绝对值不等式的性质
有关绝对值的不等式

有关绝对值的不等式一、绝对值的定义我们知道,绝对值的定义为数与零的距离,即:- 当一个实数x大于或等于0时,|x|=x;- 当一个实数x小于0时,|x|=-x。
二、绝对值的性质绝对值有以下几个性质:1. 非负性:|x|≥0,即绝对值是非负数;2. 正反性:若x≥0,则|x|=x;若x<0,则|x|=-x;3. 三角不等式:|a+b|≤|a|+|b|,即两数之和的绝对值不大于它们绝对值的和;4. 乘法性:|ab|=|a|×|b|,即两数之积的绝对值等于它们绝对值的积;5. 倒数性:若a≠0,则|1/a|=1/|a|。
三、绝对值的应用绝对值在数学中有着广泛的应用,特别是在不等式中的应用更为常见。
下面介绍几个绝对值不等式的例子。
例1:|x-a|<b的解集为(a-b,a+b)。
解析:首先,我们假设a≥0(a<0同理可证),那么由于|x-a|≥0,所以|x-a|<b等价于-a<x-a<a。
解不等式得到 x<a+b 且 x>a-b,即x∈(a-b,a+b)。
例2:|x|<a的解集为(-a,a)。
解析:当a>0时,由|x|≥0,得出|x|<a等价于-x<a且x<a,即解不等式得到x∈(-a,a)。
例3:|x-2|-|x+2|≤0的解集为[-2,2]。
解析:当x≤-2或x≥2时,|x-2|-|x+2|≤0显然成立,因为两个绝对值的差值不大于0。
当-2<x<2时,不等式可化为(x-2)-(x+2)≤0,即-4≤0,也是成立的。
所以,综合起来,解集为[-2,2]。
总结:以上是一些关于绝对值不等式的例子,通过这些例子可以体会到绝对值在不等式中的应用和威力,希望对大家学习数学有所帮助。
数列绝对值不等式

数列绝对值不等式数列是数学中一个重要的概念,它是由一串有顺序的数字组成的序列。
在数列的研究中,绝对值不等式是一种常见的数学问题。
本文将介绍数列绝对值不等式及其性质,并通过例题来解释其应用。
一、数列绝对值不等式的定义和性质数列绝对值不等式是指在一个数列中由绝对值组成的不等式。
数列绝对值不等式常见的形式有以下几种:1. |an|≤a,其中a为实数。
2. |an|≥a,其中a为正实数。
3. |an±bn|≤a,其中a为实数。
4. |an±bn|≥a,其中a为正实数。
在数列绝对值不等式中,|an|表示数列中的第n个数的绝对值,a和b为实数。
根据不等式的性质,我们可以得出以下结论:1. 若|an| ≤ a,则 -a ≤ an ≤ a。
2. 若|an| ≥ a,则an ≤ -a 或an ≥ a。
二、解决数列绝对值不等式的方法解决数列绝对值不等式的关键是确定数列中每个数的取值范围。
以下是一些常用的解题方法:1. 分情况讨论法当数列中的每个数的取值范围不同时,可以采用分情况讨论的方法。
具体步骤如下:(1)根据数列中每个数的绝对值大小,给出每个数的取值范围。
(2)将取值范围代入绝对值不等式中,得出每个数的取值范围。
(3)将每个数的取值范围整合起来,得出整个数列的取值范围。
2. 取最大值和最小值法当数列中每个数的取值范围相同时,可以通过取最大值和最小值的方法求解。
具体步骤如下:(1)根据数列中每个数的绝对值大小,确定每个数的取值范围。
(2)将取最大值和最小值代入绝对值不等式中,得出每个数的取值范围。
(3)将每个数的取值范围整合起来,得出整个数列的取值范围。
三、例题解析为了更好地理解数列绝对值不等式的求解过程,我们来看几个例题。
例题1:已知数列an=3n-2,试求满足绝对值不等式|an+2|≤5的n的取值范围。
解析:首先,我们根据数列an=3n-2,求得数列中每个数的取值。
当 n = 1 时,a1 = 3(1) - 2 = 1;当 n = 2 时,a2 = 3(2) - 2 = 4;当 n = 3 时,a3 = 3(3) - 2 = 7;...根据数列中每个数的取值,我们可以判断出:an+2 = 3(n + 2) - 2 = 3n + 4接下来,我们将an+2代入绝对值不等式中,得到:|3n + 4| ≤ 5根据绝对值不等式的性质,我们可以得到以下两种情况:1. 3n + 4 ≤ 5,即3n ≤ 1,解得n ≤ 1/3;2. -(3n + 4) ≤ 5,即 -3n ≤ 9,解得n ≥ -3。
绝对值不等式公式

绝对值不等式公式绝对值不等式公式是以一元函数形式表示的绝对值的不等式,比如:|x|<a,它描述的是变量x的值范围在-a到a之间,其中a是一个正实数。
本文将主要介绍绝对值不等式公式的性质、表达式、特点及应用。
首先,让我们来看一下绝对值不等式公式的定义和性质:对于任意正实数a和变量x,绝对值不等式公式有如下形式:|x|<a它的性质是,如果一个变量x的值满足这个不等式,则它取值范围为-a到a之间,即:-a<x<a我们也可以将上述不等式的定义和属性表示为等价的函数形式,即:f(x)=|x|<a同时,我们也可以用一个单调函数来表示绝对值不等式公式:g(x)=x+|x|绝对值不等式公式有两个非常明显的特点:一是它表示的范围是一个确定的正实数a;二是它描述的变量x是一个周期函数,边界点为-a和a之间。
绝对值不等式公式应用十分广泛,在数学中,它可以用来描述一个变量的取值范围,例如,我们可以用它来解决有关刻度尺的问题,如果我们想要测量一个物体的长度,我们可以用它来计算长度的精确值。
此外,它还可以用来解决一些复杂的数学问题,例如求解偏微分方程,求解线性规划等。
绝对值不等式公式定义了变量x的有效取值范围,它可以帮助我们解决许多实际问题,并且这种表达式也被广泛应用于工程领域。
举个例子,在机器学习中,绝对值不等式公式可以用来描述模型衰减率的大小。
当模型学习率减小到一定水平时,绝对值不等式公式可以表达模型学习率减小的趋势。
同样,绝对值不等式公式也可以用来描述图像质量,体现图像质量随时间变化的趋势。
总之,绝对值不等式公式具有显著的作用,它可以用来表达变量x的取值范围,可以应用于数学建模和工程设计,也可以应用于机器学习和图像处理等。
尽管它的表达式很简单,但它对我们的生活和工作有很大的帮助。
绝对值不等式性质及公式

|a|-|b|小于等于|a+b|小于等于|a|+|b|
2.|a|<|b|可逆a&sup2;<b&sup2;
另外
|a|-|b|小于等于|a+b|小于等于|a|+|b|,当且仅当ab小于等于0时左边等
号成立,ab≥0时右边等号成立。
|a|-|b|小于等于|a-b|小于等于|a|+|b|,当且仅当ab≥0时左边等号成
立,ab小于等于0时右边等号成立。
几何意义
1.当a,b同号时它们位于原点的同一边,此时a与﹙b的距离等于它
们到原点的距离之和。2.当a,b异号时它们பைடு நூலகம்别位于原点的两边,此时a
与﹙b的距离小于它们到原点的距离之和。
(|a+b|表示a-b与原点的距离,也表示a与b之间的距离)
绝对值重要不等式
我们知道
|a|={a,(a>0),a,(a=0),﹙a,(a<0),}
因此,有
﹙|a|小于等于a小于等于|a|
﹙|b|小于等于b小于等于|b|
同样地
①,②相加得
﹙﹙|a|+|b|)小于等于a+b小于等于|a|+|b|
即|a+b|小于等于|a|+|b|
显而易见,a,b同号或有一个为0时,③式等号成立。
由③可得
|a|=|(a+b)-b|小于等于|a+b|+|-b|,
即|a|-|b|小于等于|a+b|
绝对值不等式性质及公式
绝对值不等式
简介
在不等式应用中,经常涉及重量、面积、体积等,也涉及某些数学对
绝对值不等式6个基本公式证明

绝对值不等式6个基本公式证明我们来证明绝对值的非负性质:1. 对于任意实数x,有|x| ≥ 0.证明:根据绝对值的定义,如果x ≥ 0,则有|x| = x ≥ 0;若x < 0,则有|x| = -x ≥ 0。
无论x的值如何,都有|x| ≥ 0,即绝对值非负。
接下来,我们证明绝对值的不等性质:2. 对于任意实数x和y,若x ≤ y,则有|x| ≤ |y|.证明:根据绝对值的定义,如果x ≤ y,则y - x ≥ 0。
而|x| = x 或 -x,|y| = y 或 -y。
分以下两种情况进行讨论:a. 若x ≥ 0,则|x| = x,|y| = y。
此时有x ≤ y,即y - x ≥ 0。
由于绝对值的非负性质,可以得到|x| = x ≤ y = |y|。
b. 若x < 0,则|x| = -x,|y| = y 或 -y。
此时有y - x ≥ 0,即y ≥ x。
对于|x| = -x和|y| = y有以下子情况:i. 若y ≥ 0,则|y| = y。
由于 x < 0,所以-x > 0,即 -x > x。
所以,|x| = -x ≤ -x ≤ y = |y|。
ii. 若y < 0,则|y| = -y。
又因为y ≥ x > 0,所以-y ≥ -x > 0。
由绝对值的非负性质,可以得到|x| = -x ≤ -y = |y|。
3. 对于任意实数x和y,有|x + y| ≤ |x| + |y|.证明:根据绝对值的定义,有以下两种情况进行讨论:a. 若x + y ≥ 0,则|x + y| = x + y,并且|x| = x,|y| = y。
由于x + y ≥ 0,所以x + y ≤ |x| + |y|。
即|x + y| ≤ |x| + |y|。
b. 若x + y < 0,则|x + y| = -(x + y),而|x| = -x,|y| = -y。
此时有:i. 若x ≥ 0且y ≥ 0,则|x + y| = -(x + y) ≤ -x -y = |x| + |y|。
绝对值不等式

绝对值不等式绝对值不等式是数学中常见的一类不等式,它与绝对值的性质和运算相关。
通过研究绝对值不等式,我们可以解决许多实际问题,同时也提升了我们的数学思维和解题能力。
一、绝对值的定义绝对值是表示一个数离原点的距离。
对于一个实数x,它的绝对值记作|x|,定义如下:当x≥0时,|x|=x;当x<0时,|x|=-x。
例如,|5|=5,|-3|=3。
二、绝对值不等式的性质1. 绝对值的非负性质:对于任意实数x,有|x|≥0。
2. 绝对值的等价性:若|x|=0,则x=0。
3. 绝对值的三角不等式:对于任意实数x和y,有|x+y|≤|x|+|y|。
三、一元绝对值不等式的求解方法当我们遇到一元绝对值不等式时,可以采用以下两种方法求解:1. 列举法:根据不等式的性质及绝对值的定义,列举出满足不等式条件的数。
例题1:|x-2|<3根据绝对值的定义,可以得到以下两个不等式:x-2<3 ==> x<5;-(x-2)<3 ==> -x+2<3 ==> 2-x<3 ==> x>-1。
综合以上两个不等式的解,得到-1<x<5。
2. 分类讨论法:将绝对值拆分成正负两种情况,分别求解。
例题2:|2x-3|>4当2x-3>0时,可以得到以下不等式:2x-3>4 ===> 2x>7 ===> x>3.5。
当2x-3<0时,可以得到以下不等式:-(2x-3)>4 ===> -2x+3>4 ===> -2x>1 ===> x<-0.5。
综合以上两个情况的解,得到x>3.5或x<-0.5。
四、二元绝对值不等式的求解方法对于二元绝对值不等式,我们需要分别对两个变量进行分类讨论,并结合不等式的特点进行求解。
例题3:|x-2|+|y+1|<5当x-2>0且y+1>0时,可以得到以下不等式:x-2+y+1<5 ==> x+y<6。
绝对值函数和绝对值不等式

绝对值函数和绝对值不等式典型例题:【过关习题4】1.【2018年学考选考十校联盟,☆☆】已知a,b是实数,则“|a|≤1且|b|≤1”是“|a+b|+|a-b|≤2”的.A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.【2018年绍兴高三适应性考试,,☆☆】已知a>0,函数f(x)=|x2+|x-a|-3|在区间[-1,1]上的最大值是2,则a=.3.【2018年温州二模,17,,☆☆☆】已知f(x)=x2-ax,|f(f(x))|≤1在[1,2]上恒成立,则实数a的最大值为.4.【2017年绍兴诸暨二模,,☆☆☆☆】已知函数f(x)=|x2+ax+b|在区间[0,c]内的最大值为M(a,b∈R,c>0为常数)且存在实数a,b,使得M取最小值2,则a+b+c=.5.【☆☆】设正实数x,y,则|x-y|+的最小值为.6.【2017年杭州二模,10,☆☆】设函数f(x)=x2+ax+b(a、b∈R)的两个零点为x1、x2,若|x1|+|x2|≤2,则.A.|a|≥1B.|b|≤1C.|a+2b|≥2D.|a+2b|≤27.【2017年浙江4月份学考,☆☆】已知a,b∈R,a≠1,则|a+b|+的最小值为.8.【2017年浙江绍兴市柯桥中学5月质检,8,☆☆】已知x,y∈R,则.A.若|x2+y|+|x-y2|≤1,则B.若|x2-y|+|x-y2|≤1,则C.若|x+y2|+|x2-y|≤1,则D.若|x+y2|+|x2+y|≤1,则9.【2016年浙江高考,8,☆☆☆】已知实数a、b、c,下面四个选项中正确的是.A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b-c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b-c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2-c|≤1,则a2+b2+c2<10010.【2017年杭州高级中学最后一模,17,☆☆】设实数x,y,z满足则|x|+|y|+|z|的最大值为.11.【2017年浙江名校协作体,7,☆】设f(x)=|2x-1|,若f(x)≥对任意的a≠0恒成立,则x的取值范围为.12.【2016年浙江样卷,☆】已知f(x)=ax2+bx+c,a、b、c∈R,且a≠0,记M(a,b,c)为|f(x)|在[0,1]上的最大值,则的最大值是.13.【☆☆】设函数f(x)=|x2+ax+b|,若对任意的实数a、b,总存在x0∈[0,4]使得f(x0)≥m成立,则实数m的取值范围是.14.【2017年浙江缙云、富阳、长兴联考,☆☆☆】已知函数f(x)=-x3-3x2+x,记M(a,b)为函数g(x)=|ax+b-f(x)|(a>0,b∈R)在[-2,0]上的最大值,则M(a,b)的最小值为.15.【2017年杭州一模,9,☆☆☆】设函数f(x)=x2+ax+b,记M为函数y=|f(x)|在[-1,1]上的最大值,N为|a|+|b|的最大值,则.A.若M=,则N=3B.若M=,则N=3C.若M=2,则N=3D.若M=3,则N=316.【2017年诸暨,☆☆☆】设函数f(x)=|ax+2+b|,若对任意的x∈[0,4],函数f(x)≤恒成立,则a+2b=.17.【浙江省绍兴市2017届高三二模,17,☆☆☆】已知对任意实数x都有|a cos2x+b sin x+c|≤1恒成立,则|a sin x+b|的最大值为.18.【浙江省嘉兴市2016届高三教学质量测试(二),14,☆☆】设max{a,b}=,已知x,y∈R,m+n=6,则F=max的最小值为.19.【☆☆】已知f(x)=ax2+bx+c(a≠0),若对任意的|x|≤1,都有|f(x)|≤1,则|a|+|b|+|c|的最大值为.20.【2014年湖南高考,☆☆】在直角平面坐标系xOy中,O为原点,A(-1,0),B(0,),C(3,0),动点D满足||=1,则|++|的最大值为.21.【浙江省2017年预赛,10,☆☆☆】已知f(x)=若方程f(x)+2+|f(x)-2|-2ax-4=0有三个不等的实数根x1,x2,x3,且x1<x2<x3,若x3-x2=2(x2-x1),则a=.22.【2006年辽宁,☆】已知函数f(x)=(sin x+cos x)-|sin x-cos x|,则f(x)的值域为.23.【2008年江西,☆】函数y=tan x+sin x-|tan x-sin x|在区间内的图像是.24.【浙江省绍兴市2015年高三教学质量调测,15,☆☆☆】当且仅当x∈(a,b)∪(c,d)(b≤c)时,函数f(x)=2x2+x+2的图像在函数g(x)=|2x+1|+|x-t|的下方,则b-a+d-c的取值范围为. 25.【2016高考浙江文数,☆☆】已知平面向量a,b,|a|=1,|b|=2,a·b=1.若e为平面单位向量,则|a·e|+|b·e|的最大值是______.26.【2014年四川预赛,9,☆☆】已知a、b为实数,对任何满足0≤x≤1的实数x,都有|ax+b|≤1成立,则|20a+14b|+|20a-14b|的最大值是.27.【2014年黑龙江预赛,14,☆☆】已知f(x)=g(x)=|x-k|+|x-1|,若对任意的x1,x2∈R,都有f(x1)≤g(x2)成立,则实数k的取值范围为.28.【2014年全国联赛,3,☆☆】若函数f(x)=x2+a|x-1|在[0,+∞)上单调递增,则实数a的取值范围是.29.【2015年湖北预赛,1,☆☆】若对任意实数x,|x+a|+|x+1|≤2a恒成立,则实数a的最小值为.30.【2016年山东预赛,1,☆☆☆】方程x=|x-|x-6||的解为.31.【2016年陕西预赛,12,☆☆】设x∈R,则函数f(x)=|2x-1|+|3x-2|+|4x-3|+|5x-4|的最小值为.32.【2016年浙江预赛,11,☆☆☆】设a∈R,方程||x-a|-a|=2恰有三个不同的实数根,则a=.33.【1982年全国,4,☆☆】由曲线|x-1|+|y-1|=1确定的曲线所围成的图形的面积是.A.1B.2C.πD.434.【2017年江苏预赛,5,,☆☆】定义区间[x1,x2]的长度为x2-x1.若函数y=|log2x|的定义域为[a,b],值域为[0,2],则区间[a,b]的长度的最大值和最小值的差为.35.【2018年浙江预赛,8,☆】设f(x)=|x+1|+|x|-|x-2|,则f(f(x))+1=0有个不同的解.36.【2015年全国,6,☆☆】在平面直角坐标系xOy中,点集K={(x,y)|(|x|+3|y|-6)(3|x|+|y|-6)≤0}所对应的平面区域的面积为.37.【2008年湖南预赛,9,☆☆☆】在平行直角坐标系中,定义点P(x1,y1),Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|.若C(x,y)到点A(1,3)、B(6,9)的“直角距离”相等,其中实数x、y满足0≤x≤10,0≤y≤10,则所有满足条件点C的轨迹的长度之和为.38.【2014年湖北预赛,4,☆☆】在直角坐标系中,曲线|x-1|+|x+1|+|y|=3围成的图形的面积是.39.【2017年金华十校期末调研考试,9,☆☆】设x、y∈R,下列不等式成立的是.A.1+|x+y|+|xy|≥|x|+|y|B.1+2|x+y|≥|x|+|y|C.1+2|xy|≥|x|+|y|D.|x+y|+2|xy|≥|x|+|y|40.【2017年绍兴市高三教学质量调测,9,☆☆☆】记min{x,y}=设f(x)=min{x2,x3},则.A.存在t>0,|f(t)+f(-t)|>f(t)-f(-t)B.存在t>0,|f(t)-f(-t)|≥f(t)-f(-t)C.存在t>0,|f(1+t)+f(1-t)|>f(1+t)+f(1-t)D.存在t>0,|f(1+t)-f(1-t)|>f(1+t)-f(1-t)41.【浙江省2016届高三下学期第二次五校联考(理),18,☆☆☆】已知函数f(x)=ax2+bx+c,g(x)=c|x|+bx+a,对任意x∈[-1,1],|f(x)|≤.(I)求|f(2)|的取值范围;(II)证明:对任意的x∈[-1,1],都有|g(x)|≤142.【浙江省嘉兴市2016届高三期末考试,20,☆☆☆】已知函数f(x)=-x2+2bx+c,,设函数g(x)=|f(x)|在区间[-1,1]上的最大值为M.(I)若b=2,试求出M;(II)若M≥k对任意的b,c恒成立,试求出k的最大值.43.【2016四川预赛,16,☆☆☆☆】已知a为实数,函数f(x)=|x2-ax|-ln x,请讨论函数f(x)的单调性.。
含绝对值的不等式

{
}
(2) | 2 x + 1 | + | x − 2 |> 4
x > 2 或 2 x + 1 + x − 2 > 4
1 x<− 或 原不等式等价于: 原不等式等价于: 2 解(2) ) − 2 x − 1 − x + 2 > 4
1 − ≤ x ≤ 2 2 2 x + 1 − x + 2 > 4
1 37 37 = −3 x − + ≤ 6 12 12
2
(
)
所以…… 所以
当 a ≠ 0 时, f (a) = 0 , f (−a) = −2a | a |≠ 0, f (x) 是非奇非偶函数
x < a x ≥ a 或 2 (2)x | x − a |≥ 2a ⇔ 2 ) 2 x − ax + 2a ≤ 0 x − ax − 2a 2 ≥ 0 x ≥ a ⇔ x ∈φ 或 ( x − 2a )( x + a ) ≥ 0
2 备用:已知二次函数 备用 已知二次函数 f ( x ) = ax + bx + c (a, b, c ∈ R ) ,
37 当 证明: 若 f (− 1) ≤ 1, f (0) ≤ 3, f (1) ≤ 1 ,证明: x ≤ 1时, f ( x ) ≤ 12 证明: 证明:因为 f (− 1) = a − b + c , f (0) = c , f (1) = a + b + c
含绝对值的不等式
一、基础知识
a (a ≥ 0 ) 1、绝对值的基本性质: 设a ∈ R, 则 a = 、绝对值的基本性质: − a ( a < 0 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a+b b a O (3)如果ab=0,则a=0或b=0,易得: |a+b|=|a|+|b|
x
定理1
这个不等式称为绝 如果a, b是实数,则
对值三角不等式。
|a+b|≤|a|+|b|
当且仅当ab≥0时,等号成立。
探究: 如果把定理1中的实数a, b分别换成向量a, b, 能得出什么结果?你能解释它的几何意义吗?
解析:(1)当x≤1时, f(x)=-(x-1)-(x-2)=-2x+3, 当1<x≤2时,f(x)=(x-1)-(x-2)=1, 当x>2时,f(x)=(x-1)+(x-2)=2x-3, -2x+3 x≤1, 所以f(x)=1 1<x≤2, 2x-3 x>2. 图象如图所示:
A(a) B(b)
x
问题1:从“运算”的角度|a|,|b|,|a+b|具 有怎样的关系?
分ab>0、ab<0和ab=0三种情形讨论: (1)当ab>0时,如下图可得|a+b|=|a|+|b| O a b a+b x
a+b
b
a
O
x
(2)当ab<0时,也分为两种情况:如果a>0,b<0, 如下图可得:|a+b|<|a|+|b| b a a+b O 如果a<0, b>0,如下图可得:|a+b|<|a|+|b| x
(2)由 |a+b|+ |a-b|≥|a|f(x), |a+ b|+ |a-b| 得 ≥f(x). |a| |a+ b|+ |a-b| |a+ b+a-b| 又因为 ≥ =2, |a| |a| 则有2≥f(x),解不等式2≥|x-1|+ |x-2|, 1 5 得 ≤x≤ . 2 2
补充练习: ab ab 1.已知 a b , m ,n , 则m , n之间的 ab ab 大小关系是( D ) A.m n B.m n C.m n D.m n
|a-c|≤|a-b|+|b-c|
当且仅当(a-b)(b-c)≥0时,等号成立。 证明:根据绝对值三角不等式有 |a-c|=|(a-b)+(b-c)|≤|a-b|+|b-c| 当且仅当(a-b)(b-c)≥0时,等号成立。
例 : 若 x m , y m , 下列不等式中一定成立 的是( B ) A. x - y C . x y 2 B . x y 2 D. x y
当ab 0时,ab ab,| a b | (a b) 2 a 2 2ab b 2 | a |2 2 | ab | | b |2 | a | 2 | ab | | b | (| a | | b |) | a | | b |,
2 2 2
所以 | a b || a | | b |, 当且仅当ab 0时,等号成立。
2.如果实数x , y满足 cos x cos y cos x cos y , 且x ( , ), 2 则 (cos x cos y )2 可写成( C ) A.cosx - cosy C . cos y cos x B. cosx cos y D. cos y cos x
问题2:你能根据定理1的研究思路,探究一下 |a|,|b|,|a-b|,|a+b|,之间的关系吗?
|a|-|b|≤|a+b|,
|a|+|b|≥|a-b|,
|a|-|b|≤|a-b|.
如果a, b是实数,那么 |a|-|b|≤|a±b|≤|a|+|b|
例1 已知ε >0,|x-a|<ε ,|y-b|<ε ,求证:
【点评】 ||a|-|b||≤|a±b|≤|a|+|b|是直接证明含有 绝对值不等式的重要依据,有些情况下,需将绝对值运 算符号去掉,将问题转化后解决.条件|x-a|<1在本题 的求解过程中的运用也是本题的一个特色.
例4.设函数f(x)=|x-1|+|x-2|. (1)画出函数y=f(x)的图象; (2)若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立, 求实数x的取值范围.
11 11 5 5 【例2 】 , yy 满足: |x|+ y|< , |2 xx - yy |< ,求证: |y |< .. 2 】 已知实数 已知实数xx , 满足: x+ y|< , |2 - |< ,求证: |y |< 18 33 66 18 [证明] 因为3|y|=|3y|=|2(x+y)-(2x-y)| ≤2|x+y|+|2x-y|, 1 1 由题设知|x+y|<3,|2x-y|<6, 2 1 5 5 从而3|y|<3+6=6,所以|y|<18.
绝对值不等式性质及解法
绝对值不等式
1、绝对值三角不等式
实数a的绝对值|a|的几何意义是表示数轴 上坐标为a的点A到原点的距离: |a|=-a(a<0) |a|=a(a>0) x A(a) A(a) O
任意两个实数a,b在数轴上的对应点分别为A、B, 那么|a-b|的几何意义是A、B两点间的距离。 |a-b|
|2x+3y-2a-3b|<5ε .
证明: |2x+3y-2a-3b|=|(2x-2a)+(3y-3b)| =|2(x-a)+3(y-b)|≤|2(x-a)|+|3(y-b)| =2|x-a|+3|y-b|<2ε +3ε=5ε. 所以 |2x+3y-2a-3b|<5ε .
定理2
如果a, b, c是实数,那么
3.设m, 0, x a 求证 xy ab m
2
, y b
2
, a m, y m,
小结:理解和掌握绝对值不等式的两个定理:
|a+b||a|+|b|(a,b∈R,ab≥0时等号成 立) |a-c|≤|a-b|+|b-c|(a,b,c∈R,
(a-b)(b-c)≥0时等号成立) 能应用定理解决一些证明和求最值问题。
a 满足 |x-a|<1,求 证 :|f(x)-f(a)|<2(|a|+1).
【思路】变形使其能运用绝对值不等式证明.
【解答】∵f(x)=x2-x+1, ∴|f(x)-f(a)|=|x2-x-a2+a| =|x-a|· |x+a-1|, ∵|x-a|<1, ∴|f(x) - f(a)| = |x - a|· |x + a - 1|<|x + a - 1| = |(x - a) +2a-1<1+ x - a +2a-1)|≤ 2a+1=2(a+1).
变式训练 |a+b| |a| |b| 2.若a,b∈R,求证: ≤ + . 1+|a+b| 1+|a| 1+|b| 证明:当|a+b|=0时,不等式显然成立.当|a+b|≠0时, 1 1 由0<|a+b|≤|a|+|b|⇒ ≥ , |a+b| |a|+|b| |a+b| |a|+|b| 1 1 |a| |b| 所以 = 1 ≤ = ≤ + . 1 1+|a+b| 1+|a|+|b| 1+|a| 1+|b| +1 1+ |a+b| |a|+|b|
例 3 (1)若|a|<1,|b|<1,比较|a+b|+|a-b|与 2 的大小, 并说明理由; (2)设 m 是|a|,|b|和 1 中最大的一个,当|x|>m 时,求证: a b + 2<2. x x
【解答】 (1)不妨设|a|≥|b|,则(|a+b|+|a-b|)2=2(a2 +b2)+2|a2-b2|=4a2<4, 所以|a+b|+|a-b|<2. a b a b a b a b (2)x+x2≤x+x2<m+m2<m+m<2.
y
ab
a
O
b
当向量a, b共线时, 有怎样的结论?
x
定理1的代数证明:
证明:当ab 0时,ab | ab |,| a b | (a b)2 a 2 2ab b2 | a |2 2 | ab | | b |2 (| a | | b |) 2 | a | | b |
【点评】 |a±b|≤|a|+|b|,从左到右是一个不等式 放大过程,从右到左是缩小过程,证明不等式可以直接 用,也可利用它消去变量求最值.本题是绝对值不等式 性质的简单应用.绝对值三角不等式是证明与绝对值有 关的不等式的重要工具,但有时还需要通过适当的变形 使其符合绝对值不等式的条件.
变式题
[2009· 靖江模 拟] 设 f(x)=x2-x+1,实数