热力学统计物理

合集下载

热力学和统计物理学

热力学和统计物理学

热力学和统计物理学
热力学和统计物理学是研究物质在宏观和微观层面上的性质和行为
的两个重要领域。

热力学主要关注宏观系统的热力性质,如温度、压力、热容等,而统计物理学则致力于从微观粒子的运动状态和相互作
用出发,揭示宏观系统的特性。

热力学是一个古老而又富有活力的学科,其发展与工业革命密不可分。

早在18世纪,人们就开始研究气体的性质和行为,提出了热力学
的基本概念和定律。

热力学通过研究能量转化的规律、热机效率等内容,为工程技术的发展提供了重要理论基础。

在19世纪末,热力学经
历了一次重大的革新,从宏观层面向微观层面延伸,建立了统计物理
学的基础。

统计物理学则是在热力学的基础上发展而来的,它更加深入地探讨
了物质的微观结构和性质。

统计物理学通过统计方法研究大量微观粒
子的运动规律和相互作用,揭示了物质在不同条件下的相变行为、热
容等性质。

统计物理学的研究领域涉及到固体、液体、气体等各种物
质状态,对于理解物质的性质和行为具有重要意义。

热力学和统计物理学的发展一直都是相辅相成的。

热力学提供了宏
观系统的描述和规律,为理解热力学系统的微观机制奠定了基础;而
统计物理学则通过微观粒子的模型和统计方法,揭示了宏观系统的行
为规律,为热力学的应用提供了更深刻的理论支持。

总的来说,热力学和统计物理学是研究物质性质和行为的两大支柱,二者相辅相成,相互促进。

通过深入研究热力学和统计物理学,人们
能够更好地理解自然界和人造系统的运行规律,为未来的科学研究和工程技术的发展提供有力支持。

热力学和统计物理的基本概念

热力学和统计物理的基本概念

热力学和统计物理的基本概念热力学和统计物理是物理学中两个重要的分支,它们对于理解和描述物质的性质以及自然界中的各种现象都起到了至关重要的作用。

本文将介绍热力学和统计物理的基本概念,帮助读者更好地理解这两个领域。

一、热力学的基本概念热力学是研究能量转化和宏观物质性质的科学,是物理学的一门重要分支。

它通过研究能量转化过程和各种宏观现象来揭示物质内部的各种规律。

以下是热力学中的一些基本概念:1. 系统系统指的是热力学研究的对象,可以是一个单独的物体、一个容器中的气体或者一个宏观物质系统。

热力学研究的目标是分析系统中能量的转化和宏观性质的变化。

2. 状态系统在一定条件下的特定性质和状态称为系统的状态。

例如,气体系统的状态可以由温度、压力和体积等参数来描述。

3. 热力学定律热力学定律是热力学的基本原理,可以帮助我们理解能量转化的规律。

包括能量守恒定律、热传导定律、热机定律和熵增定律等。

4. 热力学过程系统从一个状态到另一个状态的整个变化过程称为热力学过程。

常见的热力学过程包括等温过程、绝热过程、等压过程和等容过程等。

二、统计物理的基本概念统计物理是描述物质微观粒子运动规律以及宏观宏观现象的科学,它通过建立微观粒子的统计模型来揭示物质的宏观性质。

以下是统计物理中的一些基本概念:1. 微观粒子统计物理研究的对象是物质的微观粒子,如原子、分子和电子等。

通过研究微观粒子的运动和相互作用规律,可以揭示物质宏观性质的起源。

2. 统计模型统计物理使用统计模型来描述物质的微观状态和宏观性质之间的关系。

常用的统计模型包括玻尔兹曼分布、麦克斯韦-玻尔兹曼分布和费米-狄拉克分布等。

3. 热力学极限热力学极限是指在大量粒子数下,统计物理中的微观规律将会近似等同于热力学中的规律。

热力学极限的出现使得统计物理和热力学之间建立了密切的联系。

4. 统计力学统计力学是研究宏观系统平衡态和非平衡态的统计规律以及宏观性质的科学。

它基于统计物理理论,通过分析微观粒子的运动和相互作用来推导宏观性质的统计规律。

热学热力学与统计物理

热学热力学与统计物理

热学热力学与统计物理热学热力学与统计物理在物理学领域中,热学和热力学是研究热能和温度如何影响物体性质变化的学科。

而统计物理则是运用统计学方法,研究物质内部微观粒子的运动规律,从而推导出宏观物理规律的一门学科。

1. 热学和热力学热学和热力学是两个密切相关的学科。

热学通常是指对热量的研究,而热力学则更加注重于物质在温度变化下的特性。

热能是指分子之间的运动能量,而温度是热能的一项测量指标。

热学和热力学的概念贴近我们日常的生活,如理解我们所处的环境温度和热量传播等。

2. 统计物理统计物理则是研究物质内部微观粒子的运动规律,从而推导出宏观物理规律的一门学科。

统计物理的发展来源于固体、液体、气体等物质的性质,由此得出物质之间的概率关系。

它运用概率、统计学等方法,探讨宏观世界的物理规律。

统计物理涉及到许多理论,如热力学第二定律、玻尔兹曼分布律等重要理论。

3. 热学热力学和统计物理的关系热学热力学和统计物理都是研究物质的性质,但是角度不同。

从宏观上看,物体的温度、热容和饱和蒸汽压等的测量和计算,都是热学和热力学的范畴。

而统计物理则是从微观角度出发,研究分子的运动,以及统计规律。

比如从分子的角度看,热力学第二定律实际上是分子随机运动时候,不可能所有分子都自发向热量较小处流动,这就是宏观上温度从高到低的流动,所以热力学第二定律其实是由大量微观的统计规律所决定的。

综上所述,热学热力学和统计物理虽然不同,但在探讨物质性质的不同时期和角度下,对于我们对自然规律的认识有很大的贡献。

物理学中的热力学与统计物理理论

物理学中的热力学与统计物理理论

物理学中的热力学与统计物理理论热力学和统计物理学是物理学两个重要分支领域。

热力学主要研究热、功以及它们之间的关系,而统计物理学则是将微观粒子的运动方式和定量的统计方法结合起来,将宏观现象与微观世界联系起来,从而解释了许多宏观现象。

热力学和统计物理学分别从不同角度解释了物质与能量之间的关系,并在工业、材料等领域得到广泛应用。

首先,我们来了解一下热力学。

热力学研究的是热量和功以及它们之间的关系。

热量是能量的一种形式,它是由于温度差使得能量在物体之间传递的结果。

热力学第一定律告诉我们,它们之间是可以相互转换的,能量不会被消灭。

而功则是一种对物体施加的能量,会使物体发生运动或变形。

热力学第二定律则说明了热量的流动方向只能从高温物体向低温物体,热力学第三定律则是在温度趋向于绝对零度时,物体的熵趋近于零。

接下来,我们来谈一谈统计物理学。

统计物理学是将微观粒子的运动方式和定量的统计方法结合起来,将宏观现象与微观世界联系起来。

一个系统的热力学性质,比如温度、熵、压力等,很多时候可以通过大量的微观粒子的统计来得到。

比如系统的温度可以通过测量大量分子的平均动能获得,系统的熵可以通过分子在不同状态下的组合数来计算。

统计物理学在对系统物理性质进行预测方面发挥了很大作用。

总的来说,热力学是研究宏观物理现象的科学,而统计物理学是研究微观粒子特性的科学。

尽管两者研究的角度不同,但是在物理理论和应用方面都发挥了非常重要的作用。

在应用方面,热力学和统计物理学在工业、材料等领域都有广泛的应用。

在生产过程中,控制物体的温度、压力、湿度等参数,可以增加生产效率,提高产品质量。

在能源领域,利用热力学的原理可以生产出大量的电力,而统计物理学则可以解释材料的物理特性和性质变化规律。

总之,热力学和统计物理学是物理学两个重要分支的基础理论。

虽然从不同的角度出发,但是都在理解物质与能量之间的关系以及解决实际问题中发挥着重要的作用。

热力学与统计物理总结

热力学与统计物理总结

热力学与统计物理总结简介热力学与统计物理是研究物质宏观性质与微观粒子行为之间关系的学科。

热力学研究物质的热学性质,如温度、压力、热量等,并给出了一系列基本定律;统计物理则通过对大量微观粒子的统计分布来揭示物质的宏观性质。

热力学基本定律热力学的基本定律是研究物质热学性质的基础,常用的有以下四个定律:1.第一定律:能量守恒定律。

能量在物理和化学变化过程中,既不能创造也不能消灭,只能由一种形式转化为另一种形式。

2.第二定律:熵增定律。

孤立的热力学系统中,熵不断增加,且在可逆过程中熵不变,可逆过程是指无摩擦、无阻力的过程。

3.第三定律:绝对零度不可达定律。

无限远温度下凝固的时候,熵趋于0,达到绝对零度是理论上不可达到的。

4.第零定律:温度的等温性。

当两个物体与一个第三物体都达到热平衡时,这两个物体之间也必定达到热平衡,即温度相等。

统计物理基本原理统计物理是通过对大量微观粒子的统计行为研究物质的宏观性质。

主要包括以下几个基本原理:1.统计假设:假设大量粒子的运动遵循统计规律,可用概率进行描述。

2.巨正则系综:描述粒子和热平衡与热脱平衡之间的关系。

3.等概率原理:在能量等概率的微观态中,一个系统在各个可能的微观态上出现的概率是相等的。

4.统计特性:研究粒子的统计性质,如分布函数、平均值等。

热力学与统计物理的关系热力学和统计物理是相辅相成的学科,热力学通过实验和观察,总结出了一系列定律和规律;而统计物理则通过对微观粒子的统计行为进行分析和计算,从微观层面揭示了这些定律和规律的产生机制。

热力学的基本定律是从宏观角度看待系统的性质,而统计物理则是从微观角度看待系统的性质。

统计物理给出了基本的统计规律,研究了粒子的分布函数、平均能量等,而热力学则从中总结出了熵增定律、能量守恒定律等基本定律。

可以说,热力学是统计物理的应用,而统计物理则是热力学的基础。

应用领域热力学与统计物理广泛应用于各个科学领域,主要包括以下几个方面:1.材料科学:热力学与统计物理研究材料的热学性质、相变等,对材料的设计和制备有重要指导作用。

统计物理简介热力学

统计物理简介热力学


2m

3
对于给定能量的状态,在相空间为5维“曲面”
(二)线性谐振子
线性谐振子:经典力学中,质量为m 的粒子在弹性 力F = -kx 作用下,将在原点附近作简谐振动,称为 线性谐振子. 振动的圆频率
dx2 A x0 2 dt m A 2 m
Am
dx2 2 x dt 2
1907年P.Weiss发展了铁磁-顺磁相变的分 子场理论; L. Landau提出了第二类相变的平均场理论; 1944,Onsager才给出了二维Ising模型的 严格解; 1966年,L. Kadanoff 提出标度理论; 70年代初,K. Wilson 将量子场论中重整化 群方法与标度变换相结合,开创了一条研究相 变和临界现象的新途径(19h Clausius (1822-1888) 在“论热运动形式”(1857)一 文中指出,气体的平移运动同 器壁的碰撞产生了气体的压 力.第一次明确地运用了统计 概念,从大量分子的碰撞的平 均,推出了气体的压强公式.
德国物理学家,热力学奠基人之一. 1840年入柏林大学;1847 年获哈雷大学哲学博士学位;1850年因发表论文《论热的动力以 及由此导出的关于热本身的诸定律》而闻名;1855年任苏黎世工 业大学教授;1867年任德意志帝国维尔茨堡大学教授;1869年起 任波恩大学教授。
q1 , q2 ,qr;p1 , p2 , pr
共2r 个变量为直角坐标,构成 一个2r 维空间,称为μ空间.
粒子运动状态
q, p
代表点
相轨迹:代表点在µ 空间随时间移动,描
绘出的曲线(注意不是粒子运动轨迹)
相体积(粒子在µ 空间占的体积),数值上等于坐 标空间体积乘以动量空间体积

热力学和统计物理

热力学和统计物理一、基本概念1. 热力学- 系统与外界- 热力学研究的对象称为系统,系统以外与系统有相互作用的部分称为外界。

例如,研究气缸内气体的性质时,气缸内的气体就是系统,气缸壁、活塞以及周围的环境等就是外界。

- 平衡态- 一个孤立系统经过足够长的时间后,宏观性质不再随时间变化的状态称为平衡态。

例如,将一个盛有热水的容器放在绝热环境中,经过一段时间后,水的温度不再变化,水就达到了平衡态。

平衡态可以用一些宏观参量来描述,如压强p、体积V、温度T等。

- 状态参量- 用来描述系统平衡态的宏观物理量称为状态参量。

- 几何参量:如体积V,它描述了系统的几何大小。

对于理想气体,体积就是气体分子所能到达的空间范围。

- 力学参量:压强p是典型的力学参量,它是垂直作用于容器壁单位面积上的力。

- 热学参量:温度T是热学参量,它反映了物体的冷热程度。

从微观角度看,温度与分子热运动的剧烈程度有关。

2. 统计物理- 微观态与宏观态- 微观态是指系统内每个粒子的微观状态(如每个粒子的位置、动量等)都确定的状态。

而宏观态是指由一些宏观参量(如压强、体积、温度等)确定的状态。

一个宏观态往往包含大量的微观态。

例如,对于一个由N个粒子组成的气体系统,给定气体的压强、体积和温度,这就是一个宏观态,但这些粒子的具体位置和动量有多种可能组合,每一种组合就是一个微观态。

- 等概率原理- 对于处于平衡态的孤立系统,系统各个可能的微观态出现的概率相等。

这是统计物理的一个基本假设。

二、热力学定律1. 热力学第零定律- 如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,则这两个系统彼此也必定处于热平衡。

这一定律为温度的测量提供了依据。

例如,我们可以用温度计(第三个系统)去测量不同物体(两个系统)的温度,当温度计与物体达到热平衡时,就可以确定物体的温度,并且如果两个物体与同一温度计达到热平衡,那么这两个物体之间也处于热平衡,它们具有相同的温度。

热力学与统计物理学

热力学与统计物理学热力学是物理学的一个分支,它研究系统的宏观能量转移和转化的规律,特别关注热量的行为和其在不同系统中的表现。

而统计物理学则探讨如何从微观系统的行为推导出宏观现象。

这两门学科虽然教授的内容和观点不同,但严密地交织在一起,为我们理解物质的独特性及其在多种环境中的行为提供了有效的理论框架。

1. 热力学的基本原理热力学的基础有四大定律:零定律、第一定律、第二定律以及尚存在争议的第三定律。

零定律是热力学温度的理论基础,它陈述:如果两个系统都与第三个系统处于热平衡,那么这两个系统之间也必定处于热平衡。

简单来说,这条定律说明了温度的传递性。

第一定律,也即是能量守恒定律,指出能量无法被创造或销毁,只能从一种形式转化为另一种形式。

这就为研究能量转换和转移提供了理论基础。

第二定律则揭示了自然世界中能量转换与传递的方向性,规定了热量不能从低温物体自发地流向高温物体。

尚有争议的第三定律,是关于物体在绝对零度时的物理性质,此时,物体将达到最低的熵值。

2. 统计物理学的核心思想统计物理学的基础概念是“微观状态”和“宏观状态”。

微观状态是指系统的具体状态,包括所有粒子的位置和动量。

而宏观状态则是热力学系统可观测到的宏观量,例如温度、压强等。

微观状态和宏观状态之间的关联,就是统计物理学的核心内容。

例如,玻尔兹曼分布定律就是一个体现这一核心内容的公式,它描述了微观粒子与宏观热力态量之间的统计关联。

3. 热力学与统计物理学的交汇热力学与统计物理学虽有不同的研究角度,但在许多地方有紧密的联系。

通过统计方法描述的微观粒子集合,在宏观上往往表现出热力学性质。

同时,只有通过统计物理学,我们才能够理解热力学的基本原理的物理起源。

举例来说,熵在热力学中被定义为封闭系统自发二变化的程度,而在统计物理中则被解释为微观状态的数目。

总结来说,热力学省略了微观层面的混乱和复杂性,仅关注宏观结果;而统计物理学则揭示了这些宏观现象背后的微观机制。

热力学与统计物理

第一章 热力学的基本规律1.热力学的平衡状态⑴热力学的研究对象是由大量微观粒子组成的有限宏观系统.与系统发生相互作用的其他物体称为外界.按照系统与外界的相互作用状态,可将系统分为以下三种: ①孤立系:与外界既不发生质量交换,也不发生能量交换的系统; ②闭系:可与外界发生能量交换,而不发生质量交换的系统; ③开系:可与外界发生能量、质量交换的系统.⑵热力学平衡态:当一个孤立系经过足够长的时间,将会达到这样一种状态,在这种状态下,系统的各种宏观性质在长时间内部发生变化,称之为热力学平衡态.⑶状态参量:在热力学平衡态下,系统的各种宏观性质不再变化而拥有固定值,用这些固定值就可以确定系统的宏观状态.一般情况下,描述一个系统的状态参量有:热学参量温度T 、几何参量体积V 、力学参量压强p 和电磁参量D 、H .2.物态方程⑴描述系统的状态参量之间关系的方程称为物态方程,以简单的固液气系统为例,其物态方程可表示为:另外,定义几个与物态方程有关的物理量: ①等压膨胀系数:pT V V ⎪⎭⎫ ⎝⎛∂∂=1α; ②等容压力系数:VT p p ⎪⎭⎫ ⎝⎛∂∂=1β; ③等温压缩系数:Tp V V k ⎪⎪⎭⎫ ⎝⎛∂∂-=1τ. 根据物态方程,可得关系式:1-=⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂p V T V T T p p V ;故可得三个系数之间的关系为:p k βατ=.⑵气体的物态方程①理想气体状态方程:T Nk pV B =. ②实际气体的范德瓦尔斯方程:()nRT nb V V an p =-⎪⎪⎭⎫ ⎝⎛+22, 其中22Van 为压强修正项,nb 是体积修正项;⑶简单固体与液体的物态方程对于简单固体和液体,可通过实验测得体胀系数α和等温压缩系数τk ,它们的特点如下: ①固体和液体的膨胀系数是温度的函数,与压强近似无关;②α和τk 的数值都很小,在一定的温度范围内可以近似看成常量; 由此可得,物态方程为: ()()()()[]000001,,p p k T T p T V p T V ---+=τα;⑷顺磁性固体将顺磁性固体置于磁场中,顺磁性固体会被磁化;磁化强度M ,磁场强度H 与温度T 的关系: ()0,,=T H M f ;①实验测得一些顺磁性固体的磁物态方程为:H TCM =; ②另一些顺磁性固体的磁物态方程为:H T CMθ-=, 其中,C 和θ是常量,其数值因不同的物质而异; 3.功⑴气体准静态过程的体积功:pdV W -=δ;⑵液体表面张力做功:dA W σδ=,σ为单位长度的表面张力;⑶电介质准静态过程中电位移改变dD 时外界所作的功为:VEdD W =δ; 磁介质准静态过程中磁感应强度改变dB 时外界所作的功:VHdB W =δ; 4.热力学第一定律若系统经历一个无穷小的过程,则系统内能的增量与外界做功和外界传热的关系为:W Q dU δδ+=; 热力学第一定律表明,做功与热量传递在改变系统内能上是等效的; 5.热容与焓⑴热容:一个系统温度升高K 1所吸收的热量,即TQC T ∆∆=→∆0lim,热容是一个广延量,用m c 表示mol 1物质的热容,成为摩尔热容;⑵系统在等容过程的热容用符号V C 表示:VV T V T U T U C ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∆∆=→∆0lim ;⑵系统在等压过程中的热容用符号p C 表示:pp p T p T p p T U T pdV U C ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∆+∆=→∆0lim ;引入状态函数焓:pV U H +=,则有pp T H C ⎪⎭⎫ ⎝⎛∂∂=;6.气体的内能⑴从微观角度看,在没有外场的情形下,气体无规则运动的能量包括分子的动能、分子之间相互作用的势能以及分子内部运动的能量;⑵根据焦耳的自由膨胀实验,理想气体的内能只是温度的函数,与体积无关,即从微观上看,理想气体的内能只是分子的动能;于是可得:①dT dU C V=;dTdHC p =; ②⎰+=dT C U U V 0;⎰+=dT C H H p 0;根据焓的定义:nRT U pV U H +=+=,可得nR C C V p +=,再设V p C =γ,得:1-=γnR C V ,nR C p 1-=γγ迈耶公式; 7.理想气体的准静态过程 ⑴等温过程:const pV =; ⑵等容过程:const Tp=;⑶等压过程:const T V=; ⑷绝热过程:const pV =γ;注:系数γ可通过测定空气中的声速获得;声音在空间中传播时,介质空间会发生周期性的压缩与膨胀,自然导致压强的变化;由于气体的导热系数很小,因此在声音传播过程中,热量传导很难发生,故可认为是绝热过程,因此根据牛顿的声速公式ρd dpa =可得 其中ρ为气体密度,ρυ1=为单位质量气体的体积;8.热力学第二定律⑴克劳修斯表述:不可能把热量从低温物体传到高温物体而不引起其它变化;⑵开尔文表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其它变化;热力学第二定律的开尔文表述表明,第二类永动机不可能造成;所谓第二类永动机是指能够从单一热源吸热,使之完全变成有用功而不引起其它影响的机器; 9.卡诺循环与卡诺定理 ⑴卡诺循环:卡诺循环过程以理想气体为研究对象研究热功转化的效率问题,由两个等温过程和两个绝热过程组成;在整个循环中,气体从高温热源吸收热量,对外做功,其效率为:1212111T T Q Q Q W -=-==η; ⑵卡诺定理:所有工作于两个一定温度之间的热机,以可逆机的效率为最高;推论:所有工作于两个一定温度之间的可逆热机的效率相等;⑶根据卡诺定理,工作于两个一定温度之间的热机的效率不可能大于可逆热机的效率,即由此可得克劳修斯不等式:02211≤+T Q T Q ,等号只适用于可逆循环过程 其中1Q 为热机从高温热源吸收的热量,2Q 也定义为热机从低温热源吸收的热量数值为负数; 将克劳修斯不等式推广到n 个热源的情形,可得:0≤∑i iiT Q , 对于更普遍的循环过程,应将求和号换成积分号,即0≤⎰TQδ;10.熵与热力学基本方程⑴根据克劳修斯不等式,考虑系统从初态A 经可逆过程R 到达终态B ,又从状态B 经另一可逆过程'R 回到状态A ;在上述循环过程中,有 可见,在可逆循环过程中,⎰T dQ与路径无关,由此定义状态函数熵S ,从状态A 到状态B 的熵变定义为:注:仅对可逆过程,⎰T dQ才与路径无关;对不可逆过程,B 和A 两态的熵变仍沿从A 态到B 态的可逆过程的积分来定义;在这种情形下,可逆过程与不可逆过程所引起的系统状态变化相同,但外界的变化是不同的;对前面熵变等式取微分:TQdSδ=,表示无穷小的可逆过程中的熵变;⑵根据热力学第二定律,可得可逆过程中TdS Q =δ,结合热力学第一定律可得热力学的基本微分方程:若系统与外界之间除了体积功,还有其他形式的功,可将上式表示为 ⑶热力学第二定律的数学表示:pdV TdS dU -≤,注:根据克劳修斯不等式和熵的定义,可知在任意无穷小过程中,Q TdS δ≥;⑷熵增加原理:系统在绝热条件下,熵永不减少,即0≥-A B S S 等号只适用于可逆过程;11.自由能与吉布斯函数⑴约束在等温条件下的系统,定义状态函数:TS U F -=;根据热力学第二定律可得,等温条件下pdV dF -≤,表明在等温条件下,系统自由能的增加量不大于外界对系统做的功;在等温等容过程中可得:0≤dF ,即等温等容条件下,系统的自由能永不增加,或者表述为在等温等容条件下的不可逆过程朝着使系统自由能减少的方向进行;⑵约束在等压条件下的系统,定义状态函数:pV TS U G +-=;同理可得:等温等压条件下,0≤dG ,即等温等压条件下,系统的吉布斯函数永不增加,或者表述为等温等压条件下的不可逆过程朝着使系统吉布斯函数减少的方向进行;第二章 均匀物质的热力学性质1.内能、焓、自由能和吉布斯函数的全微分⑴热力学基本方程即为内能的全微分形式:pdV TdS dU -=, 根据偏导数关系可得:VS S p V T ⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂①; 内能的确定:dV p T p T dT C dUV V ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛∂∂+=;注:熵的确定:dV T p dT T C dS VV ⎪⎭⎫⎝⎛∂∂+=;⑵焓的全微分形式为:Vdp TdS dH +=,同理可得:p S S V p T ⎪⎭⎫⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂②;焓的确定:dp T V T V dT C dH p p ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂++=; 注:熵的确定:dp T V dT T C dS pp ⎪⎭⎫⎝⎛∂∂-=;⑶自由能的全微分形式为:pdV SdT dF --=,同理可得:VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂③;⑷吉布斯函数的全微分形式为:Vdp SdT dG +-=,同理可得:p TT V p S ⎪⎭⎫⎝⎛∂∂-=⎪⎪⎭⎫⎝⎛∂∂④; 其中,式①②③④称为麦克斯韦关系;2.气体的节流过程和绝热膨胀过程⑴气体从高压处通过多孔塞不断地流到低压处,并达到定常状态,这个过程叫做节流过程;在节流过程中,多孔塞两边的温度发生了明显变化,这个效应称为焦耳-汤姆孙效应; 经分析得,在节流过程中,气体的焓值不断,定义Hp T ⎪⎪⎭⎫⎝⎛∂∂=μ表示焓不变条件下,温度随压强的变化率,则根据1-=⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫⎝⎛∂∂T p H H p T H p T 可得: 上式给出了焦汤系数与物态方程和热容的关系;①对理想气体,T1=α,故0=μ,说明理想气体在节流过程前后温度不变; ②对实际气体,若1>T α,则气体在节流过程前后温度降低,称为制冷区;若1<T α,则气体在节流过程前后温度升高,称为制温区;利用节流过程的降温作用可使气体降温液化节流膨胀制冷效应; ⑵气体的绝热膨胀过程,熵保持不变,则定义Sp T ⎪⎪⎭⎫⎝⎛∂∂表示绝热过程中温度随压强的变化率,同上可得,上式表明,在绝热条件下,随着气体体积膨胀和压强降低,气体的温度必然下降;气体的绝热膨胀过程可用来使气体降温并液化绝热膨胀制冷效应; 3.热辐射的热力学理论⑴受热的固体会辐射电磁波,称为热辐射;一般情形下,热辐射的强度和强度随频率的分布于辐射体的温度和性质都有关;当辐射体对电磁波的吸收和辐射达到平衡,热辐射的特性将只取决于温度,与辐射体的其他特性无关,称为平衡辐射;⑵考虑一个封闭的空窖,窖壁保持一定的温度T ;窖壁将不断向空窖发射并吸收电磁波,当窖内辐射场与窖壁达到平衡后,二者具有相同的温度,显然空窖内的辐射就是平衡辐射;窖内的平衡辐射包含各种频率和沿着各个方向的电磁波,这些电磁波的振幅和相位是无规的;窖内平衡辐射是空间均匀和各项同性的,它的内能密度和内能密度按频率的分布只取决于温度; ⑶电磁理论中,关于辐射压强与辐射能量密度的关系为:u p 31=;由此根据热力学公式可得窖内平衡辐射的热力学函数为:4aT u =.⑷根据热力学基本方程,可得空窖辐射的熵为:V aT S 334=, 由上式可知,可逆绝热过程中辐射场的熵不变,此时有const V T =3.⑸若在窖壁上开一小孔,定义单位时间通过小孔的单位面积辐射出的能量,称为辐射能量密度u J .描述辐射能量密度u J 与辐射内能密度u 的关系称为斯特藩—玻尔兹曼定律,即444141T caT cu J u σ===,其中σ称为斯特藩常量. ⑹基尔霍夫定律:()ωωαωωωd T u cd e ,4=,其中,ωe 称为物体对频率在ω附近的电磁波的面辐射强度;ωα为物体对频率在ω附近的辐射能量的吸收系数.注:吸收系数为1的物体称为绝对黑体,此时有()ωωωωd T u cd e ,4=.4.磁介质的热力学⑴磁介质中磁场强度和磁化强度发生改变时,外界所做的功为:VHdMH Vd W 02021μμδ+⎪⎭⎫ ⎝⎛=,当热力学系统只包括介质而不包括磁场时,功的表达式只取第二项,即Hdm W 0μδ=, 其中,MV m =是介质的总磁矩.忽略磁介质的体积变化,可得热力学基本方程为,Hdm TdS dU 0μ+=,类比于理想气体,即H p 0μ→-,m V →.⑵绝热去磁制冷:根据吉布斯函数mdH SdT dG 0μ--=,可得:H T C CV H T HS 0μ=⎪⎭⎫⎝⎛∂∂, 上式说明,在绝热条件下减小磁场,磁介质的温度降低,称为绝热去磁制冷效应.第三章 单元系的相变 1.热动平衡判据⑴孤立系统的熵判据:0<∆S或0,02<=S S δδ熵增加原理;⑵等温等容系统的自由能判据:0>∆F 或0,02>=F F δδ等温等容系统自由能永不增加;⑶等温等压系统的吉布斯函数判据:0>∆G 或0,02>=G G δδ等温等压系统的吉布斯函数永不增加.⑷均匀系统的热动平衡条件:00,p p T T ==,即整个系统的温度和压强均匀. ⑸平衡的稳定性条件:0,0<⎪⎭⎫⎝⎛∂∂>TV V p C , 注:考虑系统与子系统简的变化,若子系统的温度由于涨落或外界影响而升高,则子系统通过向系统其他部分传热使温度降低;同样,若子系统的体积增大,则子系统与系统其他部分的压强差会使子系统的体积减小,从而使系统的平衡处于稳定. 2.开系的热力学基本方程⑴单元系是指化学上纯的物质系统,只含有一种化学组分.如果系统不是均匀的,可以分为若干个均匀的部分,该系统称为复相系.例如,冰、水和水蒸气共存构成一个单元三相系. ⑵物质的量发生变化的系统,其吉布斯函数的全微分可表示为:dn Vdp SdT dG μ++-=, 其中右方第三项代表由于物质的量改变dn 引起的吉布斯函数的变化. 定义pT n G ,⎪⎭⎫ ⎝⎛∂∂=μ,表示在温度、压强不变的条件下,增加mol 1物质时引起的吉布斯函数的改变,成为化学势.由于吉布斯函数是广延量,可得化学式与摩尔吉布斯函数的关系为:()p T G m ,=μ; 对单位物质的量系统的吉布斯函数可以写为:dp V dT S d m m +-=μ.⑶物质的量发生变化的系统的其他特性函数:①关于()n V S ,,的特性函数为内能,其全微分形式为:dn pdV TdS dU μ+-=; ②关于()n p S ,,的特性函数为焓,其全微分形式为:dn Vdp TdS dH μ++=; ③关于()n V T ,,的特性函数是自由能,其全微分形式为:dn pdV SdT dFμ+--=;④关于()μ,,V T 的特性函数是巨热力势,其全微分形式为:μnd pdV SdT dJ ---=.3.单元复相系的平衡热力学条件考虑一个单元两相系,这个单元两相系构成一个孤立系统.用α和β分别表示这两个相,用αααn V U ,,和βββn V U ,,分别表示两个相的内能,体积和物质的量.孤立系的总内能,总体积和总物质的量是恒定的,即 设想系统发生一个虚变动,引起两相的熵变为:⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=ββαααββαααβααβαμμδδδT T dn T p T p dV T TdU S S S 11, ⑴若复相系处于平衡条件下,则熵为极大值,即0=S δ.由此可得复相系的平衡热力学条件为:βαT T =热平衡条件 ββααTp T p =力学平衡条件ββααμμT T =相变平衡条件⑵若复相系平衡条件未能满足,则系统朝着熵增大的方向转变,即0>S δ.4.单元复相系的平衡性质第六章 近独立粒子的最概然分布1.粒子运动状态的经典描述设粒子的自由度为r ,则粒子的运动状态可用广义坐标和广义动量来描述,粒子的能量是广义坐标和广义动量的函数,即()r r p p q q ,,;,,11 εε=. 为了描述粒子的运动状态,用()r r p p q q ,,;,,11 这r 2变量构成一个r 2维的空间,称为μ空间,粒子在某一时刻的运动状态就表示为μ空间中的一个点.⑴自由粒子自由粒子不受力的作用而在三维空间中做自由运动,自由度为3,它的能量就是它的动能,即()22221zy x p p p m++=ε. ⑵线性谐振子粒子在线性回复力kx F-=的作用下做简谐运动,振动的圆频率为mk =ω.对自由度为1的线性谐振子,任意时刻的能量与粒子的位置和动量有关,即222212x m m p ωε+=.⑶转子粒子绕原点O 做转动,它的能量就是它的动能,可用球坐标表示,即()222222sin 21ϕθθε r r rm ++=. ①若考虑到粒子到原点的距离不变0=r ,则能量表示为: ()22222sin 21ϕθθε r r m +=; ②引入与ϕθ,共轭的动量:ϕθθϕθ 222sin ,mr p mr p ==,可将转子的能量写为: 其中,2mr I =是转子相对于原点的转动惯量.2.粒子运动的量子描述量子力学的观点中,微观粒子满足波粒二象性,有kp ==ωε;波粒二象性的粒子满足不确定关系,即不能同时具有确定的坐标与动量,分别用q ∆和p ∆表示坐标和动量的不确定度,则有h p q ≈∆⋅∆.在量子力学中,微观粒子的运动状态称为量子态,量子态由一组量子数表征,这组量子数的数目等于粒子的自由度数. ⑴线性谐振子圆频率为ω的线性谐振子,能量的可能值为:ωε ⎪⎭⎫ ⎝⎛+=21n n , ,1,0=n ;线性谐振子的自由度为1,n 是表征谐振子运动状态和能量的量子数. ⑵转子量子理论中,转子的能量为:(),1,0212=+=l Il l ,ε量子理论中,转子的角动量是分立的,()221 +=l l L ,对一定的l ,角动量在本征方向的投影z L 只能取分立值:l m m L z ±==,,0, ,转子的运动状态由m l ,两个量子数表征,能量只取决于量子数l ,因此转子的自由度为12+l .⑶自旋角动量基本粒子具有内禀的角动量,称为自旋角动量S,其平方的数值等于()221 +=S S S ,其中S 称为自旋量子数,可以是整数或半整数.自旋角动量的状态由自旋角动量的大小自旋量子数S 及自旋角动量在本征方向的投影确定,其中投影的大小表示为:S m m S S S z ±==,,0, , 因此,自旋角动量的自由度为12+S . ①电子的自旋角动量和自旋磁矩电子的自旋磁矩μ与自旋角动量S 之比为:me S-=μ; 电子在外磁场中的能量为:B me B H 2±=⋅-=μ.⑷自由粒子根据“箱归一化”条件,设自由粒子处于边长为L 的正方体容器中,则自由粒子的三个动量分量z y x p p p ,,的可能值为:,1,0,2,1,0,2,1,0,2±==±==±==z z z y y y x x x n n L p n n L p n n L p πππ;其中,z y x n n n ,,为表征自由粒子运动状态的量子数. 自由粒子能量的可能值为:()222222222221Ln n n m p p p m z y x z y x ++=++= πε, 自由粒子的运动状态由量子数z y x n n n ,,表征,能量只取决于222z y x n n n ++.①若粒子处于宏观大小的容器中运动,这时要考虑在体积3L V =内,在动量区间x x dp p +,y y dp p +和z z dp p +内的自由粒子量子态数:()dp p h V dp dp dp V dn dn dn z y x z y x 2332==π, 再根据m p22=ε,可得处于能量区间εεd +中的粒子状态数为:()()εεπεεd m hV d D 2123322=.3.系统微观运动状态的描述系统的微观运动状态就是它的力学运动状态.①全同粒子组成的系统就是由具有完全相同内禀属性相同的质量、电荷、自旋等的同类粒子组成的系统;②近独立粒子组成的系统是指系统中粒子之间相互作用很弱,系统的总能量等于各个粒子的能量之和,即∑==Ni i E 1ε.⑴系统微观运动状态的经典描述设粒子的自由度为r .第i 个粒子的力学运动状态由()r r p p q q ,,;,,11 这r 2个变量表示,考虑由N 个粒子组成的系统,则系统微观运动状态的确定需要Nr 2个变量,即()N i p p q q ir i ir i ,,2,1,,;,,11 =.单个粒子的运动状态可用μ空间中的一个点表示,则对于整个系统在某一时刻的运动状态可用μ空间中N 点表示.如果交换两个代表点在μ空间中的位置,相应的系统的运动状态是不同的. ⑵系统微观运动状态的量子描述①微观粒子的全同性原理:全同粒子是不可分辨的,在含有多个全同粒子的系统中,将任何两个全同粒子加以交换都不改变整个系统的微观运动状态.②假设全同粒子可以分辨,确定由全同近独立粒子组成的系统的微观运动状态归结为确定每个粒子的个体量子态;若全同粒子不可分辨,则归结为确定每个量子态上的粒子数.③自然界中的粒子分为两类:玻色子和费米子,其中自旋量子数是半整数的属于费米子,自旋量子数是整数的属于玻色子.a.由费米子组成的系统称为费米系统,遵从泡利不相容原理,即在含有多个全同近独立费米子的系统中,一个个体量子态最多可容纳一个费米子;b.由玻色子组成的系统称为玻色系统,粒子是不可分辨的,每个个体量子态可容纳的玻色子个数没有限制.4.分布与微观状态数⑴以() ,2,1=l l ε表示粒子的能级,l ω表示能级l ε的简并度,N 个粒子在各能级的分布如下:能级: ,,,,21l εεε简并度: ,,,,21l ωωω经典粒子表示为: ,,,,21r l r r hh h ωωω∆∆∆ 粒子数: ,,,,21l a a a以符号{}l a 表示系统的一个分布,它给出了系统中每个能级上的粒子数,为了确定系统的微观运动状态,还要清楚l a 个粒子如何占据能级l ε的各个简并态的. 对于具有确定的V E N ,,的系统,分布{}l a 满足约束条件:∑=ll a N ,∑=ll l a E ε⑵对于玻尔兹曼系统,粒子是可分辨的,且每个量子态上可容纳的粒子数没有限制,因此可以得到与分布{}l a 相应的系统的微观状态数为:∏∏=Ωla l ll B M l a N ω!!,, 其中最概然分布为:le a l l βεαω--=,其中βα,由约束条件∑∑----==ll l l ll le E e N βεαβεαεωω,确定.⑶对于玻色系统,粒子是不可分辨的,每个量子态上可容纳的粒子数没有限制,因此可得与分布{}l a 相应的系统微观状态数为:()()∏--+=Ωll l l l E B a a !1!!1,ωω, 其中最概然分布为:1-=+le a ll βεαω.⑷对于费米系统,粒子不可分辨,每个量子态上只能容纳一个粒子,因此可得与分布{}l a 相应的微观运动状态数为:()∏-=Ωll l l l D F a a !!!,ωω,其中最概然分布为:le a llβεαω++=1.注:对于三种系统的最概然分布,若满足条件11<<>>lla e ωα或,则玻色分布和费米分布近似于玻尔兹曼分布,这个条件称为经典极限条件或非简并性条件.⑸考虑个体量子态问题或者平均粒子数问题,设处在能量s ε的量子态s 上的粒子数为s f ,则各种系统的最概然分布可表示为:玻尔兹曼系统:se f s βεα--=玻色系统:11-=+s e f s βεα;费米系统:sef s βεα++=11. 第七章 玻尔兹曼统计1.热力学量的统计表达式定域系统和满足经典极限条件的玻色系统和费米系统都满足玻尔兹曼分布. 定义配分函数:∑-=ll l e Z βεω1或积分形式()⎰-⋅=r r p p q q rr r e h dp dp dq dq Z ,;,011111βε则系统的热力学量的统计表达式如下: ⑴内能:由玻尔兹曼分布的内能表达式∑--=lll le U βεαεω,可得:1ln Z NU β∂∂-=. ⑵外界对系统的广义作用力Y 为:1ln Z yN a y Y l ll ∂∂-=∂∂=∑βε. ⑶熵的统计表达式:⎪⎪⎭⎫ ⎝⎛∂∂-=11ln ln Z Z Nk S ββ. 2.理想气体的状态方程①利用统计力学求解热力学问题,首先要找到配分函数. 理想气体的配分函数为:②然后,再利用热力学量的统计表达式,得到相关热力学量: 3.麦克斯韦分布律根据玻尔兹曼分布,可以推导出麦克斯韦分布律气体分子的速度分布律.⑴以理想气体为研究对象,气体分子为自由粒子.在体积为V 的容器中,分布在动量区间z y x dp dp dp 内的微观状态数为:z y x dp dp dp h V3; 则分布在z y x dp dp dp 内的分子数为:而气体分子的总数为:因此可得,动量在z y x dp dp dp 范围内的分子数为:以VNn =表示单位体积内的分子数,则在单位体积内,速度在z y x dv dv dv 内的分子数为: ()()z y x v v v kT mz y x z y x dv dv dv ekT m n dv dv dv v v v f z y x 2222232,,++-⎪⎭⎫ ⎝⎛=π, 上式便是麦克斯韦速度分布律,其中()z y x v v v f ,,满足:()n vdv dv v v v f zy xzyx=⎰⎰⎰,,.⑵利用速度空间的球坐标转化,可得速率分布律:()dv v ekT m n dv v f mv kT 22123224-⎪⎭⎫ ⎝⎛=ππ, 分析速率分布律,可得以下特征数: ①最概然速率:mkTv m 2=; ②平均速率:m kTv π8=; ③方均根速率:mkTv v s 32==. ⑶计算单位时间内碰到单位面积器壁上的分子数,称为碰壁数.以dAdt d Γ表示在dt 时间内碰到dA 面积上,速度在z y x dv dv dv 范围内的分子数.这分子数就是位于以dA 为底、以()z y x v v v v ,,为轴线、以dt v x 为高的柱体内,速度在z y x dv dv dv 范围内的分子数.所以有:故可得单位时间内碰到单位面积上的分子数Γ为:mkTndv fv dv dv x x z y π20==Γ⎰⎰⎰∞+∞+∞-∞+∞-, 也可以表示为: 4.能均分定理能均分定理:对于处在温度T 的平衡状态的经典系统,粒子能量中每一个平方项的平均值等于kT 21. ⑴单原子分子只有平动,其能量为()22221zy x p p p m++=ε, 根据能均分定理,温度T 时,单原子分子的平均能量为:kT 23=ε.故单原子分子的内能为:NkT U 23=; 定容热容:Nk C V 23=; 定压热容:Nk Nk C C V p25=+=. ⑵双原子分子的能量为:如果不考虑相对运动,式中有5个平方项,根据能均分定理,双原子分子的平均能量为:kT 25=ε,双原子分子的内能、等容热容和等压热容分别为:⑶固体中的院子可以在平衡位置附近做微振动,假设各原子的振动是简谐运动,每个原子的能量为:只有两个平方项,而由于每个原子有三个自由度,根据能均分定理,每个原子的平均能量为:kT 3=ε,则固体的内能、等容热容分别为:固体热容之间的关系为:⑷平衡辐射问题考虑一个封闭的空窖,电磁辐射与窖壁达到平衡,称为平衡辐射,二者具有共同的温度空窖的辐射场可以分解为无穷多个单色平面波的叠加,分量可以表示为:其中ω是圆频率,k 是波矢.k的三个分量的可能值为:,1,0,2±==αααπn n L k ()z y x ,,=α.具有一定波矢k和一定偏振的单色平面波可以看做辐射场的一个自由度,它以圆频率ω随时间做简谐变化,因此相当于一个振动自由度.在体积V 内,在ωωωd +→的圆频率范围内,辐射场的振动自由度数为:()ωωπωωd cVd D 232=. 根据能均分定理,每一个振动自由度的平均能量为kT =ε.所以在体积V 内,在ωd 范围内平衡辐射的内能为:此式称为瑞利-金斯公式. 5.理想气体的内能与热容经典统计的能均分定理得到的关于理想气体内能和热容的结论与实验结果大体相同,但有几个问题没有得到合理的解释:原子内的电子对气体的热容为什么没有贡献;双原子分子的振动在常温范围内为什么对热容没有贡献;低温下氢的热容所得结果与实验结果不符. 本节以双原子分子为例,讲述理想气体内能和热容的量子统计理论.⑴暂不考虑原子中电子的运动,在一定近似下双原子分子的能量可以表示为平动能tε、振动能νε和转动能rε之和:r t εεεεν++=,以tω、νω和rω分别表示平动能、振动能和转动能的简并度,则配分函数1Z 可表示为: ①考虑平动对内能和热容的贡献:()2222212z y x t p p p mm p ++==ε,()2322312222⎪⎪⎭⎫ ⎝⎛==⎰++-βπβh m V dp dp dp e h V Z z y x p p p mt z y x ,因此,NkT Z NU t t 23ln 1=∂∂-=β, Nk T U C V tV 23=⎪⎭⎫ ⎝⎛∂∂=.②考虑振动对内能和热容的贡献:,2,1,0,21=⎪⎭⎫ ⎝⎛+=n n n ωεν, ()ωβωβωβν--+--==∑ee eZ nn 12211利用等比数列公式, 因此,引入振动特征温度νθ,ωθν =k ,可得。

大学物理统计物理学与热力学

大学物理统计物理学与热力学在大学物理学习中,统计物理学与热力学是重要的分支领域。

统计物理学是以统计方法研究物质的宏观性质,而热力学则关注物质的能量转化和热现象。

本文将探讨这两个领域的基本概念、主要原理和实际应用。

一、统计物理学统计物理学是用统计方法研究物质微观状态与宏观性质间关系的学科。

它通过考虑在大量粒子系统中的统计规律,揭示物质性质的普遍规律。

统计物理学的核心概念是统计热力学和微观统计学。

1. 统计热力学统计热力学研究大量粒子系统的宏观性质和概率分布。

它基于经典热力学的基本假设,如粒子之间的力学相互作用、宏观系统与热源的交换等。

通过定义熵、温度、压力等宏观量,统计热力学建立了宏观系统的统计描述和微观粒子的统计规律。

2. 微观统计学微观统计学是统计物理学的基础,研究微观粒子在给定约束下的状态统计。

它从粒子的能级和简并度出发,通过玻尔兹曼原理和统计机理,推导出系统的状态密度和粒子分布的统计规律。

微观统计学将微观粒子的性质与宏观物质的性质联系起来,为统计物理学的理论建立提供了基础。

二、热力学热力学是研究物质热现象和能量转化的学科。

它关注热力学系统的宏观性质,如体积、温度、压强等,并通过热力学定律和热力学过程描述物质的行为。

1. 热力学定律热力学定律是热力学的基本原则,包括零th定律、第一定律和第二定律。

零th定律表明具有相同温度的物体处于热平衡;第一定律阐述了能量守恒的原理;第二定律给出了热量流动方向和热效率的限制。

2. 热力学过程热力学过程是物质从一个平衡状态变化到另一个平衡状态的过程。

常见的过程包括等温过程、绝热过程、等容过程等。

通过对过程中的能量转化和熵变化的分析,可以研究系统的性质和实际应用。

三、统计物理学与热力学的应用统计物理学和热力学的理论与方法广泛应用于各个领域,包括物质科学、天文学、地球科学等。

1. 材料科学统计物理学在材料科学中的应用包括材料的相变、晶体结构、热导率等研究。

通过统计方法,可以揭示材料中微观粒子的分布和能量转换规律,为材料设计和性能优化提供理论指导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l
l
l
N al 0 l
E lal 0 l
[lnlnBB.E.E
lNal[lEn(]l
l
a33la)llnlnalla]l
al
l
0
热统
ln
பைடு நூலகம்
l
al
al
l
0
l al
al
e l
l al ale l l a(l e l 1)
al
l
e l

, P k
粒子状态是分立(不连续)的。
粒子所处的状态叫量子态 (单粒子态)。
量子态 用一组量子数表征(如自由粒子nx, ny, nz).
不同量子态的量子数取值不同。 量子描述单粒子的状态是确定单粒子的量子态,对于N个 粒子的系统,就是确定各个量子态上的粒子数。
4
6.3 系统微观运动状态的描述
一 基本概念
系统的微观态:整个系统的力学状态
全同粒子系统 就是由具有完全相同属性(相同的质量、自旋、 电荷等)的同类粒子所组成的系统。如自由电子气体。
近独立粒子系统:粒子之间的相互作用很弱,相互作用的平 均能量远小于单个粒子的平均能量,因而可以忽略粒子之间的 相互作用。将整个系统的能量表达为单个粒子的能量之和。( 如 理想气体:近独立的粒子组成的系统 )
AA
A
A
AA
两个费米子占据3个量 子态有3种占据方式
对于不同统计性质的系统,即使它们有相同的粒子数、 相同的量子态,系统包含的微观状态数也是不同的。
上例仅为两个粒子组成的系统、三个量子态。对于大 量微观粒子组成的实际系统,其微观状态数目是大量的。
12
热统
6.4等概率原理
宏观性质是大量微观粒子运动的集体表现;宏观物理 量是相应微观物理量的统计平均值。
a22,2,,,,,
ll,, al,
MB
N! al!
l
lal
l
28
热统
2 取对数,用斯特林公式化简
MB
N! al!
l
lal
l
ln ln N! lnal! al lnl
l
l
斯特林近似公式
ln m ! m ln m m 要求 m 1
ln ln N! lnal! al lnl 要求 al 1
7
热统
玻耳兹曼系统
(如定域系)。
粒子可以分辨, 每个个体量子态上的粒子数不受限制.
确定系统的微观状态要求确定每个粒子所处的个体量子态。 确定了每个粒子所处的量子态就确定了系统的一个微观状态
例:设系统由A、B两个粒子组成(定域子)。粒子的个体 量子态有3个, 讨论系统有那些可能的微观状态?
① ② ③ ④ ⑤ ⑥⑦⑧⑨
费米系统
F.D.
l
l ! al !(l al )!
微观状态数是分布{ al }的函数,不同的分布存在不同个
微观状态数,可能存在这样一个分布,它使系统的微观状态 数最多。
热统
根据等概率原理,对于处在平衡状态的孤立系统,系 统各个可能的微观状态出现的概率是相等的,那么微观状 态数最多的分布,出现的概率最大,称为最可几分布(最 概然分布)。
1
23
45
……
这样就确定了每个量子态上的粒子数,即确定了一种占 据方式(一个微观态)。
对能级 l ,把 al 个粒子和 l个量子态混合排列, 热统
量子态、粒子各种交换(排列)总数 (l al 1)!
其中粒子与粒子的交换、量子态与量子态的交换不产 生新的微观态。只有量子态与粒子交换导致不同微观态。
因此得因子
N!/ al!
l
例:系统有6个可分辨粒子,共两个能级,1=3,2=4
给定分布:a1= 4, a2=2
2 1
a2 34 42 a1
2 1
a2 a1
34 42
能级之间粒子交
换的方式数目为
6! al !
6! 2!4!
l
(4) 系统分布 {al} 包含的总微观状态数为
MB
N! al !
…… ……
l
即:能级1上有a1个粒子, 能级2上有a2个粒子,……。
2
17
1
al a2 a 热统 1
1、玻耳兹曼系统 (定域系统)的分布规律:
(1) al个离子占据能级εl 上的ωl 个量子态时,第一个粒子可以
占据ω 个量子态中的任何一个态,有ωl 种可能的占据方式。
由于每个量子态能够容纳的粒子数不受限制,在第一个粒子占
(1)玻色系统:即自旋量子数为整数的粒子组成的系统.
如光子自旋为1、π 介子自旋为0。由玻色子构成的复合粒 子是玻色子,由偶数个费米子构成的复合粒子也是玻色子
粒子不可分辨,每个量子态上的粒子数不限(即不受泡 利原理限制)
9
热统
上例变为 (A=B)
量子态1 量子态2 量子态3
①② AA
AA
③④
A
A AA
l
al l
4! 6!2!34 42 19440
l
20
热统
2 、 玻色系统分布 { al } 包含的微观状态数
粒子不可分辨,交换任意一对粒子不改变系统的微观态。
每个量子态上1 的粒子数2 不受限制3。
4
AB
C
DE
(1) al个粒子占据能级l 上的l个量子态的占据方式数:

表示量子态, 表示粒子。
在该描述下全同粒子可分辨
6
热统
❖ 2、微观系统的量子描述
定域粒子:全同而又可辨的粒子。例如晶体中的原子 或离子定域在其平衡位置附近作微振动、这些粒子就 量子本性而然是不可分辨的(全同性),但可以根据 粒子的位置对其加以区分(可分辨)。所以晶体中的 原子或离子可看成是定域粒子。
不可分辨的全同粒子系统(非定域系)
分布 al 满足条件: al N l 16
all E
l
热统
分布只表示每一个能级上有多少个粒子。当能级是简
并态时,一种分布包含很多种微观状态。
每一种不同的量子态的占据方式都是不同的微观运动
状态。 N 粒子系统的
能级
简并度 粒子数
1, 2, , l ,
1 , 2,,l ,
a1 , a2,,al ,
C al l
l ! al !(l al )!
将各能级的结果相乘,得到费米系统与分布{ al }相应的 微观状态数为:
F.D.
l
l ! al !(l al )!
24
热统
§6.6 玻耳兹曼分布
玻尔兹曼系统 玻色系统
MB
N! al !
l
al l
l
BE
l
(l al 1)! al ! (l 1)!
⑤⑥ A
A
AA
两个玻色子占据3个量子态有6种方式
10
热统
(2)费米系统:即自旋量子数为半整数的粒子组成的系统
粒子不可分辨,每个个体量子态上最多能容纳一个粒 子(费米子遵从泡利原理)。
系统由两个粒子组成(定域子)。粒子的个体量子 态有3个, 讨论系统有那些可能的微观状态
量子态1 量子态2 量子态3
④ ⑤⑥
❖ 微观粒子的状态杂乱无章,一个系统的力学状态也是 杂乱无章的,有很多个可能的状态,那么,每个状态 出现的概率为多少呢,与什么因素有关
14
1、等概率原理:对于处理平衡态的孤立系 统系统,各个可能状态出现的概率是相等的
等概率原理是统计物理的一个基本假设,是 平衡态统计物理的基础。
6.5分布和微观状态
l
31
热统
dN
l
dal 0 dE ldal 0
l
d (ln )
l
d
al
ln
l
al
=0
d (ln N E) d ln dN dE 0
l
ln
al
l
l dal
0
dal 任意,所以
ln
al
l
l
0

al lel
称为 麦克斯韦—玻耳兹曼分布(玻耳兹曼系统
量子态1 AB
A BAB
量子态2
AB
BA
AB
量子态3
AB
BABA
AB 1
2
3
因此,对于定域系统可有9种不同的微观状态,即 32。
一般地为 a.
8
热统
不可分辨的全同粒子系统(非定域系)
确定由全同近独立粒子组成的系统的微观状态归结为确 定每一个体量子态上的粒子数。或:
确定了每个量子态上的粒子数就确定了系统的微观状态
E i
i
5
热统
❖ 1、微观系统的经典描述
系统由N个粒子组成,每个粒子的微观态可用相空间的 一个代表点表示,系统的微观态可用相空间同一时刻的N个
代表点描述,即 qi1、qi2、…q ir; pi1、pi2、…pir
(i=1,2…….N),共2Nr个变量为确定。
一个粒子运动状态用相空间一个点,一个系统用相空间 N个点来表示。(特定的条件下可用)
宏观态:系统的热力学状态 用少数几个宏观参量即可确定系 统的宏观态。
微观态:系统的力学状态。 确定方法:①可分辨的全同粒子系统(玻耳兹曼系统); ②不可分辨的全同粒子系统(玻色、费米系)
13
热统
确定各微观状态出现的概率就能用统计的方法求出 微观量的统计平均值,从而求出相应宏观物理量,因此 确定各微观状态出现的概率是统计物理学的基本问题。
统计物理基本观点:宏观性质是大量微观粒子 运动的集体表现;宏观物理量是相应微观物理量的 统计平均值。
2
热统
§6.1 粒子运动状态的微观描述
相关文档
最新文档