高浓度盐的处理现状
高盐废水处理技术的竞争现状及趋势分析

高盐废水处理技术的竞争现状及趋势分析随着现代工业的迅速发展和人们对环境保护意识的提高,高盐废水处理技术的研发和应用变得尤为重要。
高盐废水处理技术的竞争现状与趋势分析是探究当前该领域发展状况与未来发展方向的必要措施。
本文将对高盐废水处理技术的竞争现状进行概述,并对其未来的发展趋势进行分析。
高盐废水处理技术的竞争现状:1. 膜分离技术:膜分离技术是目前应用广泛的高盐废水处理技术之一。
通过使用反渗透、超滤等膜分离工艺,可以有效去除盐分和杂质。
此技术具有处理效率高、工艺简单、废水回收利用率高等优点,得到了广泛的应用和推广。
2. 离子交换技术:离子交换技术通过利用高分子树脂吸附和交换盐分离废水中的离子。
该技术具有处理速度快、去除效果好、废水资源化利用等优点,广泛应用于高盐废水处理领域。
3. 电化学氧化技术:电化学氧化技术是一种通过电流进行水体氧化还原反应的技术。
该技术能够有效降低废水中的盐分和有机物浓度,且操作简单、废水处理效果好,适用于高盐废水的处理。
高盐废水处理技术的发展趋势:1. 高效、低能耗:未来的高盐废水处理技术将更加注重高效和低能耗特点的开发。
随着能源和资源的日益紧缺,处理技术需要尽量减少能源消耗,降低运营成本。
2. 废水资源化利用:未来的趋势是将高盐废水转化为可再利用的资源,例如盐分回收、水资源回收等。
这不仅可以解决废水排放的问题,还可以实现资源的循环利用,提高废水处理的经济和环境效益。
3. 多技术组合应用:未来的高盐废水处理技术将趋向于多技术组合应用,以提高处理效果和适用范围。
例如将膜分离、离子交换和电化学氧化等多种技术相结合,以满足不同种类高盐废水的处理需求。
4. 绿色环保:未来高盐废水处理技术的研发与应用将更加注重绿色环保理念的实现。
例如研发更环境友好的吸附剂或催化剂,开发可再生能源驱动的处理设备,减少对环境的污染。
总结:高盐废水处理技术的竞争现状已经取得了一定的进展,但仍面临一些挑战。
高盐废水处理存在的问题

高盐废水处理存在的问题
高盐废水的零液排放及资源化处理是高盐废水治理的必然趋势。
目前,虽然各企业积极配备蒸发结晶装置处理高盐废水,但依然存在很多问题。
一是反渗透浓水直接进入蒸发器158,蒸发水量大、能耗高;二是目前的预处理技术难以彻底除去水中各类大杂环等有机物3097,导致蒸发结晶装置中得到的不是结晶盐,而是黏稠状态的污泥;三是即使经过良好的处理,回收了绝大部分的水并得到了结晶盐6988,但是由于得到的结晶盐是杂盐,不但不能被资源化利用反而会按照危废定性处置。
高盐废水处理技术与发展趋势

高盐废水处理技术与发展趋势摘要高盐废水中含有大量的溶解性无机盐,使微生物的生长受到抑制.离子强度过大会导致细胞质壁分离,致使细胞失活,一般微生物在此环境下难以生长繁殖,限制了传统的生物法处理此类废水,文章综述了目前国内外对于高盐废水的研究技术现状以及未来处理高盐废水技术发展趋势。
关键词高盐废水;微生物;发展;随着水资源的短缺情况加重,废水的循环利用和海水淡化技术得到广泛关注,高盐废水的处理也是重要环节。
这类废水常伴随高COD和大量的无机盐,如Cl-、SO42+等离子,无机盐浓度过高,离子强度太大,使微生物发生质壁分离[1],致使细胞失活,此类废水利用传统的活性污泥法难以处理,因此高盐废水成为目前最难处理的废水之一。
1 高盐废水的来源及特点高盐废水是指含有有机物和质量浓度至少3. 5%的总溶解固体物的废水[2]。
这类废水的主要来源于两个方面,一是工业生产时产生的废水,如农药化工、医药化工、造纸、印染、海产品加工等。
这类废水不仅有着高盐分、高有机物,有时还含有重金属,传统生物法处理此类废水时微生物会因强大的渗透压而发生质壁分离,菌胶团解体,水中的重金属也会抑制微生物细胞的生长繁殖和胞外多聚物的分泌。
二是我国沿海地区已经直接或间接把海水在一些场合作为水资源直接使用,海水被作为工业生产和冷却用水、道路用水、冲厕用水等。
由于大水量和高含盐量,因此很难被直接处理。
2 高盐废水的处理方法目前,高盐废水主要的处理方法分为物理法、物理化学法和生物法[3]。
物理法和物理化学法主要是微电解法、膜蒸馏法和吸附法等,物理化学法由于其处理成本太高一般作为高盐废水的预处理阶段。
生物法通过培养嗜盐菌来降低水中的盐度,作为目前处理高盐废水的主流方法,生物法处理废水具有管理简单、成本低和可持续性较好等优点。
[4]2.1 微电解法处理高盐废水微电解法是在废水中的铁-碳两个电极由于电位差产生无数个细微原电池,不断地进行电化学反应。
李松江等[5]设计了微电解-磁混凝净化反应器作为处理肠衣加工废水的预处理有效的对水中污染物进行吸附和凝聚,加快混凝絮体沉淀速度,水中的BOD和COD去除率达到85%和80%。
高盐废水处理现状及研究进展

高盐废水处理现状及研究进展摘要:目前,中国水资源总量位居世界第6位,但人均拥有量仅约为世界人均水平的1/4,居世界第109位。
中国已被列入世界人均水资源13个贫水国家之一,近一半省(区、市)人均水资源量低于世界严重缺水线标准;且中国的水污染状况已达到警戒线。
随着工业规模的不断扩展,工业水污染排放量不断增加,排放种类也日新月异,这都给污水处理技术带来了空前的挑战,需要针对各种废水的特征选择适宜的处理技术[1-3]。
目前,高盐废水产生规模不断变大,主要来自纺织厂、纯碱厂、农药厂、抗生素药厂以及石油和天然气采集加工等过程,高盐废水若规模化处理时同时达到成本低廉和效果达标仍然存在一定的技术瓶颈。
上个世纪50到80年代,处理高盐废水主要以多级闪蒸和低温多效蒸发等蒸馏法为主,不断开展电渗析、冷冻等技术进行产业化应用;到上个世纪末,高盐废水处理技术以蒸馏法和反渗透法为主,蒸馏法的应用范围大于反渗透技术,但随着高盐废水处理技术的快速发展,反渗透技术应用领域超过了蒸馏法技术。
目前,膜法和蒸馏法成为高盐废水处理的主要技术。
关键词:高盐废水;处理工艺;研究进展引言着水处理技术的发展及国家政策对于大部分工业水利用率的要求提高,多数企业为满足生产需要,降低用水成本,采取了许多节水措施,提高重复利用率,使外排水的盐度及其他有机污染物浓度提高。
同时近几年,我国环保要求逐渐提高,对外排水的含盐量提出要求,各地方相关政策也已出台,使高盐废水零排放的需求逐渐加强。
1不同行业高盐废水特点分析1.1煤化工高盐废水煤化工高含盐废水水质具有以下特点:①盐分高且成分复杂,杂质离子组分较多;②COD含量比较高;③含有一些容易结垢的离子,比如硬度及可溶性硅;④不同项目采用不同的主工艺,废水组分多变,水质不确定性比较大。
1.2电厂脱硫废水火电厂脱硫废水主要来源于湿法脱硫(FGD)工艺产生的废水,主要特点是高悬浮物,高盐度(高氯根、高硫酸根)高腐蚀性、高硬度、及含有部分重金属,且水质波动大。
工业浓盐水处理工艺及其应用现状研究

工业浓盐水处理工艺及其应用现状研究摘要:由于工业废水处理过程产生的浓盐水中含有大量的有机物和无机物,目前对其处理成为水处理中的难点之一。
本文就目前用于处理浓盐水的几种处理技术进行分析,着重介绍各个处理技术的优缺点,以及这些处理技术研究和应用现状,为提升浓盐水处理技术的研究提供借鉴。
关键词:浓盐水;反渗透;纳滤;正渗透;机械压缩再蒸发;1、前言工业废水经过预处理和深度处理后,会产生含有大量有机物、重金属、Cl、SO4-2、Na+、Ca2+等溶解性无机盐的浓盐水,后续处理难度大,直接排放会对流域环境及周围居民健康造成严重的后果。
运用合理、高效、节能的处理工艺对浓盐水进行处理就显得非常重要,这也是目前研究者普遍关注的问题。
采用反渗透、纳滤、正渗透、机械压缩再蒸发等技术实现浓盐水的减量与近零排放是目前研究的热点。
本文着重介绍这几种处理工艺的研究和应用情况,并对今后浓盐水处理技术发展进行探讨和展望。
2、浓盐水处理技术2.1反渗透反渗透又称逆渗透(Reverse osmosis,RO),是一种以压力差为推动力,从溶液中分离出溶剂的膜分离过程,因为它和自然渗透的方向相反,故称反渗透。
根据各种物料的不同渗透压,就可以使用大于渗透压的反渗透压力,达到分离、提取、纯化和浓缩的目的。
反渗透水处理技术主要是利用物理方法脱盐,其优点有:脱盐率高,产水水质稳定;能耗低,出水量高;环境危害小;装置全自动操作,维护简单;装置占地面积小,结构紧凑,空间利用率高等。
在反渗透处理过程中,如果给水中具有大量的悬浮物,这些物质如果得不到很好的处理,将会在膜上沉淀,使水中硬度过高而结垢,堵塞流道,造成膜组件压差增大,膜的脱盐效率降低,严重时会使膜组件不能使用,故利用反渗透膜处理浓盐水时需进行必要的预处理。
徐西娥等人研究了延安石油化工厂采用反渗法处理除盐水站产生的浓盐水的处理过程,由于反渗透进水水质较差,特别是碳酸盐含量高,导致浓水反渗透膜污堵严重、进水量下降、段间压差升高、产水电导增大、在线化学清洗效果不佳,浓水反渗透处理装置被迫停止运行。
高盐废水处理行业未来发展趋势研究

高盐废水处理行业未来发展趋势研究随着工业化和城市化的快速发展,高盐废水处理成为了一个备受关注的问题。
高盐废水处理行业未来的发展趋势是怎样的?本文将从技术、政策和市场等方面探讨高盐废水处理行业未来的发展趋势。
一、技术趋势1. 高效分离技术的发展:随着污染物浓度的增加,传统的分离技术面临着很大的挑战。
未来,高效分离技术将成为高盐废水处理的关键技术,包括膜分离、离子交换等。
2. 综合处理技术的应用:高盐废水的处理过程中往往涉及多种污染物的去除,综合处理技术将成为处理复杂高盐废水的重点,例如联合气浮、生物处理等,能够同时去除多种污染物。
3. 能源回收技术的发展:目前,高盐废水处理过程中产生的能量往往被浪费。
未来,将会有更多的能源回收技术应用于高盐废水处理过程中,例如利用厌氧消化产生的沼气等。
二、政策趋势1. 环保政策的加强:随着环境污染问题的日益凸显,政府将加强对高盐废水行业的监管力度,加大执法力度,对不符合标准的企业进行整顿。
2. 产业规范的建立:未来,政府将进一步完善法律法规,制定更加明确的行业标准和规范,推动高盐废水处理行业的规范化发展。
3. 激励政策的推出:为鼓励高盐废水处理技术研发和应用,政府将推出相应的激励政策,包括税收减免、研发资金支持等,以促进行业的创新和发展。
三、市场趋势1. 市场需求的增加:随着工业发展和城市化进程的加快,高盐废水处理市场需求将持续增长。
高盐废水处理技术将在电力、化工、制药等行业得到广泛应用。
2. 产品市场的竞争加剧:随着市场的扩大,高盐废水处理产品市场竞争也越来越激烈。
未来,企业需加强技术研发,提高产品质量和性能,以赢得市场份额。
3. 服务市场的拓展:高盐废水处理不仅仅是一项技术,也是一个服务。
未来,高盐废水处理服务市场将逐渐崛起,包括运营管理、技术咨询等服务,为企业提供全方位的解决方案。
综上所述,高盐废水处理行业未来的发展趋势将在技术、政策和市场等方面得到促进。
通过技术创新和政策支持,高盐废水处理行业将实现更高效、更环保的处理过程。
高盐度海水淡化装备的技术现状与发展前景

高盐度海水淡化装备的技术现状与发展前景随着全球水资源供需的紧张程度不断加剧,淡化海水成为了解决水资源短缺问题的一项重要技术。
而海水淡化的技术中,高盐度海水淡化装备的发展一直备受关注。
本文将对高盐度海水淡化装备的技术现状及其发展前景进行探讨。
一、技术现状1.多效蒸发技术多效蒸发技术是目前应用最为广泛的高盐度海水淡化技术之一。
它通过多级蒸发-冷凝系统,利用余热进行加热蒸发,实现盐水和淡水的分离。
这种技术具有能源消耗低、产水质量高的优点,适用于高盐度海水淡化。
2.逆渗透技术逆渗透技术是一种膜分离技术,广泛应用于低盐度海水淡化领域,但在高盐度海水淡化方面也逐渐得到了应用。
该技术通过在压力作用下,将海水通过半透膜,分离出盐分和水分。
逆渗透技术具有操作简单、产水稳定等优点,但在高盐度海水淡化方面,需要克服成本高、防膜污染等问题。
3.蒸发结晶技术蒸发结晶技术是将高盐度海水利用蒸发结晶的方法,将盐分与淡水分离。
它可以有效地处理高盐化学废水和海水淡化。
蒸发结晶技术具有节能省电、产水质量高的优势,但设备体积较大,适用场景相对有限。
二、发展前景1.技术改进当前的高盐度海水淡化装备还存在一些技术挑战,如耐盐性、膜污染等问题。
未来的发展方向之一是改进技术,提高装备的耐盐性和抗污染能力。
同时,也需要继续改进高盐度海水淡化膜的材料,提高其选择性和稳定性。
2.能源消耗降低高盐度海水淡化过程中,能源消耗是一个重要的成本和环境问题。
未来的发展趋势是减少能源消耗,提高能源利用效率。
可以通过开发新型蒸发器技术、应用太阳能等可再生能源来降低能耗,从而降低高盐度海水淡化装备的运行成本。
3.规模化应用目前,高盐度海水淡化装备主要用于海水淡化厂和海上油田等特定领域。
未来的发展趋势是规模化应用,将高盐度海水淡化装备广泛应用于制取淡水、工业产水和海水处理等领域,以满足不同领域的用水需求。
总之,高盐度海水淡化装备的技术现状与发展前景呈现出良好的发展态势。
219413928_高盐废水脱盐处理技术的研究现状

第52卷第6期 辽 宁 化 工 Vol.52,No. 6 2023年6月 Liaoning Chemical Industry June,2023收稿日期: 2022-10-20 作者简介: 刘妍博(1999-),女,辽宁省朝阳市人,2021年毕业于沈阳建筑大学环境工程专业,研究方向:水污染控制。
通讯作者: 亢涵(1982-),女,副教授,研究方向:水资源利用及污染控制。
高盐废水脱盐处理技术的研究现状刘妍博,亢涵*(沈阳建筑大学 市政与环境工程学院,辽宁 沈阳 110168)摘 要: 目前,针对高盐废水的处理要求越来越严格,如何使废水中的盐分、有机污染物等进行分离以及资源化回收利用,争取达到绿色排放,是我们目前需要解决的重要问题。
阐述了传统的物理脱盐处理技术,从热法:多级闪蒸、多效蒸发、机械蒸汽再压缩蒸发(MVR)和膜分离法的研究现状入手,分析了各工艺的优缺点。
结合新型电化学脱盐技术——电渗析和电吸附除盐技术的研究现状及应用情况,总结得出两种电化学脱盐技术与传统物理脱盐技术相比的优势所在,阐述了电吸附法良好的应用前景,并对未来高盐废水脱盐技术的发展方向进行了展望。
关 键 词:高盐废水;脱盐;热法;电渗析;电吸附中图分类号:X703 文献标识码: A 文章编号: 1004-0935(2023)06-0907-04随着工业迅速发展,以含盐量高且成分复杂为主的高盐废水排放造成的水资源污染问题较为严重,急需处理。
高盐废水是指水体中总溶解性固体(TDS)的质量分数大于等于3.5%的废水[1],主要来源于化工、制药、印染等行业产生的工业废水。
若直接排入受纳水体会使水体含盐量升高、破坏土壤,影响水生生物和动植物的正常生长、繁殖[2],同时高浓度的含盐量也会对后续污水处理厂生化处理中微生物的生长具有明显的抑制作用。
因此开发经济高效的高盐废水脱盐处理技术是我国实现高盐废水资源化循环利用过程中遇到的瓶颈问题。
本文分析了传统的物理脱盐处理技术,以及新型电化学脱盐技术的研究现状,对各工艺的优缺点进行总结,展望了未来高盐废水脱盐处理技术的发展方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高浓度盐的处理现状含盐废水是指总含盐量(以NaCl 含量计)至少为1%的废水,主要包括含盐工业废水、含盐生活污水和其它含盐废水。
这些废水中含有的Cl-、SO42-、Na+、Ca2+等离子对常规生物处理有明显的抑制作用,盐度越大微生物生长也就越困难。
这就给废水的生物处理带来一定的困难。
同时含盐废水渗入土壤系统后会使土壤中植物因脱水而死亡,直接影响周围的生态环境。
高含盐废水脱盐处理一直是一个难以解决的问题,例如榨菜厂、肠衣厂、油气田抽出水等,这些废水中全盐含量有时高达50000mg/L,并且有机污染也非常严重,目前,目前对含盐废水的处理一般有生化降解、蒸发、电解、离子交换、膜法等方法。
本文就各种处理技术的原理及其优缺点做出了阐述与对比。
1. 高浓度盐的产生(>1%)1.1海水代用排放的废水所谓海水代用就是将海水不进行淡化处理而直接替代某些场合使用的淡水资源。
在工业上,海水可以广泛的用作锅炉冷却水,应用到热电、核电、石化、冶金、钢铁厂等行业上。
发达国家年海水冷却水用量已经超过了1000亿m3。
目前我国海水的年利用量为60多亿m3。
青岛电厂1936年就开始将海水作为工业冷却水,至今已经有60多年的历史。
目前,青岛市电力、化工、纺织等行业的12家临海企业,年用海水8.37亿m3。
天津年利用海水达到18亿m3。
此外,秦皇岛热电厂、黄道热电厂和上海石化总厂等70多家临海火力发电、核电、化工、石化等企业均已不同的方式直接利用海水。
对于印染、建材、制碱、橡胶以及海产品加工等行业,海水还可以作为工业的生产用水。
城市生活用水。
在城市生活中,海水可以替代淡水作为冲厕水。
目前香港海水冲厕的普及率高达70%以上,未来计划普及率提高到100%,并因此成为世界上唯一以海水作为冲厕水的城市。
而在大连、天津、青岛、烟台等城市的个别单位,也有采用海水冲厕的实践,但规模较小。
1.2工业生产废水一些工业行业在生产过程中排放出高含盐的有机废水,如印染、腌制、造纸、化工和农药等行业。
1.3 其他高盐废水大型船舰上的污水是高含盐生活污水;某些地下水异常地区的天然水比一般淡水的含盐量高很多,如河北平原部分地区浅层地下水为咸水,总溶解固体浓度可以到5g/L 左右。
2.高浓度盐处理技术2.1 蒸馏脱盐蒸馏法是一种最古老、最常用的脱盐方法。
目前工业废水的蒸馏法脱盐技术基本上均是从海水脱盐淡化技术基础上发展而成。
蒸馏法就是把含盐水加热使之沸腾蒸发,再把蒸汽冷凝成淡水的过程。
蒸馏法有很多种,如多效蒸发、多级闪蒸、压气蒸馏、膜蒸馏等。
2.1.1多效蒸发(MED)多效蒸发是让加热后的盐水在多个串联的蒸发器中蒸发,前一个蒸发器蒸发出来的蒸汽作为下一蒸发器的热源,并冷凝成为淡水。
其中低温多效蒸馏是蒸馏法中最节能的方法之一。
低温多效蒸馏技术由于节能的因素,近年发展迅速,装置的规模日益扩大,成本日益降低,主要发展趋势为提高装置单机造水能力,采用廉价材料降低工程造价,提高操作温度,提高传热效率等。
2.1.2多级闪蒸(MSF)以海水淡化为例,将原料海水加热到一定温度后引入闪蒸室,由于该闪蒸室中的压力控制在低于热盐水温度所对应的饱和蒸汽压的条件下,故热盐水进入闪蒸室后即成为过热水而急速地部分气化,从而使热盐水自身的温度降低,所产生的蒸汽冷凝后即为所需的淡水。
多级闪蒸就是以此原理为基础,使热盐水依次流经若干个压力逐渐降低的闪蒸室,逐级蒸发降温,同时盐水也逐级增浓,直到其温度接近(但高于)天然海水温度。
(3)蒸汽压缩冷凝(VC)蒸汽压缩冷凝脱盐技术是将盐水预热后,进入蒸发器并在蒸发器内部分蒸发。
所产生的二次蒸汽经压缩机压缩提高压力后引入到蒸发器的加热侧。
蒸汽冷凝后作为产品水引出,如此实现热能的循环利用。
当其作为循环冷却水脱盐回收工艺时,可使冷却水中的有害成份得到浓缩排放,并使95%以上的排废水以冷凝液的形式得到回收,作为循环水和锅炉补充水返回系统。
这种工艺对设备材质的要求极高,运行中需消耗大量的热量,存在一次性投入和运行费用极高的缺点,只可能在特别缺水的地区发电厂中采用。
蒸馏法是最早采用的淡化法,其优点是结构简单、操作容易、所得淡水水质好等,但是运行成本高,能耗高,一般企业难以承受如此高的处理费用。
2.2 膜分离近40年来,膜分离技术已迅速发展成为工业循环冷却水系统中旁流处理中最重要、最广泛采用的新型高效节能分离单元技术,电渗析(ED)、反渗透(RO)、微滤(MF)、超滤(UF)、纳滤(NF)和渗透汽化(PV)等膜技术相继发展,并成为集成处理技术系统中的关键技术。
主要膜分离技术简述如下:2.2.1反渗透膜技术反渗透膜技术是以渗透压差作为推动力的一类膜分离过程。
依据各种物料的不同渗透压,通过RO膜技术达到分离提取、纯化与浓缩的目的。
RO技术的最大优点是节能,其能耗仅为电渗析的1/2,蒸馏技术的1/40,而且能够达到深度除盐目的。
近年来,随着膜分离技术的快速发展,工程造价和运行成本持续降低,RO膜技术已逐渐取代传统的离子交换、电渗析除盐技术,成为工业水系统中首选除盐技术。
RO膜技术今后主要发展趋势是降低RO膜的操作压力,提高RO系统纯水产率和浓缩回收率,以及廉价高效预处理技术,增强膜组件抗污能力等。
尤其近年来,在电厂循环冷却水脱盐回用领域,集成膜工艺已成为主要发展方向,其中“UF+RO”双膜工艺已成为电厂深度除盐的主导技术。
2.2.2电渗析技术电渗析技术是以电位差作为推动力的一类膜分离过程。
在外加直流电场作用下,利用荷电离子膜的反离子迁移原理使水中阴阳离子做定向迁移,从水溶液及其它不带电组份中分离带电离子组份。
ED技术作为脱盐,在20世纪70~90年代得到广泛应用,但由于ED只能部分除盐,不能满足许多工业领域深度除盐的技术需求且电耗高。
因此,近年来已逐渐被反渗透膜技术所替代。
2.2.3纳滤膜技术与RO相比,NF技术的操作压力较低(0.5-1.0MPa),节能效果显著。
因此NF技术又称低压RO技术,是介于RO和UF之间的一种亲水性膜分离过程,适宜分离分子量在200-1000 Daltons(1Daltons=1.65×10-24g),分子大小约为1nm溶解组份的膜工艺。
由于NF膜具有松散的表面层结构,存在氨基和羧基两种正负基团,具有离子选择性,一价离子可基本完全透过,对二价和高价离子具有较高截留率,可去除约80%的总硬度、90%的色度和几乎全部浊度及微生物,因此,NF的软化功能近年引起重视,在工业循环冷却水的排废水回用处理中具有良好的应用前景。
2.3 生物处理生物处理法包括活性污泥法、SBR工艺、生物接触氧化法、厌氧生物处理法以及耐盐细菌法等。
活性污泥法是广泛应用于城市污水和工业废水的生物处理方法之一,它主要是利用活性污泥为主体的污水生物处理法。
活性污泥就是由微生物与悬浮物质、胶体物质混杂在一起所形成的具有很强吸附、分解有机物的能力和良好的沉降性能的絮状颗粒。
通过驯化活性污泥筛选出具有良好有机物降解性能的耐盐微生物是处理含盐废水的重要前提。
间歇式活性污泥法(SBR)又称序批式活性污泥法,是一种有别于传统活性污泥法的废水工艺。
它是一种结构形式简单、运行方式灵活多变、空间上完全混合、间歇操作为主要特征的污水处理生物方法。
生物接触氧化法就是在池内填充惰性填料,利用机械装置向水体中充氧气,将已经充氧曝气的污水浸没并流经全部填料,固定在填料上的微生物利用新陈代谢作用将污染物去除的工艺。
厌氧生物处理是指在无氧情况下,利用兼性厌氧菌和专性厌氧菌的生物化学作用,对废水中的有机物进行生化降解过程。
普通生物法大多只能处理含盐量为3%以下的废水,而对高盐废水(含盐量5%以上)难以处理,因此需要特殊的微生物。
嗜盐细菌本身需要盐度才能生存,同时具有和传统微生物相同的代谢功能,可以利用许多有机物(包括难降解和有毒物质)作为碳源。
因此利用嗜盐细菌处理高含盐量有机化工废水有广阔的前景和意义。
生物处理技术因其经济、高效而被广泛地应用于污水处理中,但盐度过高时,会破坏微生物的细胞膜和菌体内的酶,对微生物的生长产生抑制作用,从而使废水无法达到理想的处理效果。
一些企业采用将进水进行稀释的方法,使盐度降低到微生物能够承受的范围,这种方法简单,易于操作和管理;但是会增加处理规模、基建投资以及运行费用,同时造成大量水资源的浪费。
适应于淡水环境的微生物在受到高盐度废水冲击时,其正常新陈代谢功能会受到抑制。
但在高盐环境中,微生物会通过自身的渗透压调节机制来平衡细胞内的渗透压或保护细胞内的原生质,因此通过选择培养可以驯化出耐高盐度的菌种。
2.4 电吸附电吸附技术是利用带电电极表面吸附水中离子及带电粒子,使水中溶解盐类及其他带电物质在电极的表面富集而实现水的净化/淡化的一种新型水处理技术。
原水从一端进入阴阳极组成的空间,从另一端流出。
原水在阴、阳极之间流动时受到电场的作用,水中带电粒子分别向带相反电荷的电极迁移,被该电极吸附并储存在双电层内。
随着电极吸附带电粒子的增多,带电粒子在电极表面富集,最终实现与水的分离,使水中的溶解盐类及其他带电物质滞留在电极表面,获得净化/淡化的出水。
EST具有运行成本低、应用范围广、操作方便、可靠、几乎无须检修以及不产生任何导致环境污染的二次排放物等优点,因而以EST模块为核心组装而成的处理装置适用于工业水除盐和软化、饮用水除盐等。
3. 可行性方案3.1 各种方法的比较3.2 实验室可行性方法综合以上列举的方法,比较其优缺点后并且根据实验室的条件可以预想出可行性的方案,对比结果表明:反渗透与电吸附更适合用来作为实验室高盐去除的研究方法,鉴于这两种方法的优缺点,考虑到经济成本,电吸附的特点决定了其更适合作为小试的研究方法。
除盐率的提高可以通过串联多个EST模块实现,并且如果处理的是碱性高盐废水,其对EST模块的腐蚀作用也可以忽略不计。
自生时间较长相对于实验室规模而言并不是主要影响条件。