L3GD20陀螺仪资料
陀螺仪简介.

二、陀螺仪概述
陀螺仪(gyroscope)意即“旋转指示器”,是指敏感角速率和角偏 差的一种传感器.自1852年陀螺仪问世,因其独特的性能,广泛 地应用于航海、航空、航天以及国民经济等领域。
迄今为止,陀螺仪从传统的刚体转子陀螺仪到新型的固态陀螺仪, 种类十分繁多。
液浮陀螺、静电陀螺和动力调谐陀螺是技术成熟的三种刚体转子 陀螺仪,达到了精密仪器领域内的高技术水平。
为了提高陀螺的性能.人们提出了各种解决办法。包括对光纤陀 螺组成元器件的改进,以及用信号处理的方法的改进等。
五、光纤陀螺的发展现状
光纤陀螺的发展是日新月异的。不仅是科学家热心于此,许多大公司 出于对其市场前景的看好,也纷纷加入到研究开发的行列中来。由于 光纤陀螺在机动载体和军事领域的应用甚为理想,因此各国的军方都 投入了巨大的财力和精力。
陀螺仪概述
有关专家认为:精度在10-2 º/h或者更高的光纤陀螺将代 替激光陀螺,这是发展趋势。在军用方面,飞机、舰艇、 潜艇以及导弹均将装备光纤陀螺用以导航和制导,而且卫 星、宇宙飞船上也将会装备光纤陀螺仪用于与地形跟踪匹 配和导向,火箭发射场上光纤陀螺仪用于火箭升空发射跟 踪及测定等。
在民用方面,光纤陀螺仪 可用于飞机导航和石油勘察、 钻井导向(确定下钻的位置), 特别是在工业上的应用具有 极大的发展潜力。
—用于惯性导航的光纤传感器
李晓静 光学工程 2005202094
一、光纤传感技术
光纤传感技术是20世纪70年代伴随着光导纤维及光纤通信 技术的发展而发展起来的一种以光为载体、光纤为媒质, 感知和传输外界信号(被测量)的新型传感技术。
所谓“感知”,实质上是外界信号对光纤中传播的光波实 施调制。所谓“传输”,是指光纤将受外界信号调制的光 波传输到光探测器进行检测,将外界信号从光波中提取出 来并按需要进行数据处理,也就是解调。
陀螺仪芯片手册L3G4200D亲手译

L3G4200D MEMS 运动传感器: 超稳定的三轴数字输出陀螺仪
特点
■三种可选的全尺度(250/500/2000DPS) ■I2C/SPI 数字输出接口 ■16 比特率值的数据输出 ■8 位温度数据输出 ■两个数字输出线(中断和数据就绪) ■集成的低和高通滤波器与用户可选择带宽 ■超稳定的温度和时间 ■宽电源电压:2.4 V 至 3.6 V ■低电压兼容的 IOS(1.8 伏) ■嵌入省电和睡眠模式 ■嵌入式温度传感器 ■嵌入式 FIFO(先入现出堆栈) ■高冲击的生存能力 ■扩展的工作温度范围(-40℃至+85℃) ■ECOPACK® RoHS 和“绿色”兼容
5.2.2 SPI 写………………………………25 5.2.3 SPI 读三线模式…………………………26 6 输出寄存器映射…………………………27 7 寄存器的描述…………………………29 7.1 WHO_AM_I(0FH)……………………………… … 29 7.2 CTRL_REG1(20H)……………………………… 29 7.3 CTRL_REG2(21H)……………………………… 30 7.4 CTRL_REG3(22H)……………………………… 31 7.5 CTRL_REG4(23H)……………………………… 32 7.6 CTRL_REG5(24 小时)……………………………… 32 7.7 参考/ DATACAPTURE(25H)……………………34 7.8 OUT_TEMP(26H)……………………………… 34
应用
■游戏和虚拟现实输入设备 ■运动控制与人机界面(人机接口) ■全球定位导航系统 ■家电和机器人技术
说明
L3G4200D 是一种低功耗三轴角 速率传感器能够提供前所未有的 安然的零利率水平和灵敏度超过 温度和时间…它包括一个传感 元素,并能够提供一个 IC 接口 外部世界的测角速率 通过数字接口(I2C/SPI)…
L3G4200D:3轴数字陀螺仪

命。该 器件 通过 重建
完整 的输 出 电平保 持 接收信 号 的完整 性 , 并通过 信号 整形 降低 总体 系统 抖 动 (J 。 T)
新的 BIS4晶体管提供 了高电路效 率 、 功率 损耗 , S. 低 产 生的热量 要小于相 同封 装的标 准晶体管 。这些 新产 品的
传 感 技 术
分 立 器件
MMBD 0 4 RM 高压 二 极 管 阵列 50B
Do e推 出击 穿 电压 为 4 0 id 0 V的 四开 关 二 极 管 阵列
MMB 5 0 B D 0 4 RM, 旨
在承受 D A调制解 调 A
现哪} 吁鬟 啦 ¨ — ■ }
情况 。
ST M i oel c r cr e t oni cs
w w w. m i oel toni . r . t st cr 极 和 负极 电话 线
接 口和 一般 离 线 整 流 应用 中最坏 的线 瞬 变
MMB 5 0 B D 0 4 RM二极 管 阵列结 合 了更快 的开关速 度
Ma i 推 出双 通 道 缓 冲 器 MA 4 5 E,器 件 设 计 用 名 ,它们 为减少打 开导通 电阻确立 了新 的基准 ,使开 关时 x m X91 B
间减到绝对最小值 。超低 V 分支的晶体 管在 1A时实现 。
并具有 2种 节 电模 式
以延 长 电池 的使 用寿
了 5 mV的超低饱 和 电压 。4种新 的高速开 关晶体 管使开 0 关和存储 时间降低到 1 5 s n 。新型 BIS4产品表明 ,双极 2 S一 晶体 管技术 为要求更 高性 能和降 低开关 损耗 的应用提供 了
Di odes w w w. ode om di sc
PIXHAWK飞控概览

PIXHAWK飞控概览Pixhawk飞控的技术规格、接口分配、PWM,PPM-SUM和SBUS模式下的舵机与电调的连接方法、接口图,和与其他常见飞控的区别与选择。
技术规格•处理器32位 STM32F427 ARM Cortex M4 核心外加 FPU(浮点运算单元)168 Mhz/256 KB RAM/2 MB 闪存32位 STM32F103 故障保护协处理器•传感器Invensense MPU6000 三轴加速度计/陀螺仪ST Micro L3GD20 16位陀螺仪ST Micro LSM303D 14位加速度计/磁力计MS5611 MEAS 气压计•电源良好的二极管控制器,带有自动故障切换舵机端口7V高压与高电流输出所有的外围设备输出都有过流保护,所有的输入都有防静电保护•接口5个UART串口,1个支持大功率,两个有硬件流量控制Spektrum DSM/DSM2/DSM-X 卫星输入Futaba SBUS输入(输出正在完善中)PPM sum 信号RSSI(PWM或者电压)输入I2C, SPI, 2个CAN, USB3.3 与 6.6 ADC 输入•尺寸重量 38g宽 50 mm高 15.5 mm长 81.5 mmPixhawk 的接口分配PWM,PPM-SUM和SBUS模式下的舵机与电调的连接方法Pixhawk 接口图上图中针脚1在右边串口 1 (Telem 1),串口 2 (Telem 2) ,串口 (GPS) 针脚: 6 = GND, 5 = RTS, 4 = CTS, 3 = RX, 2 = TX, 1 = 5V.选择哪款飞控? APM 、PX4,还是 PIXHAWK•APM2.5与2.6是传统ardupilot飞控的最新(也是最终)版本:APM25 与 26 概览•PX4FMU与PX4IO 是这个新飞控家族的最初两个版本:Px4FMU 概览与 Px4IO 概览•Pixhawk是根据我们的需要,结合PX4FMU / PX4IO改进而开发出的PX4飞控的单块电路板版本。
L3G4200DTR L3G4200D三轴数字陀螺仪传感器

型号:L3G4200DTR
封装: LGA-16
品牌:ST
大名鼎鼎的IPhone4手机上用的就是这款传感器,L3G4200D是一个低功率的轴陀螺仪提供了三种不同的用户可选择全量表(±250 /500 /2000±±存)。
它包括一个传感元件和一个集成电路接口能够提供检测角速度的外部世界,通过一个数字接口.。
常用于
1.游戏和虚拟现实输入设备
2.运动控制与人机界面(人机接口)
3.全球定位导航系统
4.电器和机器人
注意此传感器尺寸非常小,4X4X1mm
(接口)。
该感应元件是采用专业加工过程,而集成电路接口使用一个实现技术,可以设计一个专用电路,是修剪以更好地配合感测元件特点。
该l3g4200d可在塑料栅阵列(客房)封装,提供了极好的温度稳定性和高分辨率在扩大工作温度范围(-40℃°+ 85°丙)。
特点
三选择全表(±250 /500 /2000伤害)2/数字输出接口■16比特率值数据输出■数字输出线(中断dataready)■集成的低和高通滤波器与你可选的带宽■嵌
入式自我测试■宽电源电压,2.4伏至3.6伏■低电压兼容的操作系统,1.8伏■嵌入式断电和睡眠模式■高冲击■扩展温度范围(-40℃至+ 85℃°° )。
陀螺仪讲义

图 1-5 摆式陀螺仪受重力作用的情况
由图 1-5 中知道,当陀螺主轴 x 水平时,重力 P 的方向既通过重心 O′,也通过陀 螺仪的支点 O,重力矩为零,对陀螺仪不发生作用,因此陀螺不产生进动。但是当地球 自转了β角之后,陀螺主轴相对地平面 AB,升高了β角,即图中 x 轴方向与 A′B′之 间的夹角(A′B′//AB)。这时陀螺仪的重力 P 的方向不再通过陀螺仪的支点 O,而 产生了力臂为 1sinβ的重力矩(摆力矩)MP,即
1
图 1-4 自由陀螺仪特性实验仪
如果将衡重 A 向左移动一小段距离,在陀螺不转动的情况下,杠杆将在竖直面内产 生逆时针方向的转动,即左端下降、右端上升。但是当陀螺转动时,杠杆不作上下倾斜 运动,而是仍然保持水平,且在水平面内作逆时针方向的转动(从上向下看) ,这种现 象就是所谓的“进动”。如果将衡重 A 向右边移动一小段距离,在陀螺转动的情况下,也 将产生“进动”, 不过进动方向和上述方向相反, 即杠杆在水平面内作顺时针方向的转动 。 1.4 摆式陀螺仪寻北原理 1.4.1 摆式陀螺仪寻北规律 陀螺经纬仪上的陀螺仪,其支点不在三轴的交点上,而是将陀螺仪用弹性悬带悬挂 着,支点在弹性悬带上端的着力点 O 上,如图 1-5 所示,O 点对整个陀螺仪来讲是个不 动点。
1 陀螺及其特性 1.1 陀螺 凡是绕定点高速旋转的物体,或绕自身轴高速旋转的任意刚体,都称为陀螺。如图 1-1 所示,设刚体上有一等效的方向支点 O。以 O 为原点,作固定在刚体上的动坐标系 O-XYZ。刚体绕此支点转动的角速度在动坐标轴上的分量分别为ωx、ωy、ωz,若能 满足以下条件: ωz>>ωx ωz>>ωy ωz≈Const (1-1) 这种类型的刚体统称为陀螺。OZ 轴是高速旋转轴,也称陀螺转子轴。刚体一面绕 OZ 轴作等速旋转,另一方面还可以绕 OX 及 OY 轴作较慢的转动。前者称为自转运动, 后者称为进动运动。
陀螺仪知识整理与解析

陀螺仪知识整理与解析1、陀螺仪基础知识 (2)2、Question and answer (2)3、陀螺仪和加速度计的区别与联系 (3)4、常用芯片介绍 (3)1、陀螺仪基础知识陀螺仪:测量角速度,是角速度传感器。
时间积分后得到相对角度。
陀螺和加速度计是惯性器件,是用来测量相对惯性空间的角速度(或对于积分类型的陀螺来说是角增量)和加速度。
在三维空间中描述一个刚体运动要六轴,三轴加速度,三轴角速度。
测量角速度大部分芯片靠的是测量科特迪奥力,也就是让排水孔的水形成涡旋的力。
角速度跟角速率:速度是矢量、有方向。
而速率是标量,只有大小,帶有平均的意味。
如果采样点很快的話(dt趋于0),速度和速率的数值是一样的。
航模的陀螺仪全是角速度传感器,不管是高端还是低端。
mems陀螺仪积分很多时候造成零偏的主要原因应该是随机游走。
2、Question and answerQ:角速度传感器如果在它的测量轴上匀速转动输出是否为定值?A:是,不过首先要保证你是在匀速转动。
用过几种角速度传感器,发现匀速转动传感器,因为加了高通滤波,传感器输出的电平和静止时的电平一样,只有加速的时候电平才变动。
Q:如果在测量轴的某一位置静态输出为A,那么匀速转过45度后静止,那么此时输出是否为A?A:如果是静止测量,是如此的。
但由于频宽,通常信号有一点点滞后。
Q:用陀螺仪测角度的话,是不是对测出的角速度积分即可?网上看到有些资料说可以用陀螺仪和加速度传感器组合测角度,这种方法具体如何实现?A:理论上如此,但是由于bias、drift、scale和数值积分的误差,积分结果是会漂移的。
假设加速度计测量到重力加速度时,可以对陀螺仪校正角度,得到较为正确的结果。
但是sensor,bias、noise、scale 誤差是免不了的。
所以才將两组数据做“数据融合”,实际操作的方法很多,主流的比如“Kalman滤波”。
Q:为啥四轴要装加速度传感器和角速度传感器呢,位置传感器与角速度传感器有什么区别呢?A:物体在自由空间的运动是两种运动的组合:质心的平移+围绕质心的转动,因此,物体运动有6DOF,6个自由度:3个平移自由度+3个转动自由度。
PIXHACK硬件资料及使用教程

PIXHACK 中文入门指南PIXHACK是根据PIXHAWK硬件架构平台上由CUAV设计,并有CUAV生产的一款32位开源硬件飞控,由于硬件主要架构跟pix完全相同,所以完全兼容3DR APM固件以及pix原生固件。
PIXHACK在pix原版基础上优化了供电芯片,删减不必要接口,接口做调整优化,改为前后方插线。
主要的亮点是IMU分离设计,内置小型通用减震结构,并采用了CNC一体铣成型工艺,抗干扰性还是稳定性都有质的提升。
Pixhack经过Cuav长达一年的设计,无数个版本的优化及测试,已经达到了比较稳定理想的效果:硬件参数介绍硬件参数介绍:处理器 1. 32位2M闪存STM32F427 Cortex M4,带硬件浮点处理单元主频:168MHZ,256K RAM2. 32位STM32F103备份协处理器内置传感器Pixhack 采用IMU分离设计,内置通用性减震,一般飞行器不需要做减震处理(如果震动太大及频率过高还需减震)1.L3GD20 3轴数字16位陀螺仪2.LSM303D 3轴14位 加速度/磁强计3.MPU6000 6轴加速度计/磁强计4. MS5611 高精度气压计工作环境及电压温度范围:-5~50度PM传感器工作电压2-6SPM传感器输出电压5.4V 3APWM OUT输入供电电压最高9V(支持高压舵机,而原版Pixhawk不支持高于5.5V的供电)2路电源自动冗余(PM口和PWM OUT口),PM口优先供电,出现故障自动切换到PWM OUT口供电外观尺寸主控尺寸68mmX44mmX15MM 重量:68g数据接口1. 5个UART 1个兼容高电压,2个带有硬件流控制2. 1个CAN3. Spektrum DSM/DSM2/DSM-X卫星接收机兼容输入4. Futaba SBUS兼容输入和输出5. PPM信号输入6. RSSI(PWM或者电压)输入7. I2C协议设备扩展8. 预留SPI接口9. 3.3和6.6VADC输入10. 外部MICRO USB接口11. 13个PWM/舵机输出12. 多音蜂鸣器及解锁按键 状态led 接口外围设备支持固定翼多旋翼直升机车船固件支持支持接收机类型接收机类型S-Bus, DSM2,PPM 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陀螺仪传感器L3GD20的接线图如上图,具体引脚接线情况如下:
1.VDD_IO引脚接3.3V电压
2.SCL/SPC引脚接STM32的PA5引脚
SCL为I2C的串行时钟
SPC为SPI的串口时钟
3.SDA/SDI/SDO引脚接STM32的PA7引脚
SDA为I2C的串行数据
SDI为SPI串行数据输入
SDO为三线接口的串行数据输出
4.SDO/SA0引脚接STM32的PA6引脚
SDO为SPI的串行数据输出
SA0为I2C设备地址的低位
5.CS引脚接STM32的PC13引脚
CS引脚用来选择I2C通信模式或者是SPI通信模式,CS引脚为1,高电平时,SPI处于空闲模式,I2C处于通信使能,CS引脚为0,低电平时,SPI处于通信模式,I2C处于非使能模式。
6.DRDY/INT2引脚接STM32的PB0引脚
DRDY表示数据已经准备好,INT2表示FIFO中断
7.INT1引脚悬空
INT1表示可编程中断
8.Reserved引脚接地
9.Reserved引脚接地
10.Reserved引脚接地
11.Reserved引脚接地
12.Reserved引脚接地
Reserved为厂商保留引脚
13.GND引脚接地
14.Reserved引脚通过一个耦合电容接地,在11V电压下电容最小值为1nF
15.Reserved引脚接VDD电压
16.VDD引脚接VDD电压
VDD引脚与VDD电压间要连接一个100nF和一个10uF的电容
陀螺仪传感器L3GD20的一些机械参数:
符号:FS 含义:量程用户可选择:(1)±250(2)±500(3)±2000,单位:dps,degree per second 度每秒
符号:SO 含义:灵敏度(1)±250量程时为8.75(2)±500量程时为17.50(3)±2000量程时为70,单位:mdps/digit
符号:SODR 含义:温度对灵敏度的影响:±2%,温度范围为-40C到+85C
DVOFF:零点漂移水平,(1)±250量程时为±10(2)±500量程时为±15(3)±2000量程时为±75,单位:dps
工作温度范围:-40C到+85C
陀螺仪传感器L3GD20的一些电子参数:
VDD电压范围:2.4V到3.6V,一般值为3.0V
工作温度范围:-40C到+85C
陀螺仪传感器L3GD20内部温度传感器的特性:
TSDR:温度改变时温度传感器的输出变化:-1C/digit
TODR:温度值刷新速率:1HZ
工作温度范围:-40C到+85C
专业术语:
灵敏度:一个角速度陀螺仪是用来产生一个正向输出数据的设备,这些输出数据是在围绕可能的敏感轴顺时针旋转得到的。
灵敏度表示传感器的增加值,灵敏度可以由传感器的自定义角速度来决定。
灵敏度的值在温度和时间改变时变化很小。
零点漂移水平:零点漂移是指在角速度为零时陀螺仪传感器依旧有信号输出。
在某些情况下,零点漂移是由于传感受到压力造成的,而且零点漂移的水平会因PCB曝光之后由于所受的机械压力而发生改变。
FIFO简介
陀螺仪传感器L3GD20内嵌了三个32插槽的16位数据FIFO,分别为偏航(yaw)、俯仰(pitch)、旋转(roll)三个输出通道所使用。
FIFO的存在可以是的系统持续供电,因为主处理器不需要持续的从陀螺仪传感器中调用数据,只需要在需要数据时唤醒FIFO,从FIFO中调用急需的数据。
FIFO缓冲器可以工作在五种不同的模式下:Bypass模式,FIFO模式,Stream模式,Bypass-to-Stream模式,Stream-to-FIFO模式。
每一种模式都可以通过改变FIFO_MODE位来
改变,FIFO_MODE位在FIFO_CTRL_REG寄存器中,(地址为2EH)可编程的FIFO水位标志、FIFO_empty标志、FIFO_full标志能够通过检测DRDY/INT2引脚的中断来使能,该引脚通过寄存器CTRL_REG32(地址为22H)来配置。
并且检测到的中断信息还可以在寄存器FIFO_SRC_REG中使用(地址为2FH)。
FIFO的水位标志值的大小需要由配置WTM4:0来决定,而配置WTM4:0主要由配置寄存器FIFO_CTRL_REG(地址为2EH)来实现。
FIFO的Bypass模式
在Bypass模式下,FIFO不可操作,因此FIFO保持为空。
每一个通道只有首地址可用,其他保留的FIFO槽都是空的,当新的数据可用时,老的数据被覆盖。
FIFO的FIFO模式
在FIFO模式下,从偏航(yaw)、俯仰(pitch)、旋转(roll)三个输出通道得到的数据被存储在FIFO中。
FIFO水位标志中断可以被使能(通过使I2_WMK位进入CTRL_REG3寄存器(地址为22h)),并且当FIFO被填充到特殊的水平时,FIFO的水位标志位会被提升,这个特殊的水平在寄存器FIFO_CTRL_REG(地址为2EH)的WTM 4:0位。
FIFO继续填充直到被填满为止,(一共32个槽的16位数据用来保存偏航(yaw)、俯仰(pitch)、旋转(roll)三个输出通道得到的数据)。
当FIFO满了之后,FIFO停止从输入通道采集数据。
为了从新采集数据,寄存器FIFO_CTRL_REG(地址为2EH)必须被写回到Bypass模式。
、
FIFO的Stream模式
在Stream模式,从偏航(yaw)、俯仰(pitch)、旋转(roll)三个设备来的数据被存储在FIFO中。
水位标志中断可以在FIFO模式下被使能和设置。
FIFO继续填充直到被填满为止,(一共32个槽的16位数据用来保存偏航(yaw)、俯仰(pitch)、旋转(roll)三个输出通道得到的数据)。
当FIFO被填满,并且新的数据到来之后,FIFO会抛弃旧的数据。
可编程的水位标志事件能够被使能,用来在DRDY/INT2引脚产生专用的中断,DRDY/INT2引脚通过引脚CTRL_REG3(地址为22H)来配置。
FIFO的Bypass-to-stream模式
在Bypass-to-stream模式,FIFO开始运行在Bypass模式,当触发器时间产生,(该事件与INT1_CFG寄存器(地址为30H)时间相关),FIFO开始运行在Stream模式。
、
FIFO的Stream-to-FIFO模式
在Stream-to-FIFO模式,从偏航(yaw)、俯仰(pitch)、旋转(roll)三个设备来的数据被存储在FIFO中。
水位标志中断能够通过引脚DRDY/INT2并且设置寄存器CTRL_REG3(地址为22H)的I2_WTM位来使能,而且FIFO的水位标志位在FIFO被填充到特殊的FIFO水平之后可以被提升。
该特殊的FIFO水平被存储在FIFO_CTRL_REG(2EH)寄存器的WTM 4:0位里。
FIFO继续填充直到被填满为止,(一共32个槽的16位数据用来保存偏航(yaw)、俯仰(pitch)、旋转(roll)三个输出通道得到的数据)。
当FIFO被填满,并且新的数据到来之后,FIFO会抛弃旧的数据。
当触发器时间产生(跟寄存器INT1_CFG(地址为30H)事件有关),FIFO开始工作在FIFO模式。
从FIFO中读取数据
FIFO的数据是通过OUT_X(寄存器地址为28H,29H),OUT_Y(寄存器地址为2AH,2BH)以及OUT_Z(寄存器地址为2CH,2DH)。
当FIFO工作在Stream,Trigger或者FIFO模式下时,OUT_X,OUT_Y,OUT_Z寄存器的读操作可以获得存储在FIFO中的数据。
每次从FIFO中读取的数据,最旧的偏航(yaw)、俯仰(pitch)、旋转(roll)数据被放置在OUT_X,OUT_Y,OUT_Z寄存器中。
并且单个位的读取和多个位的读取操作都可以进行,在进行多个位的读取操作时X,Y,Z在读取FIFO数据时,地址会自动增长。
当OUT_Z_H寄存器(地址为2DH)被读取之后,系统从新从寄存器OUT_X_L(地址为28H)读取信息。