直线方程得到430C ++=,解得7C =-.故直线方程为:270x y +-=. 故选:B.3.“2a =”是“直线1l :2430ax y ++=与直线2l :()2150x a y ---=垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】求出两直线垂直的充要条件后再根据充分必要条件的定义判断. 【详解】若12l l ⊥,则()22410a a --=,解得2a =或12a =. 所以由2a =可以得到12l l ⊥,反之则不然,故“2a =”是“12 l l ⊥”的充分不必要条件. 故选:A.4.已知直线l 的方向向量(1,2,1)a =-,平面α的法向量(2,2,2)b =--,则直线l 与平面α的位置关系是( ) A .//l αB .l α⊥C .l α⊂D .以上选项都不对 【答案】D【分析】计算得到0a b ⋅=,得到a b ⊥,即直线l 与平面α的位置关系是l α∥或l α⊂,得到答案.【详解】(1,2,1)a =-,(2,2,2)b =--,则2420a b ⋅=-+=,故a b ⊥, 故直线l 与平面α的位置关系是l α∥或l α⊂. 故选:D.5.已知平面α,β的法向量分别为()2,3,a λ=和()4,,2b μ=-(其中,R λμ∈),若//αβ,则λμ+的值为( ) A .52-B .-5C .52D .5【答案】D【分析】根据平面平行得到//a b ,故()()2,3,4,,2k λμ=-,计算得到答案.【详解】//αβ,则//a b ,故()()2,3,4,,2k λμ=-,即2432kk kμλ=⎧⎪=⎨⎪=-⎩,解得61μλ=⎧⎨=-⎩. 故5λμ+=. 故选:D .【点睛】本题考查了法向量的平行问题,意在考查学生的计算能力. 6.直线3460x y +-=关于y 轴对称的直线方程是( ) A .3x -4y -6=0 B .4x -3y -6=0 C .3x -4y +6=0 D .4x -3y +6=0【答案】C【分析】求出直线3460x y +-=与y 轴的交点,并求出直线3460x y +-=的斜率,由此可得出所求直线的方程.【详解】直线3460x y +-=交y 轴于点30,2⎛⎫⎪⎝⎭,且直线3460x y +-=的斜率为34k =-, 故所求直线的斜率为34,故所求直线的方程为3324y x -=,即3460x y -+=. 故选:C.7.在空间中,已知()2,4,0AB =,()1,3,0BC =-,则ABC ∠的大小为( ) A .135︒B .90C .120 D .45【答案】A【分析】结合向量夹角公式计算出ABC ∠的大小. 【详解】()()2,4,0,1,3,0BA BC =--=-, 212102cos 241619102BA BC ABC BA BC⋅--∠====-+⋅+⋅,由于0180ABC ︒≤∠≤︒,所以135ABC ∠=︒. 故选:A8.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( )A .π2B .π3C .π4D .π6【答案】D【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可.【详解】如图,连接11,,BC PC PB ,因为1AD ∥1BC , 所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=, 所以1PC ⊥平面1PBB ,所以1PC PB ⊥, 设正方体棱长为2,则1111122,22BC PC D B === 1111sin 2PC PBC BC ∠==,所以16PBC π∠=. 故选:D二、多选题9.在以下命题中,不正确的命题有( ) A .a b a b -=+是,a b 共线的充要条件 B .若//a b ,则存在唯一的实数λ,使a b λ=C .对空间任意一点O 和不共线的三点A ,B ,C ,若223OP OA OB OC =+-,则P ,A ,B ,C 四点共面D .若{},,a b c 为空间的一个基底,则{},,a b b c c a +++构成空间的另一个基底 【答案】AB【分析】利用a b a b -≤+等号成立的条件可判断A ;利用0与任意向量共线可判断B ;利用共面定理可判断C ;利用基底的概念可判断D【详解】对于A :向量,a b 同向时,a b a b -≠+,故A 错误; 对于B :需要强调0b ≠,故B 错误;对于C :因为2231+-=,则由共面定理知P ,A ,B ,C 四点共面,故C 正确; 对于D :{},,a b c 为空间的一个基底,则,,a b c 不共面,故,,a b b c c a +++也不共面, 所以{},,a b b c c a +++构成空间的另一个基底,故D 正确; 故选:AB10.已知直线1:0l x ay a +-=和直线2:(23)20l ax a y a --+-=,则( )A .2l 始终过定点12(,)33B .若2l 在x 轴和y 轴上的截距相等,则1a =C .若12l l ⊥,则0a =或2D .若12l l //,则1a =或3-【答案】AC【分析】结合直线所过定点的求法、直线的截距、直线平行和垂直等知识对选项进行分析,由此确定正确选项.【详解】2:(23)20l ax a y a --+-=化为(21)320a x y y -++-=, 由210x y -+=且320y -=解得12,33x y ==,即直线2l 恒过定点12(,)33,故A 正确;若2l 在x 轴和y 轴上截距相等,则2l 过原点或其斜率为1-,则2a =或()1123aa a -=-⇒=--,故B 错误;若12l l ⊥,则1(32)0a a a ⨯+⨯-=解得0a =或2,故C 正确; 若12l l //,则先由1(32)a a a ⨯-=⨯解得1a =或3-, 再检验当1a =时12,l l 重合,故D 错误. 故选:AC11.下列各命题正确的是( )A .点()1,2,3-关于平面xOz 的对称点为()1,2,3B .点1,1,32⎛⎫- ⎪⎝⎭关于y 的对称点为1,1,32⎛⎫- ⎪⎝⎭C .点()2,1,3-到平面yOz 的距离为1D .设{},,i j k 是空间向量单位正交基底且以i ,j ,k 的方向为x ,y ,z 轴的正方向建立了一个空间直角坐标系,若324m i j k =-+,则()3,2,4m =- 【答案】ABD【分析】利用空间直角坐标系中的点的对称关系、距离、坐标分析判断 【详解】对于A ,点()1,2,3-关于平面xOz 的对称点为()1,2,3,所以A 正确, 对于B ,点1,1,32⎛⎫- ⎪⎝⎭关于y 的对称点为1,1,32⎛⎫- ⎪⎝⎭,所以B 正确,对于C ,点()2,1,3-到平面yOz 的距离为2,所以C 错误,对于D ,由于{},,i j k 是空间向量单位正交基底且以i ,j ,k 的方向为x ,y ,z 轴的正方向建立了一个空间直角坐标系,且324m i j k =-+,所以,所以D 正确,故选:ABD12.已知正方体1111ABCD A B C D -的棱长为1,下列四个结论中正确的是( )A .直线1BC 与直线1AD 所成的角为90B .直线1BC 与平面1ACDC .1BD ⊥平面1ACDD .点1B 到平面1ACD【答案】ABC【分析】如图建立空间直角坐标系,求出1B C 和1AD 的坐标,由110AD BC ⋅=可判断A ;证明10AC B D ⋅=,110AD B D ⋅=可得1AC B D ⊥,11AD B D ⊥,由线面垂直的判定定理可判断C ;计算11cos ,B D B C 的值可得线面角的正弦值,再由同角三角函数基本关系求出夹角的余弦值可判断B ;利用向量求出点1B 到平面1ACD 的距离可判断D ,进而可得正确选项.【详解】如图以D 为原点,分别以1,,DA DC DD 所在的直线为,,x y z 轴建立空间直角坐标系,则()0,0,0D ,()1,0,0A ()0,1,0C ,()10,0,1D ,()11,1,1B , 对于A :()11,0,1B C =--,()11,0,1AD =-,因为()()()111100110B AD C =⋅-⨯-+⨯+-⨯=,所以11AD BC ⊥,即11B C AD ⊥,直线1B C 与直线1AD 所成的角为90,故选项A 正确;对于C :因为 ()1,1,0AC =-,()11,0,1AD =-,()11,1,1B D =---,所以11100AC B D ⋅=-+=,111010AD B D ⋅=+-=,所以1AC B D ⊥,11AD B D ⊥, 因为1ACAD A =,所以1B D ⊥平面1ACD ,故选项C 正确;对于B :由选项C 知:1B D ⊥平面1ACD ,所以平面1ACD 的一个法向量()11,1,1B D =---,因为()11,0,1B C =--,所以111111cos ,3B D B C B D B C B DB C⋅===即直线1B C 与平面1ACD,所以直线1B C 与平面1ACD 所成角的余弦值为=B 正确; 对于D :因为()11,0,1B C =--,平面1ACD 的一个法向量()11,1,1B D =---,所以点1B 到平面1ACD 的距离为11123332B D B C d B D⋅===,故选项D 不正确 故选:ABC.三、填空题13.直线l 3320x y +-=的倾斜角是______ 【答案】56π【分析】将一般式方程整理为斜截式方程可得直线斜率,由斜率和倾斜角关系求得倾斜角.【详解】3320x y +-=得:323y x =+, 所以直线的斜率为[]30k θπ=∈,, ∴直线的倾斜角为56π. 故答案为:56π. 14.过原点且方向向量为()1,2a =-的直线方程为______. 【答案】20x y +=【分析】利用直线的方向向量可得直线的斜率,进而得出直线的方程. 【详解】解:过原点且方向向量为(1,2)a =-的直线的斜率为221-=-, 故方程为:2y x =-,即20x y +=. 故答案为:20x y +=.15.函数()2225618f x x x x x -+-+________.【答案】29【解析】根据题意,其几何意义为点(),0P x 到点()1,2A ,()3,3B 两点的距离之和,故y PA PB PC PB BC =+=+≥,再根据距离公式求解即可.【详解】解:因为()()()2222256181439f x x x x x x x =-++-+=-++-+,几何意义为点(),0P x 到点()1,2A ,()3,3B 两点的距离之和,()1,2A 关于x 轴的对称点()1,2C -,()()22313229y PA PB PC PB BC =+=+≥=-++=,当且仅当,,B P C 三点共线时y 的值最小为29BC = 故答案为:29【点睛】本题考查两点之间距离公式的妙用,涉及函数最值的求解,属基础题. 16.如图所示,正方体1111ABCD A B C D -的棱长为1,O 是底面1111D C B A 的中心,则O 到平面11ABC D 的距离为______.2【解析】以D 为原点,1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,利用空间向量求点到平面的距离即可.【详解】以D 为原点,1,,DA DC DD 为,,x y z 轴建立如图所示的空间直角坐标系, 易得11,,122O ⎛⎫⎪⎝⎭,()()11,0,0,.0,0,1A D()()10,1,0,1,0,1AB AD ==-,设平面11ABC D 的法向量为(),,n x y z =, 1·0·0AB n y AD n x z ⎧==⎪⎨=-+=⎪⎩,令1x =,则()1,0,1n =,11,,122AO ⎛⎫=- ⎪⎝⎭,O ∴到平面11ABC D 的距离11·2242AO n d n -+===, 故答案为:24.【点睛】本题考查点到平面的距离的求法,常用的方法有等体积法,垂线法,空间向量方法,利用空间向量方法求解是比较方便的方法.四、解答题17.已知点(1,1)(2,4)、-A B . (1)求直线AB 的倾斜角(2)过点(1,0)P 的直线m 与过(1,1)(2,4)、-A B 两点的线段有公共点,求直线m 斜率的取值范围.【答案】(1)4πα=(2)[)14,2,-⎛⎤-∞⋃+∞ ⎥⎝⎦【分析】(1)利用两点式得到直线斜率,从而可得直线AB 的倾斜角; (2)求出直线PA 与直线PB 的斜率,从而可得结果. 【详解】(1)由已知得:直线AB 的斜率()41121k -==--tan 1,α∴=又[)0,,4παπα∈∴=(2)直线PA 的斜率101112-==---PA k 直线PB 的斜率40421-==-PB k 过点直线m 与过AB 、两点的线段有公共点,∴直线m 斜率的取值范围为[)14,2,-⎛⎤-∞⋃+∞ ⎥⎝⎦18.已知直线11:42m l y x =-+与直线22:55nl y x =+垂直,垂足为()1,H p ,求过点H ,且斜率为m pm n++的直线方程. 【答案】42y x =-+【分析】根据垂直关系得到10m =,结合垂足在直线上得到H (1,-2)及12n =-,从而可得直线方程.【详解】解:∵12l l ⊥∴2145m -⨯=-解得10m =,∴直线l 1的方程为5122y x =-+.又∵点()1,H p 在直线l 1上,∴511222p =-⨯+=-,即H (1,-2).又∵点H (1,-2)在直线l 2上,22155n-=⨯+.解得12n =-,∴所求直线的斜率为4m pm n+=-+,其方程为()241y x +=--,即42y x =-+ 19.已知点(3,5)A -和(2,15)B ,P 为直线10x y -+=上的动点. (1)求(3,5)A -关于直线10x y -+=的对称点0(A x ',0)y , (2)求PA PB +的最小值. 【答案】(1)(4,2)- 293【分析】(1)根据点,A A '的中点在直线10x y -+=上,直线AA '和直线10x y -+=垂直,列出方程,解方程即可得出答案;(2)PA PB PA PB A B ''+=+≥,当且仅当,,P A B '三点共线时,取等号,即可求出PA PB +的最小值为A B ',代入即可得出答案.【详解】(1)(3,5)A -关于直线10x y -+=的对称点设为0(A x ',0)y ,则0000351022513x y y x -++⎧-+=⎪⎪⎨-⎪=-+⎪⎩,解得04x =,02y =-, 所以A '的坐标为(4,2)-.(2)由(1)及已知得:PA PB PA PB A B ''+=+≥,当且仅当,,P A B '三点共线时,取等号, 则PA PB +的最小值为:||A B '20.已知(,4,1)a x =,(2,,1)b y =--,(3,2,)c z =-,//a b ,b c ⊥.(1)求实数x ,y ,z 的值;(2)求a c +与b c +夹角的余弦值.【答案】(1)x =2,y =-4,z =2;(2)219-. 【分析】(1)直接利用向量平行和向量垂直即可求出x ,y ,z 的值;(2)先求出()5,2,3,a c += ()1,6,1b c +=-利用向量的夹角公式即可求解.【详解】(1)因为(,4,1)a x =,(2,,1)b y =--,(3,2,)c z =-,//a b ,b c ⊥. 所以()()41,232021x y z y ==-⨯+⨯--=--, 解得:x =2,y =-4,z =2.(2)由(1)知:(2,4,1)a =,(2,4,1)b =---,(3,2,2)c =-,所以()5,2,3,a c += ()1,6,1b c +=-.设a c +与b c +夹角为θ[]()0,θπ∈,则2cos 19θ==-即a c +与b c +夹角的余弦值为219-. 21.如图,直四棱柱ABCD –A 1B 1C 1D1的底面是菱形,AA1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB1,A1D 的中点.(1)证明:MN ∥平面C1DE ;(2)求点C 到平面C1DE 的距离.【答案】(1)见解析;(2)41717. 【分析】(1)利用三角形中位线和11//A D B C 可证得//ME ND ,证得四边形MNDE 为平行四边形,进而证得//MN DE ,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥1C CDE -的体积,再求出1C DE ∆的面积,利用11C CDE C C DE V V --=求得点C 到平面1C DE 的距离,得到结果.【详解】(1)连接ME ,1B CM ,E 分别为1BB ,BC 中点 ME ∴为1B BC ∆的中位线1//ME B C ∴且112ME B C = 又N 为1A D 中点,且11//A D B C 1//ND B C ∴且112ND B C = //ME ND ∴ ∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE ⊂平面1C DE//MN ∴平面1C DE(2)在菱形ABCD 中,E 为BC 中点,所以DE BC ⊥, 根据题意有3DE =,117C E =, 因为棱柱为直棱柱,所以有DE ⊥平面11BCC B ,所以1DE EC ⊥,所以113172DEC S ∆=⨯⨯, 设点C 到平面1C DE 的距离为d ,根据题意有11C CDE C C DE V V --=,则有11113171343232d ⨯⨯⨯⨯=⨯⨯⨯⨯, 解得44171717d ==, 所以点C 到平面1C DE 的距离为41717. 【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容. 22.如图,已知四棱锥P -ABCD 的底面为直角梯形,AB DC ∥,90DAB ∠=︒,PA ⊥底面ABCD ,且112PA AD DC AB ====,M 是棱PB 的中点.(1)证明:平面PAD ⊥平面PCD ;(2)求平面AMC 与平面BMC 的夹角的余弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理先证明DC ⊥平面P AD ,再根据面面垂直的判定定理证明平面PAD ⊥平面PCD ;(2)建立空间直角坐标系,求出相关各点的坐标,继而求得相关向量的坐标,再求出相关平面AMC 和平面BMC 的法向量,根据向量的夹角公式求得答案【详解】(1)∵PA ⊥底面ABCD ,DC ⊂底面ABCD ,∴PA DC ⊥,又由题设知AD DC ⊥,且直线P A 与AD 是平面P AD 内的两条相交直线, ∴DC ⊥平面P AD .又DC ⊂平面PCD ,∴平面PAD ⊥平面PCD .(2)∵PA AD ⊥,PA AB ⊥,AD AB ⊥,∴以A 为坐标原点,以AD 为x 轴,以AB 为y 轴,以AP 为z 轴, 建立如图所示的空间直角坐标系.则()0,0,0A ,()0,2,0B ,()1,1,0C ,()0,0,1P ,10,1,2M ⎛⎫ ⎪⎝⎭, 10,1,2AM ⎛⎫= ⎪⎝⎭,(1,1,0)AC =, 设平面AMC 的法向量为()1,,n x y z =,则由1100n AM n AC ⎧⋅=⎪⎨⋅=⎪⎩,得1020y z x y ⎧+=⎪⎨⎪+=⎩,得2z y x y =-⎧⎨=-⎩, 令1y =,得()11,1,2n =--为平面AMC 的一个法向量. 由10,1,2BM ⎛⎫=- ⎪⎝⎭,11,0,2MC ⎛⎫=- ⎪⎝⎭, 设平面BMC 的一个法向量为()2,,n a b c =,则2200n BM n MC ⎧⋅=⎪⎨⋅=⎪⎩,即102102b c a c ⎧-+=⎪⎪⎨⎪-=⎪⎩, 令1a = ,可得平面BMC 的一个法向量为()21,1,2n =. ∴1212122cos ,3n n n n n n ⋅==-,2 3.故所求平面AMC与平面BMC的夹角的余弦值为。
北京市首都师范大学附属中学2024-2025学年高二上学期9月月考数学试题

北京市首都师范大学附属中学2024-2025学年高二上学期9月月考数学试题一、单选题1.已知i 1i z=-,则z = ( )A .0B .1C D .22.如图,在平行六面体1111ABCD A B C D -中,1AB AD AA --=u u u r u u u r u u u r( )A .1AC uuu rB .1AC u u u rC .1D B u u u u rD .1DB u u u u r3.已知()2,3,1A --,()6,5,3B -,则AB u u u r的坐标为( ) A .()8,8,4--B .()8,8,4-C .()8,8,4-D .()8,8,4--4.如图,已知正方体ABCD A B C D -''''的棱长为1,AA DB ''⋅=u u u r u u u u r( )A.1B C D .1-5.设1n u r ,2n u u r分别是平面α,β的法向量,其中()11,,2n y =-u r ,()2,2,1n x =-u u r ,若αβ∥,则x y +=( )A .92-B .72- C .3 D .726.已知直线1l 的方向向量为()0,0,1u =r,直线2l 的方向向量为()1v =-r ,则直线1l 与2l 所成角的度数为( )A .30︒B .60︒C .120︒D .150︒7.已知n r 为平面α的一个法向量,a r 为直线l 的一个方向向量,则“a n ⊥r r”是“//l α”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件8.已知点,,,O A B C 为空间不共面的四点,且向量a OA OB OC =++r u u u r u u u r u u u r ,向量b OA OB OC =+-r u u u r u u u r u u u r,则与,a b r r不能构成空间基底的向量是( )A .OA u u u rB .OB u u u rC .OC u u u rD .OA u u u r 或OB u u u r9.在空间直角坐标系Oxyz 中,点()2,1,1A 在坐标平面Oxz 内的射影为点B ,且关于y 轴的对称点为点C ,则B ,C 两点间的距离为( )AB .C .D 10.在棱长为1的正四面体(四个面都是正三角形)ABCD 中,M ,N 分别为BC ,AD 的中点,则AM 和CN 夹角的余弦值为( )A .23B C .13D .23-二、填空题11.已知向量()2,3,1a =-r ,则与a r共线的单位向量为.12.已知向量()2,0,1a =-r ,(),2,1b m =-r 且a b ⊥r r,则m =,a b +=r r .13.已知直线l 经过()1,0,1A ,()2,0,0B 两点,则点()2,1,4P 到直线l 的距离为.14.在空间直角坐标系Oxyz 中,已知()2,0,0AB =u u u r ,()0,2,0AC =u u u r ,()0,0,2AD =u u u r .则CD u u u r 与CB u u ur 的夹角的余弦值为;CD u u u r 在CB u u u r 的投影向量a =r . 15.以下关于空间向量的说法:①若非零向量a r ,b r ,c r满足//a b r r ,//b c r r ,则//a c r r②任意向量a r ,b r ,c r满足()()a b c a b c ⋅⋅=⋅⋅r r r r r r③若{},,OA OB OC u u u r u u u r u u u r 为空间向量的一组基底,且221333OD OA OB OC =+-u u u r u u u r u u u r u u u r,则A ,B ,C ,D四点共面④已知向量()1,1,a x =r ,()3,,9b x =-r ,若310x <,则,a b r r 为钝角其中正确命题的序号是.三、解答题16.如图,在正方体1111ABCD A B C D -中,2AB =,E 为线段11B C 的中点.(1)求证:11AA D E ⊥; (2)求平面1D BE 的法向量; (3)求点1A 到平面1D BE 的距离.17.如图,正三棱柱111ABC A B C -的底面边长为2,高为4,D 为1CC 的中点,E 为11A B 的中点.(1)求证:1//C E 平面1A BD ;(2)求直线BC 与平面1A BD 所成角的正弦值.18.如图,在平行六面体1111ABCD A B C D -中,4AB =,2AD =,1AA =60BAD ∠=︒,1145BAA DAA ∠=∠=︒,AC 与BD 相交于点O ,设AB a u u u r r=,AD b =u u u r r ,1AA c =u u u r r .(1)试用基底{},,a b c r r r表示向量1OA u u u r ;(2)求1OA 的长;(3)求直线1OA 与直线BC 所成角.19.如图,四棱锥S --ABCD P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求平面P AC 与平面ACD 的夹角大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.。
安徽省六安市第一中学2017_2018学年高二数学9月月考试题理含答案

安徽省六安市第一中学2017-2018学年高二9月月考数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知数列{}{},n n a b 满足11,12n n a a b =+=,121n n n b b a +=-,则2017b =( )A .20172018 B .20182017 C .20152016 D .201620152.《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织二十八尺,第二日、第五日、第八日所织之和为十五尺,则第九日所织尺数为( )A .8B .9C .10D .113.在等差数列{}n a 中,若4681012120a a a a a ++++=,则10122a a -的值为( ) A .20 B .22 C .24 D .284. 在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若ABC ∆的面积为S ,且()222S a b c =+-,则tan C 等于( ) A .34 B .43 C .43- D .34- 5.已知在ABC ∆中45,A AC =︒=若ABC ∆的解有且仅有一个,则BC 满足的条件是( ) A .4BC = B.BC ≥.4BC ≤≤ D .4BC =或BC ≥6.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且满足643a b c ==,则sin 2sin sin AB C=+( )A .1114-B .127C .1124-D .712- 7.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知()cos cos 1,2A C B a c -+==,则C =( ) A .6π或56π B .6π C .3π或23π D .3π 8. 已知等差数列{}{},n n a b 的前n 项和分别为,n n S T ,若对于任意的自然数n ,都有2343n n S n T n -=-,则()3153392102a a a b b b b ++=++( )A .1941 B .1737 C .715 D .20419. 在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,a 上的高为h ,且3a h =,则c bb c +的最大值为( )A .3B .2 D 10.已知首项为正数的等差数列{}n a 的前n 项和为n S ,若1008a 和1009a 是方程2201720180x x --=的两根,则使0n S >成立的正整数n 的最大值是( )A .1008B .1009C .2016D .2017 11. 在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若111,,tan tan tan A B C依次成等差数列,则( )A.,,a b c 依次成等差数列依次成等差数列 C.222,,a b c 依次成等差数列D.333,,a b c 依次成等差数列12. 在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知22sin cos sin cos 4sin ,cos c A A a C C B B +=D 是线段AC 上一点,且23BCD S ∆=,则AD AC=( ) A .49 B .59C .23D .109 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在等差数列{}n a 中,2526,15,n n a a b a ===,则数列{}n b 的前5项和5S = .14. 在ABC ∆中,60,A BC ∠=︒=,D 是AB 边上的一点,CD =CBD ∆的面积为 1,则AC 边的长为 .15.等差数列{}n a 的前n 项和为n S ,若()94=18,309,336k k S a k S -=>=,则k = .16.已知三角形ABC 中,BC 边上的高与BC 边长相等,则2AC AB BC AB AC AB AC ++⋅的最大值是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 等差数列{}n a的前n项和为n S,若575,49a S=-=-(1)求数列{}n a的通项公式n a和前n项和n S;(2)求数列{}n a的前24项和24T.18.已知,,a b c分别是ABC∆角,,A B C的对边,满足sin4sin4sinac A C c A+=(1)求a的值;(2)ABC∆的外接圆为圆O(O在ABC∆内部),3,43OBCS b c∆=+=,判断ABC∆的形状,并说明理由.19. 如图,在四边形ABCD中,:2:3,73ABC AB BC ACπ∠===,.(1)求sin ACB∠的值;(2)若314BCD CDπ∠==,,求ACD∆的面积.20. 在ABC∆中,内角,,A B C所对的边分别为,,a b c,且cos cos2cosa Bb Ac A+=.(1)若ABC∆的面积3S,求证:2a(2)如图,在(1)的条件下,若,M N分别为,AC AB的中点,且13BMCN=,求,b c.21. 已知数列{}n a中,()*1111,22,4nna a n n Na-==-≥∈,数列{}n b满足()*11nnb n Na=∈-. (1)求证:数列{}n b是等差数列,写出{}n b的通项公式;(2)求数列{}n a的通项公式及数列{}n a中的最大项与最小项.22.设数列{}n a 的前n 项和为n S ,()2*11,22n n a S na n n n N ==-+∈. (1)求证:数列{}n a 为等差数列,并分别写出n a 和n S 关于n 的表达式; (2)是否存在自然数n ,使得3212112423n nS S S S n+++++=?若存在,求出n 的值;若不存在,请说明理由; (3)设()()*27n n c n N n a =∈+,()*123n n T c c c c n N =++++∈,若不等式()32n mT m Z >∈对*n N ∈恒成立,求m 的最大值.试卷答案一、选择题1-5: ABCCD 6-10:ABABC 11、12:CB 二、填空题三、解答题17.解:(1)由题得1145767492a d a d +=-⎧⎪⎨⨯+=-⎪⎩,1132a d =-⎧⎨=⎩ ∴215n a n =-,()14n S n n =-(2)当17n ≤≤时,0n a <,当8n >时,0n a > ()()724=771449,242414240S S ⨯-=-=⨯-=∴()2472472472338T S S S S S =+-=-= 18.解:(1)由正弦定理可知,sin ,sin 22a cA C R R==,则 2sin 4sin 4sin 44ac A C c A a c c ac +=⇔+=,∵0c ≠,∴()222444420a c c ac a a a +=⇔+=⇔-=,可得2a =. (2)记BC 中点为D,12OBC S BC OD OD ∆=⋅⋅==120BOC ∠=︒, 圆O的半径为r =,由正弦公式可知sin 2a A r =,故60A =︒, 由余弦定理可知,2222cos a b c bc A =+-,由上可得224b c bc =+-,又4b c +=,则2b c ==,故ABC ∆为等边三角形.19.解:(1)由:2:3AB BC =,可设2,3AB x BC x ==.又∵3AC ABC π=∠=,∴由余弦定理,得()()22232232cos3x x x x π=+-⨯⨯,解得1x =,∴23AB BC ==,,由正弦定理,得2sinsinAB ABCACBAC∠∠===(2)由(1)得cos ACB∠=因为34BCDπ∠=,所以34ACD ACBπ∠+∠=,333sin sin sin cos cos sin444ACD ACB ACB ACBπππ⎛⎫∠=-∠=∠-∠⎪⎝⎭(214+=+=又因为1CD=,所以1sin2S AC CD ACD=⨯⨯∠=20.解:(1)由cos cos2cosa Bb Ac A+=,得sin cos sin cos2sin cosA B B A C A+=,即()sin2sin cosA B C A+=,所以1cos2A=,∴3Aπ=,由1sin2S bc A=2bc=.在ABC∆中,由余弦定理可得()22222a b c bc b c bc bc=+-=-+≥=,所以a.(2)因为,M N分别为,AC AB的中点,在ABM∆中,由余弦定理可得222142bBM c bc=+-,在ACN∆中,由余弦定理可得222142cCN b bc=+-,由BMCN=可得2222113142442b cc bc b bc⎛⎫+-=+-⎪⎝⎭,整理得()()820c b c b+-=,所以2c b=,由2bc=,可得1,2b c==.21. 解:(1)因为11111111111121n nn n nnb ba a aa-----=-=------111111nn naa a---=-=-,所以{}n b是等差数列,又143b=-,故()471133nb n n=-+-⋅=-.(2)由(1)得13117373nann=+=+--,要使na最大,则需370n->且37n-最小,所以3n=,故()3max52na a==,要使na最小,则需370n-<且37n-最小,所以2n=,故()2min2na a==-.22.解:(1)由()2*22n nS na n n n N=-+∈,得()()()()211121212n nS n a n n n--=---+-≥相减得()()()()111441141n n n n na na n a n n a n a n--=---+⇒---=-()142n na a n-⇒-=≥故数列{}n a 是以1为首项,以4为公差的等差数列, 所以()()*11443n a n n n N =+-⨯=-∈,()()12*22n n n a a S n n n N +==-∈(2)由知()*21nS n n N n=-∈,所以 ()321213521223n n nS S S S n n+++++=++++-+()2121222n n n n n +-⎡⎤⎣⎦=+=+ 由221124n n +=,得10n =,即存在满足条件的自然数10n = (3)()()2111172121n n c n a n n n n ⎛⎫===- ⎪+++⎝⎭,123111111122231n n T c c c c n n ⎡⎤⎛⎫⎛⎫⎛⎫=++++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦()1112121n n n ⎛⎫=-= ⎪++⎝⎭, ∵()()()()11102221221n n n n T T n n n n ++-=-=>++++,∴1n n T T +<,即n T 单调递增故()1min 14n T T ==,要使32n m T >恒成立,只需1324m <成立,即()8m m Z <∈,故max 7m =.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林省吉林市第一中学2016-2017学年高二数学9月月考试题 理一、选择题(本题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如果a <0,b >0,那么,下列不等式中正确的是 ( ) A. a 2<b 2B.-a <b C .1a <1bD.|a |>|b |2.不等式-x 2-x +2≥0的解集是( )A .{x |x ≤-2或x ≥1}B .{x |-2<x <1}C .{x |-2≤x ≤1}D .∅3.在正项等比数列{}n a 中,32a =,478a a =,则9a = ( )A .32B . 64C .164D .1324.若实数a ,b 满足11ab a b+=,则ab 的最小值为 ( ) A. 2 B .2 C .22 D .45.已知{}n a 为正项等比数列,n S 是它的前n 项和,若53a a 与的等比中项是2, 且4a 与27a 的等差中项为54,则5S = ( )A .35 B.33 C.31 D.29 6.已知{a n }的前n 项和为()()1159131721143n n S n -=-+-+-++--…,则2217S S -的值是 ( )A .-11B .46C .77D .76-7.已知,210<<x 则函数)21(x x y -=的最大值是 ( ) A.81 B.41 C. 21D.没有最大值8.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤1,x +y ≥0,x -y -2≤0,则z =x -2y 的最大值为 ( )A .4B .3C .2D .19.在数列{}n a 中,11=a ,)1(11-=--n n a a n n ,则n a = ( )A.n 11-B .n 12-C .n 1D .112--n 10.已知不等式axx -1<1的解集为{x |x <1或x >3},则a = ( ) A . 1 B.32C. 12D. 411.已知关于x 的不等式)0(03422<<+-a a ax x 的解集为),(21x x ,则2121x x ax x ++的最大值是 ( ) A.36 B.332 C. 334 D. 334-12.三个数c b a ,,成等比数列,且)0(>-=+m c m b a ,则b 的取值范围是( ) A. ]3,0[m B.]3,[m m -- C.)3,0(m D.]3,0()0,[m m ⋃-二、填空题(本题共6个小题,每小题5分,共30分)13.已知数列{}n a 的前n 项和为n n S n 3022-=,则使得n S 最小的序号n 的值为________.14.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于________.15. 不等式13x x+≤的解集是 .16.不等式(a -2)x 2+4(a -2)x -4<0的解集为R ,则实数a 的取值范围是________.17.数列{}n a 的前n 项和1+=n nS n ,数列{b n }的通项公式为8-=n b n ,则b n S n 的最小值为_______18.若不等式组⎪⎩⎪⎨⎧<+++>--07)72(20222k x k x x x 的整数解只有3-和-2,求k 的取值范围是________.三、解答题(本题共5个小题,每小题12分,共60分.解答应写出文字说明、证明过程或演算步骤) 19已知数列{}n a 的通项公式112,n a n =- (1)求数列{}n a 的前n 项和n s12,n n S a a a =+++求n s(2)若设20、已知:等差数列{n a }中,4a =14,前10项和18510=S . (1)求数列{n a }的通项公式n a ;(2)设数列{b n }是首项为1,公为比2的等比数列,求数列{a n +b n }的前n 项和n S .21解关于x 的不等式 111--<-x a x ax (a ∈R )22已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=12 .(1)求证:{1S n}是等差数列;(2)若nnn s b 2=,求数列{}n n T n b 项和的前23.已知数列{}n a 的首项211=a ,前n 项和)1(2≥=n a n S n n (1)求数列{}n a 的通项公式(2)设n n n n T n S S b b ),2(,011≥==-为数列{}n b 的前n 项和,求证:12+<n n T n高二数学(理科)参考答案一、选择题CCDBC CABBB DD 二、填空题吉林一中2016-2017学年度上学期月考(9月份)13、7或8 14、34 15、⎭⎬⎫⎩⎨⎧<≥021/x x x 或16、21≤<a 17、-4 18、[)2,3- 三、解答题19、(1)n n S n 102+-=(2)⎪⎩⎪⎨⎧≥+-≤+-=)6(5010)5(1022n n n n n n S n20、已知:等差数列{n a }中,4a =14,前10项和18510=S .(1)求n a ; (2)设{b n }是首项为1,公为比2的等比数列,求数列{a n +b n }的前n 项和S n .解(1)由41014185a S =⎧⎨=⎩ ∴ 11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 153a d =⎧⎨=⎩ 23+=∴n a n (2)12272-++=n n nn S21解关于x 的不等式111--<-x a x ax (a ∈R ). 解 原不等式可化为(x -1)[ax -(a -1)]<0, (1)当a =0时,原不等式为x -1<0,即x <1.(2)当a ≠0时,方程(x -1)[ax -(a -1)]=0的两根为x 1=1,x 2=a -1a ,所以1-a -1a =1a. ①当a >0时,1a >0,所以1>a -1a.此时不等式的解集为{x |a -1a<x <1}; ②当a <0时,1a<0,所以1<a -1a.此时原不等式化为(x -1)[-ax +(a -1)]>0,不等式的解集为{x |x >a -1a,或x <1}. 综上所述,当a >0时,不等式的解集为{x |a -1a<x <1}; 当a =0时,不等式的解集为{x |x <1}; 当a <0时,不等式的解集为{x |x >a -1a,或x <1}.22、已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:{1S n}是等差数列;(2)若nnn s b 2=,求数列{}n n T n b 项和的前【解】 (1)∵-a n =2S n S n -1,∴-S n +S n -1=2S n S n -1(n ≥2)S n ≠0,∴1S n -1S n -1 =2,又1S 1 =1a 1=2∴{1S n}是以2为首项,公差为2的等差数列.(2)1S n =2+(n -1)2=2n ,∴S n =12n12+⋅=n n n b 4)1(22+-=+n T n n23已知数列{}n a 的首项112a =,前n 项和()21n n S n a n =≥.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设10b =,()12n n n S b n S -=≥,n T 为数列{}n b 的前n 项和,求证:21n n T n <+. 解:(Ⅰ)由112a =,2n n S n a =, ①∴ 211(1)n n S n a --=-, ②①-②得:2211(1)n n n n n a S S n a n a --=-=--,即()1121n n a n n a n --=≥+, 4分∵13211221n n n n n a a a a a a a a a a ---=⋅⋅ 12212143(1)n n n n n n --=⋅⋅=++,∴1(1)n a n n =+。
8分(Ⅱ)∵1n nS n =+,∴()12112n n n S b n S n -==-≥, 10分∴ 12n n T b b b =+++22211112n n ⎛⎫=-+++⎪⎝⎭()11112231n n n ⎛⎫<-+++ ⎪ ⎪⨯⨯⨯+⎝⎭21111112211n n n n n n ⎛⎫⎛⎫=--=---= ⎪ ⎪+++⎝⎭⎝⎭ 故21n n T n <+. 12分。